Electronic Instrumentation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Electronic Instrumentation"

Transcription

1 Electronic Instrumentation Project 4: Optical Communication Link 1. Optical Communications 2. Initial Design 3. PSpice Model 4. Final Design 5. Project Report

2 Why use optics? Advantages of optical communication (over Radio Frequency) Wider bandwidth Larger capacity Lower power consumption More compact equipment Greater security against eavesdropping Immunity from interference ion/introduction%20(light)/intlight%201%20sm all.jpg

3 1. Optical Communications

4 Lighting the way to a revolution The exponential increase of sharing information is largely due to optical communication technology A few revolutionary technologies based on or effected by optical communication Internet (ex. Ethernet LAN based on Infrared Technology) Cell phones Satellite communication Others? 1966 Dr. Kao and George Hockham: fiber optics to carry information with light

5 Transmitting an audio signal using light In free space (air) Transmitter Circuit Receiver Circuit

6 Modulation Modulation is a way to encode an electromagnetic signal so that it can be transmitted and received. A carrier signal (constant) is changed by the transmitter in some way based on the information to be sent. The receiver then recreates the signal by looking at how the carrier was changed.

7 Modulation 8.0V 7.0V 6.0V 5.0V 4.0V 3.0V Modulating Input signal 2.0V 1.0V 0V -1.0V -2.0V -3.0V Carrier signal -4.0V 0s V(R2:1) V(R1:1) Time 4.0ms Output (modulated carrier) depends on the type of modulation used

8 Modulation Types General Frequency Modulation Amplitude Modulation Pulse Pulse Width Modulation Pulse Position Modulation Pulse Frequency Modulation

9 Amplitude Modulation Frequency of carrier remains constant. Input signal alters amplitude of carrier. Higher input voltage means higher carrier amplitude.

10 Frequency Modulation Amplitude of carrier remains constant. Input signal alters frequency of carrier. Higher input voltage means higher carrier frequency.

11 Pulse Modulation Remember duty cycle definition and equation T on T off Duty _ Cycle Ton T T Ton Toff Duty _ Cycle Pulse_ width Period Carrier has a constant variable Pulse Width Modulation - Period is constant Pulse Position Modulation - Pulse width is constant Pulse Frequency Modulation - Duty cycle is constant Input modulates carrier and effects other two variables

12 Pulse Width Modulation Period of carrier remains constant. Input signal alters duty cycle and pulse width of carrier. Higher input voltage means pulses with longer pulse widths and higher duty cycles.

13 Pulse Position Modulation Pulse width of carrier remains constant. Input signal alters period and duty cycle of carrier. Higher input voltage means pulses with longer periods and lower duty cycles.

14 Pulse Frequency Modulation Duty cycle of carrier remains constant. Input signal alters pulse width and period of carrier. Higher input voltage means pulses with longer pulse widths and longer periods.

15 2. Initial Design transmitter receiver The initial design for this project is a circuit consisting of a transmitter and a receiver. The circuit is divided into functional blocks. Transmitter: Block A-B and Block B-C Transmission: Block C-D Receiver: Block D-E, Block E-F, Block F-G, and Block G-H You will need to examine each block of the circuit.

16 RRC with variable resistor: Changes sampling frequency (of carrier signal) Transmitter Circuit 5V V1 Rpot 100k C8 330u R3 1k.001uF C2 R2 0 27k 4.7uF C3 Function_Gen_ VCC 8 GND 1 X1 TRIGGER RESET OUTPUT CONTROL THRESHOLD DISCHARGE 555D R19 100ohms LED 3 D1 555 Timer Similar to astable multivibrator configuration: Pin five input alters frequency of pulses

17 Transmitter Circuit: Input and Modulated Output Rpot 100k 5V V1 C8 330u R3 1k.001uF C2 R2 27k 4.7uF C3 Function_Gen_ VCC 8 GND 1 X1 TRIGGER RESET OUTPUT CONTROL THRESHOLD DISCHARGE 3 555D R19 100ohms LED D1 Input signal: function generator or audio 0 Output signal: Light modulation from LED

18 Special Capacitors 5V V1 Rpot 100k C8 330u R3 1k.001uF C2 R2 27k 4.7uF C3 Function_Gen_ VCC 8 GND 1 X1 TRIGGER RESET OUTPUT CONTROL THRESHOLD DISCHARGE 3 555D R19 100ohms LED DC Blocking Capacitor (High Pass Filter) Keeps DC offset from 555 Timer from interfering with input D1 Bypass Capacitor (Low Pass Filter) 0

19 Sample Input and Output When input is higher, pulses are longer When input is lower, pulses are shorter

20 Your signal is what? The type of modulation this circuit creates is most closely categorized as pulse frequency modulation. But the pulse width is also modulated and we will use that feature.

