PRESENTATION ON 555 TIMER A Practical Approach

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PRESENTATION ON 555 TIMER A Practical Approach"

Transcription

1 PRESENTATION ON 555 TIMER A Practical Approach By Nagaraj Vannal Assistant Professor School of Electronics Engineering, K.L.E Technological University, Hubballi-31

2 555 Timer The 555 Timer is one of the most popular and versatile integrated circuits ever produced! It is 30 years old and still being used! It is a combination of digital and analog circuits. It is known as the time machine as it performs a wide variety of timing tasks. Applications for the 555 Timer include: Bounce-free switches and Cascaded timers Frequency dividers Voltage-controlled oscillators Pulse generators and LED flashers

3 555 Timer Digital Circuits(15EECC203) Pin 1. Ground, The ground pin connects the 555 timer to the negative (0v) supply rail. Pin 2. Trigger, The negative input to comparator No 1. A negative pulse on this pin sets the internal Flip-flop when the voltage drops below 1/3Vcc causing the output to switch from a LOW to a HIGH state. Pin 3. Output, The output pin can drive any TTL circuit and is capable of sourcing or sinking up to 200mA of current at an output voltage equal to approximately Vcc 1.5V so small speakers, LEDs or motors can be connected directly to the output. Pin 4. Reset, This pin is used to reset the internal Flip-flop controlling the state of the output, pin 3. This is an active-low input and is generally connected to a logic 1 level when not used to prevent any unwanted resetting of the output. Pin 5. Control Voltage, This pin controls the timing of the 555 by overriding the 2/3Vcc level of the voltage divider network. By applying a voltage to this pin the width of the output signal can be varied independently of the RC timing network. When not used it is connected to ground via a 10nF capacitor to eliminate any noise. Pin 6. Threshold, The positive input to comparator No 2. This pin is used to reset the Flip-flop when the voltage applied to it exceeds 2/3Vcc causing the output to switch from HIGH to LOW state. This pin connects directly to the RC timing circuit. Pin 7. Discharge, The discharge pin is connected directly to the Collector of an internal NPN transistor which is used to discharge the timing capacitor to ground when the output at pin 3 switches LOW. Pin 8. Supply +Vcc, This is the power supply pin and for general purpose TTL 555 timers is between 4.5V and 15V.

4 Inside the 555 Timer Digital Circuits(15EECC203)

5 Inside the 555 Timer Digital Circuits(15EECC203) You will learn more about these components later in the course, for now just understand the following: The voltage divider has three equal 5K resistors. It divides the input voltage (Vcc) into three equal parts. The two comparators are op-amps which compare the voltages at their inputs and saturate depending upon which is greater. The flip-flop is a bi-stable device. It generates two values, a high value equal to Vcc and a low value equal to 0V. The transistor is being used as a switch, it connects pin 7 (discharge) to ground when it is closed.

6 Periodic Pulse Train from a 555 Timer 555-Timers, like op-amps can be configured in different ways to create different circuits. We will now look into how this one creates a train of equal pulses, as shown at the output.

7 First we must examine how capacitors charge 10V TCLOSE = U1 V V R1 1k V 8V 1 10V V1 2 U2 TOPEN = 0 C1 1uF 6V 4V Capacitor Voltage 2V 0 Capacitor C1 is charged up by current flowing through R1 I V1 V R1 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) CAPACITOR 10 V 1k CAPACITOR As the capacitor charges up, its voltage increases and the current charging it decreases, resulting in the charging rate shown Time

8 Capacitor Charging Equations 10mA 10V 8mA 8V 6mA Capacitor and Resistor Current 6V Capacitor Voltage 4mA 4V 2mA 2V 0A 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms I(R1) I(C1) Capacitor Current Capacitor Voltage Time I 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) I e o t V V e o t 1 Time Where the time constant RC R1 C1 1ms

9 Understanding the equations 10V 8V 6V Capacitor Voltage 4V 2V 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) Time Note that the voltage rises to a little above 6V in 1ms. 1 ( 1 e ). 632

10 Capacitor Charging and Discharging There is a good description of capacitor charging and its use in 555 timer circuits at

11 555 Timer At the beginning of the cycle, C1 is charged through resistors R1 and R2. The charging time constant is ( R1 R2) C1 The voltage reaches (2/3)Vcc in a time ( R1 R2) C1

