# PHYS225 Lecture 18. Electronic Circuits

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 PHYS225 Lecture 18 Electronic Circuits

2 Oscillators and Timers Oscillators & Timers Produce timing signals to initiate measurement Periodic or single pulse Periodic output at known (controlled) frequency Shape is also known (controllable) Sinusoid, square, triangle, etc. Part of nearly every electronic device

3 Relaxation oscillators Use a simple RC decay to generate a sustained oscillation Example using an op amp as a comparator Flips between states at a given frequency (1/RC)

4 Sine Wave Generator Wien Bridge oscillator 1/3 gain amplifier with phase shift cancellation Other techniques RC phase shift quadrature

5 Resonators Use piezoelectric effect Voltage generates a strain Quartz crystal vibrates at a specific frequency Depends on thickness of crystal Can cat like a very sharply tuned RLC circuit element Q is Very stable and useful!

6 The 555 Timer The 555 Timer is one of the most popular and versatile integrated circuits ever produced! It is 30 years old and still being used! It is a combination of digital and analog circuits. It is known as the time machine as it performs a wide variety of timing tasks. Applications for the 555 Timer include: Bounce-free switches and Cascaded timers Frequency dividers Voltage-controlled oscillators Pulse generators and LED flashers

7 555 Timer DIS R VCC Q THR TR CV NE555 1 GN D Each pin has a function Note some familiar components inside

8 Inside the 555 Timer

9 Inside the 555 Timer The voltage divider (blue) has three equal 5K resistors. It divides the input voltage (Vcc) into three equal parts. The two comparators (red) are op-amps that compare the voltages at their inputs and saturate depending upon which is greater. The Threshold Comparator saturates when the voltage at the Threshold pin (pin 6) is greater than (2/3)Vcc. The Trigger Comparator saturates when the voltage at the Trigger pin (pin 2) is less than (1/3)Vcc

10 The flip-flop (green) is a bi-stable device. It generates two values, a high value equal to Vcc and a low value equal to 0V. When the Threshold comparator saturates, the flip flop is Reset (R) and it outputs a low signal at pin 3. When the Trigger comparator saturates, the flip flop is Set (S) and it outputs a high signal at pin 3. The transistor (purple) is being used as a switch, it connects pin 7 (discharge) to ground when it is closed. When Q is low, Qbar is high. This closes the transistor switch and attaches pin 7 to ground. When Q is high, Qbar is low. This open the switch and pin 7 is no longer grounded 10

11 Types of 555-Timer Circuits 5V 5V Ra 4 8 R 4 8 C Rb uF DIS THR TR CV NE555 R 1 GN D VCC Q 3 LED 1 2 1K C uF DIS THR TR CV NE555 R 1 GN D VCC Q 3 LED Astable Multivibrator puts out a continuous sequence of pulses Monostable Multivibrator (or one-shot) puts out one pulse each time the switch is connected

12 Monostable Multivibrator (One Shot) V cc 8 4 Reset R Threshold Comparator R a 6 2 V cc 3 R - + +V -V R Q Output 3 Trigger 2 1 Vcc 3 +V - + -V Trigger Comparator S Q Control Flip-Flop C 7 R 1 Monstable Multivibrator One-Shot

13 Behavior of the Monostable Multivibrator The monostable multivibrator is constructed by adding an external capacitor and resistor to a 555 timer. The circuit generates a single pulse of desired duration when it receives a trigger signal, hence it is also called a one-shot. The time constant of the resistor-capacitor combination determines the length of the pulse.

14 Uses of the Monostable Multivibrator Used to generate a clean pulse of the correct height and duration for a digital system Used to turn circuits or external components on or off for a specific length of time. Used to generate delays. Can be cascaded to create a variety of sequential timing pulses. These pulses can allow you to time and sequence a number of related operations.