21 Sampling Frequency The pot (used as a variable resistor) controls your sampling frequency Input frequency in audible range max range (20-20kHz) representative range (500-4kHz) Sampling frequency should be between 8kHz and 48kHz to reconstruct sound Input amplitude should not exceed 2Vp-p Function generator can provide 1.2Vp-p

22 Receiver Circuit 56k Add a 100 Ohm resistor in series with the speaker to avoid failures.

23 Receive Light Signal 56k Add a 100 Ohm resistor in series with the speaker to avoid failures.

24 Inverting Amplifier (Pre-Amp) 56k Add a 100 Ohm resistor in series with the speaker to avoid failures.

25 Audio Amplifier 56k Add a 100 Ohm resistor in series with the speaker to avoid failures.

26 Audio Amplifier Details increases gain 10X (not needed) 386 audio amplifier high pass filter volume Add a 100 Ohm resistor in series with the speaker to avoid failures. low pass filter

27 Special Capacitors 56k Not needed Bypass Capacitor DC Blocking Capacitor Add a 100 Ohm resistor in series with the speaker to avoid failures.

28 3. PSpice Model You will compare the performance of your circuit to a PSpice model. The PSpice for the initial design will be given to you. You will use the PSpice to help you make decisions about how to create your final design.

29

30 Comparing Output of Blocks Take pictures of the signal on each side of the circuit block. A on channel 1 and B on channel 2 B on channel 1 and C on channel 2 Take all measurements relative to ground Does the block behave as expected? How does it compare to the PSpice output?

31 10V 5V 0V Comparing Output of Blocks wide-angle view Shows overall shape and size of input and output -5V 8.0ms 8.4ms 8.8ms 9.2ms 9.6ms 10.0ms V(R1:1) V(L1:2) Time 1.0V 0V -1.0V 8.301ms V(R1:1) 8.400ms 8.500ms 8.600ms 8.700ms V(L1:2)/10 Time 8.799ms close-up view Output divided by 10 Shows sampling frequency Shows shape of samples

32 4. Final Design The signal is reconstructed well enough by the initial design that it will be audible. In order to improve the quality of the signal, you will add an integrator, which will more exactly reconstruct it. Types of integrators passive integrator (low pass filter) active integrator (op amp integrator circuit) You will then improve the signal further with a smoothing capacitor.

33 Vin Passive Integration E R1 C1 Vout 500mV 250mV V f out C 0 1 V RC 1 2 RC in dt 0V 1.0Hz 10KHz 100MHz V(R1:2) Frequency Integration works only at high frequencies f >>fc. Unfortunately, your amplitude will also decrease.

34 Active Integration E F 500mV 250mV 0V 1.0Hz 10KHz 100MHz V(R1:2) Frequency V out f 1 R C C i V in 1 2 R dt f C Integration works at f >>fc Your gain goes from -R f /R i to -1/R i C The amplitude of your signal will decrease or increase depending on components

35 Input at A vs. Output at H 10V 5V 0V -5V 8.0ms 8.4ms 8.8ms 9.2ms 9.6ms 10.0ms V(R1:1) V(L1:2) Before addition Time of integrator 4.0V 2.0V 0V -2.0V 8.0ms 8.4ms 8.8ms 9.2ms 9.6ms 10.0ms V(V4:+) V(L1:2) Time After addition of integrator

36 Effect of Smoothing Capacitor D1 V D1N4148 V VOFF = 0 VAMPL = 5v FREQ = 1k V1 R1 1k C1 5u 0 Recall what the smoothing capacitor did to the output of the half wave rectifier.