12 555 Timer When the voltage on the capacitor reaches (2/3)Vcc, a switch (the transistor) is closed at pin 7 and the capacitor is discharged to (1/3)Vcc, at which time the switch is opened and the cycle starts over

13 555 Timer The capacitor voltage cycles back and forth between (2/3)Vcc and (1/3)Vcc at times and ( R1 R2) C ( R2) C1 13

14 555 Timer The frequency is then given by f ( R1 2 R2) C1 ( R1 2 R2) C1

15 Types of 555-Timer Circuits 5V 5V Ra 4 8 R 4 8 C Rb uF DIS TH R TR R CV NE555 1 GND VCC Q 3 LED 1 2 1K C uF DIS THR TR R CV NE555 1 GND VCC Q 3 LED Astable Multivibrator puts out a continuous sequence of pulses Monostable Multivibrator (or one-shot) puts out one pulse each time the switch is connected 15

16 Monostable Multivibrator (One Shot) V cc 8 4 Reset R a 6 Trigger 2 2 V cc 3 1 Vcc 3 R R Threshold Comparator +V - + -V +V - + -V Trigger Comparator R Q S Q Control Flip-Flop Output 3 C 7 R 1 Monstable Multivibrator One-Shot

17 Behavior of the Monostable Multivibrator The monostable multivibrator is constructed by adding an external capacitor and resistor to a 555 timer. The circuit generates a single pulse of desired duration when it receives a trigger signal, hence it is also called a one-shot. The time constant of the resistor-capacitor combination determines the length of the pulse.

18 Uses of the Monostable Multivibrator Used to generate a clean pulse of the correct height and duration for a digital system Used to turn circuits or external components on or off for a specific length of time. Used to generate delays. Can be cascaded to create a variety of sequential timing pulses. These pulses can allow you to time and sequence a number of related operations.

19 Astable Pulse-Train Generator (Multivibrator) V cc 8 4 R Threshold Comparator R 1 R 2 6 R - + +V -V R Q Output V -V S Q Trigger Comparator Control Flip-Flop C 7 R 1 Astable Pulse-Train Generator

20 Behavior of the Astable Multivibrator The astable multivibrator is simply an oscillator. The astable multivibrator generates a continuous stream of rectangular off-on pulses that switch between two voltage levels. The frequency of the pulses and their duty cycle are dependent upon the RC network values. The capacitor C charges through the series resistors R 1 and R 2 with a time constant (R 1 + R 2 )C. The capacitor discharges through R 2 with a time constant of R 2 C

21 ton=0.693(r1+r2)c1 toff=0693*r2*c1 T=ton+toff ASTABLE CALCULATIONS FOR LAB Let c1=5uf and For given frequency of 21hz, duty cycle of 64% F=1/T=1/21=48msec Duty cycle=ton/t* =ton/48msec ton=31msec Using toff =17msec => r2=5kω r1=4kω Final Values: R1=4K, R2=5K, C1=5uF Digital Circuits(15EECC203)

22 ASTABLE CALCULATIONS FOR LAB Let c1=1uf and For given frequency of 1hz, duty cycle of 64% ton=0.693(r1+r2)c1 toff=0.693*r2*c1 T=ton+toff F=1/T=1/1=1sec Duty cycle=ton/t* =ton/1sec ton=0.64sec Using toff =0.36sec Final Values: => r2=0.5mω R1=0.5M, R2=0.1M, r1=0.14mω C1=1uF

23 Input Outputs of 555

24 Design for 1sec delay with 50% duty Cycle

25 Design for 1sec delay with 50% duty Cycle Use diode(in4001) across R2 ton=toff=0.693(r1)c1 Choose the c1 value Calculate the r1 with ton=toff=0.5sec R1=R2=calculated value C1=assumed value

26 Design for 1sec delay with 50% duty Cycle Use diode(in4001) across R2 ton=toff=0.693(r1)c1 Choose the c1 Calculate the r1 with ton=toff=0.5sec R1=R2=calculated value = 7.2K C1=assumed value=100uf

PHYS225 Lecture 18. Electronic Circuits

PHYS225 Lecture 18. Electronic Circuits PHYS225 Lecture 18 Electronic Circuits Oscillators and Timers Oscillators & Timers Produce timing signals to initiate measurement Periodic or single pulse Periodic output at known (controlled) frequency

More information

Electronic Instrumentation

Electronic Instrumentation 5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

More information

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 4 TITLE : 555 TIMERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

More information

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS Prepared By: Ajay Kumar Kadel, Kathmandu Engineering College 1) PIN DESCRIPTIONS Fig.1 555 timer Pin Configurations Pin 1 (Ground):- All voltages are measured

More information

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms.