15 Astable Pulse-Train Generator (Multivibrator) V cc 8 4 R Threshold Comparator R 1 R 2 6 R - + +V -V R Q Output V -V S Q Trigger Comparator Control Flip-Flop C 7 R 1 Astable Pulse-Train Generator

16 Behavior of the Astable Multivibrator The astable multivibrator is simply an oscillator. The astable multivibrator generates a continuous stream of rectangular offon pulses that switch between two voltage levels. The frequency of the pulses and their duty cycle are dependent upon the RC network values. The capacitor C charges through the series resistors R 1 and R 2 with a time constant (R 1 + R 2 )C. The capacitor discharges through R 2 with a time constant of R 2 C

17 Uses of the Astable Multivibrator Flashing LED s Pulse Width Modulation Pulse Position Modulation Periodic Timers

18 Flashing LED s 40 LED bicycle light with 20 LEDs flashing alternately at 4.7Hz

19 Understanding the Astable Mode Circuit 555-Timers, like op-amps can be configured in different ways to create different circuits. This one creates a train of equal pulses, as shown at the output.

20 10V TCLOSE = U1 V V R1 1k V 8V 1 10V V1 2 U2 TOPEN = 0 C1 1uF 6V 4V Capacitor Voltage 2V 0 Capacitor C1 is charged up by current flowing through R1 I V1 V R1 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) CAPACITOR 10 V 1k CAPACITOR As the capacitor charges up, its voltage increases and the current charging it decreases Time

21 10mA 10V 8mA 8V 6mA Capacitor and Resistor Current 6V Capacitor Voltage 4mA 4V 2mA 2V 0A 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms I(R1) I(C1) Capacitor Current Capacitor Voltage Time Where the time constant I 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) I e o t V V o e t 1 Time RC R1 C1 1ms

22 10V 8V 6V Capacitor Voltage 4V 2V 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(U2:1) V(R1:2) V(V1:+) Time Note that the voltage rises to a little above 6V in 1ms. 1 ( 1 e ). 632

23 At the beginning of the cycle, C1 is charged through resistors R1 and R2. The charging time constant is charg e ( R1 The voltage reaches (2/3)Vcc in a time R2) C1 555 Timer t charg e T ( R1 R2) C1

24 555 Timer When the voltage on the capacitor reaches (2/3)Vcc, a switch (the transistor) is closed (grounded) at pin 7. The capacitor is discharged to (1/3)Vcc through R2 to ground, at which time the switch is opened and the cycle starts over. t discharg e disch arg e T2 ( R2) C ( R2) C1

25 555 Timer The frequency is then given by f ( R1 2 R2) C1 ( R1 2 R2) C1

26 PWM: Pulse Width Modulation Signal is compared to a sawtooth wave producing a pulse width proportional to amplitude

27 What Can Be Done With PWM? Low Duty Cycle Medium Duty Cycle High Duty Cycle Question: What happens if voltages like the ones above are connected to a light bulb? Answer: The longer the duty cycle, the longer the light bulb is on and the brighter the light. 20 March 2007 Electronic Instrumentation 27

28 What Can Be Done With PWM? Average power can be controlled Average flows can also be controlled by fully opening and closing a valve with some duty cycle 20 March 2007 Electronic Instrumentation 28

### Electronic Instrumentation

5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

### PRESENTATION ON 555 TIMER A Practical Approach

PRESENTATION ON 555 TIMER A Practical Approach By Nagaraj Vannal Assistant Professor School of Electronics Engineering, K.L.E Technological University, Hubballi-31 nagaraj_vannal@bvb.edu 555 Timer The

### Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

### DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 4 TITLE : 555 TIMERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

### ASTABLE MULTIVIBRATOR

555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

### Police Siren Circuit using NE555 Timer

Police Siren Circuit using NE555 Timer Multivibrator: Multivibrator discover their own space in lots of applications as they are among the most broadly used circuits. The application can be anyone either

### ELG3331: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand

ELG333: Digital Tachometer Introduction to Mechatronics by DG Alciatore and M B Histand Our objective is to design a system to measure and the rotational speed of a shaft. A simple method to measure rotational

### HIGH LOW Astable multivibrators HIGH LOW 1:1

1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

### EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS Prepared By: Ajay Kumar Kadel, Kathmandu Engineering College 1) PIN DESCRIPTIONS Fig.1 555 timer Pin Configurations Pin 1 (Ground):- All voltages are measured

### Power Line Carrier Communication

IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. II (Mar - Apr. 2014), PP 50-55 Power Line Carrier Communication Dorathe.