37 Input at A vs. Output at H 4.0V 2.0V 0V -2.0V 8.0ms 8.4ms 8.8ms 9.2ms 9.6ms 10.0ms V(V4:+) V(L1:2) Before smoothing Time capacitor 2.0V 0V -2.0V 8.0ms 8.4ms 8.8ms 9.2ms 9.6ms 10.0ms V(V4:+) V(L1:2) -v(l1:2) After smoothing Time capacitor

38 Project Packet Initial Data with Function Generator PSpice Mobile Studio plots from circuit Brief Comparison Block Description For Blocks: A-B, A-C, A-D, A-E, A-F, A-G Overall System: A-H Initial Data with Audio Mobile Studio plots from circuit For E-F and A-H

39 Project Packet Final Data (integrator only) with Function Generator PSpice Mobile Studio plots from circuit Brief Comparison For E-F and A-H Final Data (integrator and smoothing) PSpice only PSpice Compare to without smoothing For E-F and A-H

40 Project Packet Final Data with Integrator (and possibly Smoothing) with Audio Mobile Studio plots from circuit For E-F and A-H Extra Credit Mobile Studio picture of A-H with input from function generator and integrated, smoothed output. Indicate values of components and where used.

41 Work in teams Put the transmitter on one protoboard and the receiver on a second. One pair do the transmitter circuit This is the easier circuit, so maybe also start the PSpice simulation. The other pair build the receiver circuit One report for the entire team Report is closer to an experiment report than a project report See details in handout.

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

More information

Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes

Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Purpose: In this experiment, we learn a little about some of the new components which we will use in future projects. The first is the 555

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

PRESENTATION ON 555 TIMER A Practical Approach

PRESENTATION ON 555 TIMER A Practical Approach PRESENTATION ON 555 TIMER A Practical Approach By Nagaraj Vannal Assistant Professor School of Electronics Engineering, K.L.E Technological University, Hubballi-31 nagaraj_vannal@bvb.edu 555 Timer The

More information

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS Prepared By: Ajay Kumar Kadel, Kathmandu Engineering College 1) PIN DESCRIPTIONS Fig.1 555 timer Pin Configurations Pin 1 (Ground):- All voltages are measured

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

ENGR-2300 Electronic Instrumentation Quiz 4 Fall 2012 Name

ENGR-2300 Electronic Instrumentation Quiz 4 Fall 2012 Name ENGR-23 Quiz 4 Fall 212 ENGR-23 Electronic Instrumentation Quiz 4 Fall 212 Name Question I (25 points) Question II (25 points) Question III (25 points) Question IV (25 points) Total (1 points) On all questions:

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

Police Siren Circuit using NE555 Timer

Police Siren Circuit using NE555 Timer Police Siren Circuit using NE555 Timer Multivibrator: Multivibrator discover their own space in lots of applications as they are among the most broadly used circuits. The application can be anyone either

More information

SAW-TOOTH GENERATOR VOLTAGE COMPARATOR. DTs Ts

SAW-TOOTH GENERATOR VOLTAGE COMPARATOR. DTs Ts ECEN4618: Experiment è2 PulseWidth Modulator Design cæ 1997 Dragan Maksimoviçc Department of Electrical and Computer Engineering University of Colorado, Boulder In the Lab è1, a simple pulse generator

More information

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections Lecture Op-Amp Building Blocks and Applications Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain elation Non-Linear Op-Amp Applications DC Imperfections ELG439 Check List for

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Power Line Carrier Communication

Power Line Carrier Communication IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. II (Mar - Apr. 2014), PP 50-55 Power Line Carrier Communication Dorathe.

More information

SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58

SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58 LIST OF EXPERIMENTS SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58 1) Active low pass & high pass filters second order 2) Active band pass & band

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output

COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output SCHMITT TRIGGER (regenerative comparator) Schmitt trigger is an inverting comparator with positive feedback. It converts an irregular-shaped waveform to a square wave or pulse, also called as squaring

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

RCR-XXX-RP. Features. Typical Applications. Description. - i - Low cost 315/418/ MHz Super-Regen ASK/OOK Receiver

RCR-XXX-RP. Features. Typical Applications. Description. - i - Low cost 315/418/ MHz Super-Regen ASK/OOK Receiver RCR-XXX-RP Embedding the wireless future.. Low cost 315/418/433.92 MHz Super-Regen ASK/OOK Receiver Typical Applications Features Remote Keyless Entry (RKE) Remote Lighting Controls On-Site Paging Asset

More information

Spring Diodes (25 points) In the figure below, each of the diodes turns on at between 0.7 volts and R=2k.