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms. AIM: SUBJECT: ANALOG ELECTRONICS (2130902) EXPERIMENT NO. 09 DATE : TITLE: TO DESIGN/BUILD MONOSTABLE MULTIVIBRATORS USING 555 IC AND VERIFY THEIR OPERATION USING MEASUREMENTS BY OBSERVING WAVEFORMS. DOC.

More information

ELG3331: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand

ELG3331: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand ELG333: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand Our objective is to design a system to measure and the rotational speed of a shaft. A simple method to measure rotational

More information

Police Siren Circuit using NE555 Timer

Police Siren Circuit using NE555 Timer Police Siren Circuit using NE555 Timer Multivibrator: Multivibrator discover their own space in lots of applications as they are among the most broadly used circuits. The application can be anyone either

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Lecture 14: 555 Timers

Lecture 14: 555 Timers Faculty of Engineering MEP382: Design of Applied Measurement Systems Lecture 14: 555 Timers 555 TIMER IC HISTORY The 555 timer IC was first introduced around 1971 by the Signetics Corporation as the SE555/NE555

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD SINGLE TIMER UNISONIC TECHNOLOGIES CO., LTD DESCRIPTION The UTC NE555 is a highly stable timer integrated circuit. It can be operated in both Astable and Monostable mode. With monostable operation, the

More information

RoHS Compliant Product

RoHS Compliant Product RoHS Compliant Product Description The SMSNE555 is a highly stable timer IC that can be operated in astable mode and monostable mode. For monostable mode: time delay is controlled by one external and one

More information

AND ITS APPLICATIONS M.C.SHARMA

AND ITS APPLICATIONS M.C.SHARMA AND ITS APPLICATIONS M.C.SHARMA 555 TIMER AND ITS APPLICATIONS BY M. C. SHARMA, M. Sc. PUBLISHERS: BUSINESS PROMOTION PUBLICATIONS 376, Lajpat Rai Market, Delhi-110006 By the same author Transistor Novelties

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Multivibrators (Astable and Monostable) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

OBJECTIVE The purpose of this exercise is to design and build a pulse generator. ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

More information

MC3456 DUAL TIMING CIRCUIT

MC3456 DUAL TIMING CIRCUIT Order this document by /D The dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting

More information

Distributed by: www.jameco.com -800-8- The content and copyrights of the attached material are the property of its owner. NE SA - SE GENERAL PURPOSE SINGLE BIPOLAR TIMERS LOW TURN OFF TIME MAXIMUM OPERATING

More information

Power Line Carrier Communication

Power Line Carrier Communication IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. II (Mar - Apr. 2014), PP 50-55 Power Line Carrier Communication Dorathe.

More information

High Current MOSFET Toggle Switch with Debounced Push Button

High Current MOSFET Toggle Switch with Debounced Push Button Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS LOW TURN OFF TIME MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz TIMING FROM MICROSECONDS TO HOURS OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES

More information

Electronic Instrumentation

Electronic Instrumentation Electronic Instrumentation Project 4: Optical Communication Link 1. Optical Communications 2. Initial Design 3. PSpice Model 4. Final Design 5. Project Report Why use optics? Advantages of optical communication

More information

LM555 and LM556 Timer Circuits

LM555 and LM556 Timer Circuits LM555 and LM556 Timer Circuits LM555 TIMER INTERNAL CIRCUIT BLOCK DIAGRAM "RESET" And "CONTROL" Input Terminal Notes Most of the circuits at this web site that use the LM555 and LM556 timer chips do not

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

L M 5 5 5/N E 5 5 5/S A 5 5 5

L M 5 5 5/N E 5 5 5/S A 5 5 5 L M 5 5 5/N E 5 5 5/S A 5 5 5 S i n g l e T i m e r www.fairchildsemi.com Features High Current Drive Capability (00mA) Adjustable Duty Cycle Temperature Stability of 0.005%/ C Timing From µsec to Hours

More information

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output SCHMITT TRIGGER (regenerative comparator) Schmitt trigger is an inverting comparator with positive feedback. It converts an irregular-shaped waveform to a square wave or pulse, also called as squaring

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM555 Timer General Description The LM555 is a highly stable device for