### Lecture 14: 555 Timers

Faculty of Engineering MEP382: Design of Applied Measurement Systems Lecture 14: 555 Timers 555 TIMER IC HISTORY The 555 timer IC was first introduced around 1971 by the Signetics Corporation as the SE555/NE555

### Operating Manual Ver.1.1

Multivibrators (Astable and Monostable) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

### AND ITS APPLICATIONS M.C.SHARMA

AND ITS APPLICATIONS M.C.SHARMA 555 TIMER AND ITS APPLICATIONS BY M. C. SHARMA, M. Sc. PUBLISHERS: BUSINESS PROMOTION PUBLICATIONS 376, Lajpat Rai Market, Delhi-110006 By the same author Transistor Novelties

### OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

### MC3456 DUAL TIMING CIRCUIT

Order this document by /D The dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting

### Concepts to be Reviewed

Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

### Exam Booklet. Pulse Circuits

Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

Distributed by: www.jameco.com -800-8- The content and copyrights of the attached material are the property of its owner. NE SA - SE GENERAL PURPOSE SINGLE BIPOLAR TIMERS LOW TURN OFF TIME MAXIMUM OPERATING

### LIC & COMMUNICATION LAB MANUAL

LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

### V out A v. Feedback Circuit

Oscillators V out A v Feedback Circuit Figure.: Positive Feed Back The feedback network in an oscillator an input to the amplifier, which in turn an input to the feedback network. Since positive feedback

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

### RoHS Compliant Product

RoHS Compliant Product Description The SMSNE555 is a highly stable timer IC that can be operated in astable mode and monostable mode. For monostable mode: time delay is controlled by one external and one

### UNISONIC TECHNOLOGIES CO., LTD

SINGLE TIMER UNISONIC TECHNOLOGIES CO., LTD DESCRIPTION The UTC NE555 is a highly stable timer integrated circuit. It can be operated in both Astable and Monostable mode. With monostable operation, the

### EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

### Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

### Analog Circuits Part 3 Operational Amplifiers

Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

### multiplier input Env. Det. LPF Y (Vertical) VCO X (Horizontal)

Spectrum Analyzer Objective: The aim of this project is to realize a spectrum analyzer using analog circuits and a CRT oscilloscope. This interface circuit will enable to use oscilloscopes as spectrum

### Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

### High Current MOSFET Toggle Switch with Debounced Push Button

Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

### INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

### L M 5 5 5/N E 5 5 5/S A 5 5 5

L M 5 5 5/N E 5 5 5/S A 5 5 5 S i n g l e T i m e r www.fairchildsemi.com Features High Current Drive Capability (00mA) Adjustable Duty Cycle Temperature Stability of 0.005%/ C Timing From µsec to Hours

### Speed Control of DC Motor Using Phase-Locked Loop

Speed Control of DC Motor Using Phase-Locked Loop Authors Shaunak Vyas Darshit Shah Affiliations B.Tech. Electrical, Nirma University, Ahmedabad E-mail shaunak_vyas1@yahoo.co.in darshit_shah1@yahoo.co.in

### Chapter 13: Comparators

Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

### EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM555 Timer General Description The LM555 is a highly stable device for

### Electronics II. Previous Lecture

Fall 204 (Rev. 3.0) Lecture 25 555 Timer IC (Mono Stable Operation) Voltage Controlled Oscillator and Phase Locked Loop Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus Duplication