Spring Diodes (25 points) In the figure below, each of the diodes turns on at between 0.7 volts and R=2k. Spring 2002 2. Diodes (25 points) In the figure below, each of the diodes turns on at between 0.7 volts and R=2k. 1. Give the voltage at out for each of the following values of the input voltage, in (2

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 781 HIGH EFFICIENCY SYNCHRONOUS NONISOLATED FLYBACK

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 781 HIGH EFFICIENCY SYNCHRONOUS NONISOLATED FLYBACK DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 781 LTC3803ES6 Demonstration circuit 781 is a Telecom DC/DC converter featuring the LTC3803ES6 constant frequency current mode flyback controller.

More information

Speed Control of DC Motor Using Phase-Locked Loop

Speed Control of DC Motor Using Phase-Locked Loop Speed Control of DC Motor Using Phase-Locked Loop Authors Shaunak Vyas Darshit Shah Affiliations B.Tech. Electrical, Nirma University, Ahmedabad E-mail shaunak_vyas1@yahoo.co.in darshit_shah1@yahoo.co.in

More information

Process Components. Process component

Process Components. Process component What are PROCESS COMPONENTS? Input Transducer Process component Output Transducer The input transducer circuits are connected to PROCESS COMPONENTS. These components control the action of the OUTPUT components

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

More information

C and solving for C gives 1 C

C and solving for C gives 1 C Physics 241 Lab RLC Radios http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1. Begin today by reviewing the experimental procedure for finding C, L and resonance.

More information

Measuring Distance Using Sound

Measuring Distance Using Sound Measuring Distance Using Sound Distance can be measured in various ways: directly, using a ruler or measuring tape, or indirectly, using radio or sound waves. The indirect method measures another variable

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

EXPERIMENT NUMBER 8 Introduction to Active Filters

EXPERIMENT NUMBER 8 Introduction to Active Filters EXPERIMENT NUMBER 8 Introduction to Active Filters i-1 Preface: Preliminary exercises are to be done and submitted individually. Laboratory hardware exercises are to be done in groups. This laboratory

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

LAB MANUAL EC6412- LINEAR INTEGRATED CIRCUIT LABORATORY. Dharmapuri Regulation : 2013 Branch : B.E. ECE

LAB MANUAL EC6412- LINEAR INTEGRATED CIRCUIT LABORATORY. Dharmapuri Regulation : 2013 Branch : B.E. ECE EC6412 LINEAR INTEGRATED CIRCUITS LABORATORY 1 Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. ECE : II Year / IV Semester EC6412- LINEAR INTEGRATED CIRCUIT LABORATORY EC6412

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

1uH C2. 1uH C3. 390pF L8. 1uH C6. 1uH C8. 1uH C10. 1uH C7. 1uH C9. 390pF L pF L pF L pF L pF L12. 1uH C12.

1uH C2. 1uH C3. 390pF L8. 1uH C6. 1uH C8. 1uH C10. 1uH C7. 1uH C9. 390pF L pF L pF L pF L pF L12. 1uH C12. Lumped Model of Transmission Line In the Instrumentation Studio, we use both a coil of coax (around 8-1 meters long) and an equivalent lumped model of the coil of coax to study transmission lines. The

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits both analog and digital The versatility of a TTL Schmitt is

More information

Long Range Passive RF-ID Tag With UWB Transmitter

Long Range Passive RF-ID Tag With UWB Transmitter Long Range Passive RF-ID Tag With UWB Transmitter Seunghyun Lee Seunghyun Oh Yonghyun Shim seansl@umich.edu austeban@umich.edu yhshim@umich.edu About RF-ID Tag What is a RF-ID Tag? An object for the identification

More information

How to Measure LDO PSRR

How to Measure LDO PSRR How to Measure LDO PSRR Measure LDO PSRR with Network Analyzer Power supply rejection ratio (PSRR) or some time called power supply ripple rejection measurements are often difficult to measure, especially

More information

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B

UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B UNISONIC TECHNOLOGIES CO., LTD UC3842B/3843B HIGH PERFORMANCE CURRENT MODE CONTROLLERS DESCRIPTION The UTC UC3842B/3843B are specifically designed for off-line and dc-to-dc converter applications offering

More information

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit.