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2

For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2 Golden Rules for Ideal Op Amps with negative feedback: 1. The output will adjust in any way possible to make the inverting input and the noninverting input terminals equal in voltage. 2. The inputs draw

More information

LMC555 CMOS Timer. Features. Block and Connection Diagrams. Pulse Width Modulator. October 2003

LMC555 CMOS Timer. Features. Block and Connection Diagrams. Pulse Width Modulator. October 2003 LMC555 CMOS Timer General Description The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. In addition to the standard package (SOIC, MSOP, and MDIP) the LMC555 is also

More information

University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory

University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory Published on Instrumentation LAB (http://instrumentationlab.berkeley.edu) Home > Lab Assignments > Digital Labs > Digital Circuits II Digital Circuits II Submitted by Nate.Physics on Tue, 07/08/2014-13:57

More information

LM556 Dual Timer. an external resistor and capacitor for each timing Adjustable Duty Cycle

LM556 Dual Timer. an external resistor and capacitor for each timing Adjustable Duty Cycle 1 LM556 Dual Timer LM556 SNAS549A MARCH 2000 REVISED OCTOBER 2015 1 Features 3 Description 1 Direct Replacement for SE556/NE556 The LM556 dual-timing circuit is a highly-stable controller capable of producing

More information

Speed Control of DC Motor Using Phase-Locked Loop

Speed Control of DC Motor Using Phase-Locked Loop Speed Control of DC Motor Using Phase-Locked Loop Authors Shaunak Vyas Darshit Shah Affiliations B.Tech. Electrical, Nirma University, Ahmedabad E-mail shaunak_vyas1@yahoo.co.in darshit_shah1@yahoo.co.in

More information

ECE 2010 Laboratory # 5 J.P.O Rourke

ECE 2010 Laboratory # 5 J.P.O Rourke ECE 21 Laboratory # 5 J.P.O Rourke Prelab: Simulate the circuit used in parts 1 and 2 of the Lab and record the simulated results. Your Prelab is due at the beginning of lab and will be checked off by

More information

Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide

Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

More information

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Monostable multivibrators

Monostable multivibrators Monostable multivibrators We've already seen one example of a monostable multivibrator in use: the pulse detector used within the circuitry of flip-flops, to enable the latch portion for a brief time when

More information

NE555, SA555, SE555 PRECISION TIMERS

NE555, SA555, SE555 PRECISION TIMERS Timing From Microseconds to Hours Astable or Monostable Operation Adjustable Duty Cycle TTL-Compatible Output Can Sink or Source up to 00 ma Designed To Be Interchangeable With Signetics NE, SA, and SE

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

University of Southern California

University of Southern California University of Southern California Department of Electrical Engineering - Electrophysics EE 202L Linear Circuits Lab #7 This lab uses the 555 timer IC as an astable multivibrator, a circuit with a periodic

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit

TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit The MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In

More information

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

More information

Transistors, so far. I c = βi b. e b c. Rules 1. Vc>Ve 2. b-e and b-e circuits ~ diodes 3. max values of Ic, Ib, Vce 4. if rules are obeyed,

Transistors, so far. I c = βi b. e b c. Rules 1. Vc>Ve 2. b-e and b-e circuits ~ diodes 3. max values of Ic, Ib, Vce 4. if rules are obeyed, Transistors, so far 2N3904 e b c b npn c e ules 1. Vc>Ve 2. b-e and b-e circuits ~ diodes 3. max values of Ic, Ib, Vce 4. if rules are obeyed, β I c = βi b ~100, but variable c b Ic conservation of current:

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

More information

Features MIC1555 VS MIC1557 VS OUT 5

Features MIC1555 VS MIC1557 VS OUT 5 MIC555/557 MIC555/557 IttyBitty RC Timer / Oscillator General Description The MIC555 IttyBitty CMOS RC timer/oscillator and MIC557 IttyBitty CMOS RC oscillator are designed to provide rail-to-rail pulses

More information

LABORATORY 6 v3 TIME DOMAIN

LABORATORY 6 v3 TIME DOMAIN University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 6 v3 TIME DOMAIN Inductors and capacitors add a host of new circuit

More information

SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58

SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58 LIST OF EXPERIMENTS SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58 1) Active low pass & high pass filters second order 2) Active band pass & band

More information

FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Monostable Learning Outcomes You should be able to: demonstrate knowledge and understanding of

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

Getting to know the 555

Getting to know the 555 Getting to know the 555 Created by Dave Astels Last updated on 2018-04-10 09:32:58 PM UTC Guide Contents Guide Contents Overview Background Voltage dividers RC Circuits The basics RS FlipFlop Transistor

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 SCR Triggering Techniques ST2703 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643

More information

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2.