### Feedback and Oscillator Circuits

Chapter 14 Chapter 14 Feedback and Oscillator Circuits Feedback Concepts The effects of negative feedback on an amplifier: Disadvantage Lower gain Advantages Higher input impedance More stable gain Improved

### Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

.A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

### Transistor Design & Analysis (Inverter)

Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

### EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

### FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Monostable Learning Outcomes You should be able to: demonstrate knowledge and understanding of

### COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output

SCHMITT TRIGGER (regenerative comparator) Schmitt trigger is an inverting comparator with positive feedback. It converts an irregular-shaped waveform to a square wave or pulse, also called as squaring

### Chapter.8: Oscillators

Chapter.8: Oscillators Objectives: To understand The basic operation of an Oscillator the working of low frequency oscillators RC phase shift oscillator Wien bridge Oscillator the working of tuned oscillator

### LM555 and LM556 Timer Circuits

LM555 and LM556 Timer Circuits LM555 TIMER INTERNAL CIRCUIT BLOCK DIAGRAM "RESET" And "CONTROL" Input Terminal Notes Most of the circuits at this web site that use the LM555 and LM556 timer chips do not

### NE555, SA555, SE555 PRECISION TIMERS

Timing From Microseconds to Hours Astable or Monostable Operation Adjustable Duty Cycle TTL-Compatible Output Can Sink or Source up to 00 ma Designed To Be Interchangeable With Signetics NE, SA, and SE

### BHARATHIDASAN ENGINEERING COLLEGE

BHARATHIDASAN ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6401 - ELECTRONIC CIRCUITS - II QUESTION BANK II- YEAR IV SEM ACDEMIC YEAR: 2016-2017 EVEN SEMESTER EC6401 ELECTRONIC

### For the op amp circuit above, how is the output voltage related to the input voltage? = 20 k R 2

Golden Rules for Ideal Op Amps with negative feedback: 1. The output will adjust in any way possible to make the inverting input and the noninverting input terminals equal in voltage. 2. The inputs draw

### NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS LOW TURN OFF TIME MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz TIMING FROM MICROSECONDS TO HOURS OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES

### Electronic Instrumentation

Electronic Instrumentation Project 4: Optical Communication Link 1. Optical Communications 2. Initial Design 3. PSpice Model 4. Final Design 5. Project Report Why use optics? Advantages of optical communication

### Comparators, positive feedback, and relaxation oscillators

Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

### SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58

LIST OF EXPERIMENTS SEM: V EXAM MARKS: 50 BRANCH: EC IA MARKS: 25 SUBJECT: ANALOG COMMUNICATION & LIC LAB SUB CODE: 06ECL58 1) Active low pass & high pass filters second order 2) Active band pass & band

### University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory

Published on Instrumentation LAB (http://instrumentationlab.berkeley.edu) Home > Lab Assignments > Digital Labs > Digital Circuits II Digital Circuits II Submitted by Nate.Physics on Tue, 07/08/2014-13:57

### APPLIED ELECTRONIC CIRCUITS

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 BM1005 APPLIED ELECTRONIC CIRCUITS Course Code: BM1005 Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year

### Monostable multivibrators

Monostable multivibrators We've already seen one example of a monostable multivibrator in use: the pulse detector used within the circuitry of flip-flops, to enable the latch portion for a brief time when

### APPLIED ELECTRONIC CIRCUITS

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 APPLIED ELECTRONIC CIRCUITS Course Code: Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year STAFF NAME:

### FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Astable Learning Outcomes You should be able to: demonstrate knowledge and understanding of the

### Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide

LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

### Operating Manual Ver.1.1

SCR Triggering Techniques ST2703 Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643

074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

### Question Bank EC6401 ELECTRONIC CIRCUITS - II

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Madurai Sivagangai Main Road Madurai - 625 020. [An ISO 9001:2008 Certified Institution] SEMESTER: IV / ECE Question Bank EC6401 ELECTRONIC CIRCUITS -