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit. PSpice Simulation The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit. For PSpice, the circuit is described by a text file called the netlist.

More information

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions:

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions: Cir cuit s 22 Lab Lab #7 Filter Design The purpose of this lab is multifold. This is a three-week experiment. You are required to design a High / Low Pass filter using the LM38 OP AMP. In this lab, you

More information

Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide

Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

More information

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals BIOE 123 Module 3 Electronics 2: Time Varying Circuits Lecture (30 min) Date Learning Goals Learn about the behavior of capacitors and inductors Learn how to analyze time-varying circuits to quantify parameters

More information

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture # ECEN 7 Electronics Design Laboratory Project Must rely on fully functional Lab circuits, Lab circuit is optional Can re do wireless or replace it with a different

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring 2017 V2 6.101 Introductory Analog Electronics Laboratory Laboratory

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

Lab 8: SWITCHED CAPACITOR CIRCUITS

Lab 8: SWITCHED CAPACITOR CIRCUITS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 8 Lab 8: SWITCHED CAPACITOR CIRCUITS Goal The goals of this experiment are: - Verify the operation of basic switched capacitor cells, - Measure

More information

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

Feed Forward Linearization of Power Amplifiers

Feed Forward Linearization of Power Amplifiers EE318 Electronic Design Lab Report, EE Dept, IIT Bombay, April 2007 Feed Forward Linearization of Power Amplifiers Group-D16 Nachiket Gajare ( 04d07015) < nachiketg@ee.iitb.ac.in> Aditi Dhar ( 04d07030)

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

St.MARTIN S ENGINEERING COLLEGE

St.MARTIN S ENGINEERING COLLEGE St.MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electrical and Electronics Engineering : III B. Tech I Semester : IC Applications OBJECTIVES QUESTION

More information

ECE 3274 Common-Emitter Amplifier Project

ECE 3274 Common-Emitter Amplifier Project ECE 3274 Common-Emitter Amplifier Project 1. Objective The objective of this lab is to design and build three variations of the common- emitter amplifier. 2. Components Qty Device 1 2N2222 BJT Transistor

More information

APPLICATION NOTE 3671 Data Slicing Techniques for UHF ASK Receivers

APPLICATION NOTE 3671 Data Slicing Techniques for UHF ASK Receivers Maxim > Design Support > Technical Documents > Application Notes > Basestations/Wireless Infrastructure > APP 3671 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP

More information

EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1. BJT Amplifiers EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

More information

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab Summary There are three basic configurations for operational amplifiers. If the amplifier is multiplying the amplitude of the signal, the multiplication

More information

BMC011. Wave Animator Written April 8, 2013 Last Editted April 8, 2013

BMC011. Wave Animator Written April 8, 2013 Last Editted April 8, 2013 BMC011. Wave Animator Written April 8, 2013 Last Editted April 8, 2013 I. What is a Wave Animator?/Demos II. Circuit Description/Schematics III. Construction A. Parts List B. PCB Information I.What Is

More information

Lecture 2 Physical Layer - Data Transmission

Lecture 2 Physical Layer - Data Transmission DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Data Transmission Mei Yang Based on Lecture slides by William Stallings 1 DATA TRANSMISSION The successful transmission of data depends on two

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Laboratory 4: Amplification, Impedance, and Frequency Response

Laboratory 4: Amplification, Impedance, and Frequency Response ES 3: Introduction to Electrical Systems Laboratory 4: Amplification, Impedance, and Frequency Response I. GOALS: In this laboratory, you will build an audio amplifier using an LM386 integrated circuit.