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2. 1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, 1996. FUNDAMENTALS Electrical Engineering 2.Processing - Analog data An analog signal is a signal that varies continuously.

More information

Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317. Medical Electronics Lab Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Lab 12: Timing sequencer (Version 1.3)

Lab 12: Timing sequencer (Version 1.3) Lab 12: Timing sequencer (Version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

State Machine Oscillators

State Machine Oscillators by Kenneth A. Kuhn March 22, 2009, rev. March 31, 2013 Introduction State machine oscillators are based on periodic charging and discharging a capacitor to specific voltages using one or more voltage comparators

More information

Process Components. Process component

Process Components. Process component What are PROCESS COMPONENTS? Input Transducer Process component Output Transducer The input transducer circuits are connected to PROCESS COMPONENTS. These components control the action of the OUTPUT components

More information

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

More information

Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

More information

Logic families (TTL, CMOS)

Logic families (TTL, CMOS) Logic families (TTL, CMOS) When you work with digital IC's, you should be familiar, not only with their logical operation, but also with such operational properties as voltage levels, noise immunity, power

More information

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam Emma Ideal, University of California at Los Angeles Enrico Fermi Institute, University of Chicago, REU 2008 Abstract A schematic design

More information

Qucs. A Tutorial. Modelling the 555 Timer. Mike Brinson. Copyright c 2006 Mike Brinson

Qucs. A Tutorial. Modelling the 555 Timer. Mike Brinson. Copyright c 2006 Mike Brinson Qucs A Tutorial Modelling the Timer Mike Brinson Copyright c 26 Mike Brinson Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

More information

555 Timer/Oscillator Tutorial

555 Timer/Oscillator Tutorial by Tony van Roon The 555 timer IC was first introduced around 1971 by the Signetics Corporation as the SE555/NE555 and was called "The IC Time Machine" and was also the very first and only commercial timer

More information

1.3 Mixed-Signal Systems: The 555 Timer

1.3 Mixed-Signal Systems: The 555 Timer 1.3 MIXED-SIGNAL SYSTEMS: THE 555 TIME 7 1.3 Mixed-Signal Systems: The 555 Timer Analog or digital? The 555 Timer has been around since the early 1970s. And even with the occasional new arrival of challengers

More information

LABORATORY EXPERIMENTS DIGITAL COMMUNICATION

LABORATORY EXPERIMENTS DIGITAL COMMUNICATION LABORATORY EXPERIMENTS DIGITAL COMMUNICATION INDEX S. No. Name of the Program 1 Study of Pulse Amplitude Modulation (PAM) and Demodulation. 2 Study of Pulse Width Modulation (PWM) and Demodulation. 3 Study

More information

Lab 6: Exploring the Servomotor Controller Circuit

Lab 6: Exploring the Servomotor Controller Circuit Lab 6: Exploring the Servomotor Controller Circuit By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC 1. Purpose: The purpose of this

More information

FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Astable Learning Outcomes You should be able to: demonstrate knowledge and understanding of the

More information

. VERY LOW POWER CONSUMPTION :.WIDE SINGLE SUPPLY RANGE : . PIN-TO-PIN AND FUNCTIONALLY COMPAT- . OUTPUT COMPATIBLE WITH TTL,CMOS TS3V555

. VERY LOW POWER CONSUMPTION :.WIDE SINGLE SUPPLY RANGE : . PIN-TO-PIN AND FUNCTIONALLY COMPAT- . OUTPUT COMPATIBLE WITH TTL,CMOS TS3V555 TS3555 3 LOW POWE SINGLE TIMES. DEDICATED TO 3.3 O BATTEY SUPPLY (Specified at 3 and 5). EY LOW POWE CONSUMPTION : 90µA at CC =3.WIDE SINGLE SUPPLY ANGE : +2.7 to +16. HIGH OUTPUT CUENT CAPABILITY. SUPPLY

More information

.LOWTURNOFFTIME .MAXIMUM OPERATING FREQUENCY .TIMING FROM MICROSECONDS TO HOURS .OPERATES IN BOTH ASTABLE AND .HIGH OUTPUT CURRENT CAN SOURCE OR