More information

Maintenance Manual ERICSSONZ LBI-31552E

Maintenance Manual ERICSSONZ LBI-31552E E Maintenance Manual TONE REMOTE CONTROL BOARD 19A704686P4 (1-Frequency Transmit Receive with Channel Guard) 19A704686P6 (4-Frequency Transmit Receive with Channel Guard) ERICSSONZ Ericsson Inc. Private

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6.

Name. Part A (25 Points) Complete on Blackboard. A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6. Name Part A (25 Points) Complete on Blackboard A. (25 Pts) Part B (75 Points) 1. (12 Pts) 2. (12 Pts) 3. (10 Pts) 4. (8 Pts) 5. (11 Pts) 6. (6 Pts) 7. (13 Pts) 8. (3 Pts) Total Annotate the circuit diagrams

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam Emma Ideal, University of California at Los Angeles Enrico Fermi Institute, University of Chicago, REU 2008 Abstract A schematic design

More information

LM555 and LM556 Timer Circuits

LM555 and LM556 Timer Circuits LM555 and LM556 Timer Circuits LM555 TIMER INTERNAL CIRCUIT BLOCK DIAGRAM "RESET" And "CONTROL" Input Terminal Notes Most of the circuits at this web site that use the LM555 and LM556 timer chips do not

More information

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Voltage-mode/Current-mode vs D-CAP2 /D-CAP3 Spandana Kocherlakota Systems Engineer, Analog Power Products 1 Contents Abbreviation/Acronym

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

"Improve Instrument Amplifier Performance with X2Y Optimized Input Filter"

Improve Instrument Amplifier Performance with X2Y Optimized Input Filter "Improve Instrument Amplifier Performance with X2Y Optimized Input Filter" By Wm. P. (Bill) Klein, PE Senior Technical Staff Johanson Dielectrics, Inc ABSTRACT: The common-mode rejection ability of an

More information

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

More information

University of Utah Electrical Engineering Department ECE 2100 Experiment No. 2 Linear Operational Amplifier Circuits II

University of Utah Electrical Engineering Department ECE 2100 Experiment No. 2 Linear Operational Amplifier Circuits II University of Utah Electrical Engineering Department ECE 2100 Experiment No. 2 Linear Operational Amplifier Circuits II Minimum required points = 51 Grade base, 100% = 85 points Recommend parts should

More information

20V, 2A Buck Switching Regulator

20V, 2A Buck Switching Regulator 20V, 2A Buck Switching Regulator FP6101 General Description The FP6101 is a buck switching regulator for wide operating voltage application fields. The FP6101 includes a high current P-MOSFET, high precision

More information

UNISONIC TECHNOLOGIES CO., LTD LMV393 Preliminary LINEAR INTEGRATED CIRCUIT

UNISONIC TECHNOLOGIES CO., LTD LMV393 Preliminary LINEAR INTEGRATED CIRCUIT UNISONIC TECHNOLOGIES CO., LTD LMV9 Preliminary LINEAR INTEGRATED CIRCUIT DUAL GENERAL PURPOSE, LOW VOLAGE, COMPARATORS DESCRIPTION The UTC LMV9 is a low voltage (.7-5V version of the dual comparators.

More information

Audio Applications of Linear Integrated Circuits

Audio Applications of Linear Integrated Circuits Audio Applications of Linear Integrated Circuits Although operational amplifiers and other linear ICs have been applied as audio amplifiers relatively little documentation has appeared for other audio

More information

MTSD-3. Two-Tone Decoder. Manual Revision: Hardware Revision(s): 165C

MTSD-3. Two-Tone Decoder. Manual Revision: Hardware Revision(s): 165C MTSD-3 Two-Tone Decoder Manual Revision: 2010-08-27 Hardware Revision(s): 165C 1 SPECIFICATIONS Operating Voltage Operating Current Input Level Input Impedance Frequency Range MTSD-3A MTSD-3B Ringing Output

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

INPUT: 110/220VAC. Parallel Input Series Input Parallel Output Series Output (W/CT)

INPUT: 110/220VAC. Parallel Input Series Input Parallel Output Series Output (W/CT) Linear power supply design: To make a simple linear power supply, use a transformer to step down the 120VAC to a lower voltage. Next, send the low voltage AC through a rectifier to make it DC and use a

More information

Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317. Medical Electronics Lab Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

More information