.LOWTURNOFFTIME .MAXIMUM OPERATING FREQUENCY .TIMING FROM MICROSECONDS TO HOURS .OPERATES IN BOTH ASTABLE AND .HIGH OUTPUT CURRENT CAN SOURCE OR NE SA- SE GENERAL PURPOSE SINGLE BIPOLAR TIMERS.LOWTURNOFFTIME.MAXIMUM OPERATING FREQUENY GREATER THAN 00kHz.TIMING FROM MIROSEONDS TO HOURS.OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES.HIGH OUTPUT URRENT

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits IR Link Labs Textbook Blackboard A. Kruger IR Link Labs, Version 2.3 1 Specifications Design a simple IR remote control Press a button on a transmitter Turn on a 5 V, 50 ma,

More information

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

St.MARTIN S ENGINEERING COLLEGE

St.MARTIN S ENGINEERING COLLEGE St.MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electrical and Electronics Engineering : III B. Tech I Semester : IC Applications OBJECTIVES QUESTION

More information

DATA SHEET. HEF4047B MSI Monostable/astable multivibrator. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF4047B MSI Monostable/astable multivibrator. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

GCE AS. WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS

GCE AS. WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS GCE AS WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS Teaching from 207 For award from 208 AS ELECTRONICS Sample Assessment Materials

More information

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits

More information

Electronics II. Previous Lecture

Electronics II. Previous Lecture Fall 204 (Rev. 3.0) Lecture 25 555 Timer IC (Mono Stable Operation) Voltage Controlled Oscillator and Phase Locked Loop Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus Duplication

More information

RAJALAKSHMI ENGINEERING COLLEGE THANDALAM 602 105. DEPARTMENT OF ECE LAB MANUAL CLASS : II YEAR ECE SEMESTER : IV SEM (DEC 2009) SUBJECT CODE : EC2258 SUBJECT : LINEAR INTEGRATED CIRCUITS LAB PREPARED

More information

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle International Journal of Current Engineering and Technology E-ISSN 77 4106, P-ISSN 347 5161 017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Designing

More information

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4300 Fall 2005 Test 4A Name Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets. On all questions:

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits both analog and digital The versatility of a TTL Schmitt is

More information

NE556, SA556, SE556, SE556C DUAL PRECISION TIMERS

NE556, SA556, SE556, SE556C DUAL PRECISION TIMERS Two Precision Timing Circuits per Package Astable or Monostable Operation TTL-Compatible Output Can Sink or Source Up to 50 ma Active Pullup or Pulldown Designed to be Interchangeable With Signetics SE556,

More information

Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes

Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Purpose: In this experiment, we learn a little about some of the new components which we will use in future projects. The first is the 555

More information

Materials. Eight pin DIP socket 0.1 µf capacitor

Materials. Eight pin DIP socket 0.1 µf capacitor JOE GROELE Project Outline The goal of this project was to build a plasma speaker that will amplify an electric guitar sound. Build an audio oscillator circuit using an ordinary speaker Test speaker performance

More information

Lab 11: 555 Timer/Oscillator Circuits

Lab 11: 555 Timer/Oscillator Circuits Page 1 of 6 Laboratory Goals Familiarize students with the 555 IC and its uses Design a free-running oscillator Design a triggered one-shot circuit Compare actual to theoretical values for the circuits

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

UNITII. Other LICs and Data Converters

UNITII. Other LICs and Data Converters UNITII Other LICs and Data Converters Other LICs and Data Converters: 555 timer Block diagram and features Astable Multivibrator Applications - Square wave oscillator, Ramp generator, Triangular waveform

More information

ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER Final Project ANALOG TO DIGITAL CONVERTER As preparation for the laboratory, examine the final circuit diagram at the end of these notes and write a brief plan for the project, including a list of the

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Dual Full-Bridge PWM Motor Driver AMM56219

Dual Full-Bridge PWM Motor Driver AMM56219 Dual Full-Bridge PWM Motor Driver AMM5619 The AMM5619 motor driver is designed to drive both windings of a bipolar stepper motor or to control bidirectionally two DC motors. Both bridges are capable of

More information

Pb-free lead plating; RoHS compliant

Pb-free lead plating; RoHS compliant Programmable Single-/Dual-/Triple- Tone Gong Pb-free lead plating; RoHS compliant SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone,

More information