### St.MARTIN S ENGINEERING COLLEGE

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electrical and Electronics Engineering : III B. Tech I Semester : IC Applications OBJECTIVES QUESTION

### Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-IV

Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-IV Oscillators and Linear Digital IC's: Oscillators:

### Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

### LMC555 CMOS Timer. Features. Block and Connection Diagrams. Pulse Width Modulator. October 2003

LMC555 CMOS Timer General Description The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. In addition to the standard package (SOIC, MSOP, and MDIP) the LMC555 is also

### LM556 Dual Timer. an external resistor and capacitor for each timing Adjustable Duty Cycle

1 LM556 Dual Timer LM556 SNAS549A MARCH 2000 REVISED OCTOBER 2015 1 Features 3 Description 1 Direct Replacement for SE556/NE556 The LM556 dual-timing circuit is a highly-stable controller capable of producing

### Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide

LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6401 ELECTRONICS CIRCUITS-II SEM / YEAR: IV / II year B.E.

### Transistors, so far. I c = βi b. e b c. Rules 1. Vc>Ve 2. b-e and b-e circuits ~ diodes 3. max values of Ic, Ib, Vce 4. if rules are obeyed,

Transistors, so far 2N3904 e b c b npn c e ules 1. Vc>Ve 2. b-e and b-e circuits ~ diodes 3. max values of Ic, Ib, Vce 4. if rules are obeyed, β I c = βi b ~100, but variable c b Ic conservation of current:

### Lab 11: 555 Timer/Oscillator Circuits

Page 1 of 6 Laboratory Goals Familiarize students with the 555 IC and its uses Design a free-running oscillator Design a triggered one-shot circuit Compare actual to theoretical values for the circuits

### Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

### GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

### Gechstudentszone.wordpress.com

8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

### 1.3 Mixed-Signal Systems: The 555 Timer

1.3 MIXED-SIGNAL SYSTEMS: THE 555 TIME 7 1.3 Mixed-Signal Systems: The 555 Timer Analog or digital? The 555 Timer has been around since the early 1970s. And even with the occasional new arrival of challengers

RAJALAKSHMI ENGINEERING COLLEGE THANDALAM 602 105. DEPARTMENT OF ECE LAB MANUAL CLASS : II YEAR ECE SEMESTER : IV SEM (DEC 2009) SUBJECT CODE : EC2258 SUBJECT : LINEAR INTEGRATED CIRCUITS LAB PREPARED

### R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

Set No: 1 1. (a) Draw the equivalent circuits of emitter coupled differential amplifier from which calculate Ad. (b) Draw the block diagram of four stage cascaded amplifier. Explain the function of each

LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

### State Machine Oscillators

by Kenneth A. Kuhn March 22, 2009, rev. March 31, 2013 Introduction State machine oscillators are based on periodic charging and discharging a capacitor to specific voltages using one or more voltage comparators

### GCE AS. WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS

GCE AS WJEC Eduqas GCE AS in ELECTRONICS ACCREDITED BY OFQUAL DESIGNATED BY QUALIFICATIONS WALES SAMPLE ASSESSMENT MATERIALS Teaching from 207 For award from 208 AS ELECTRONICS Sample Assessment Materials

### LAB MANUAL EC6412- LINEAR INTEGRATED CIRCUIT LABORATORY. Dharmapuri Regulation : 2013 Branch : B.E. ECE

EC6412 LINEAR INTEGRATED CIRCUITS LABORATORY 1 Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. ECE : II Year / IV Semester EC6412- LINEAR INTEGRATED CIRCUIT LABORATORY EC6412

### DOC # SINE WAVE INVERTER OSCILLATOR CIRCUIT DIAGRAM ARCHIVE

26 December, 2017 DOC # SINE WAVE INVERTER OSCILLATOR CIRCUIT DIAGRAM ARCHIVE Document Filetype: PDF 93.14 KB 0 DOC # SINE WAVE INVERTER OSCILLATOR CIRCUIT DIAGRAM ARCHIVE TI shows a square wave oscillator.

### LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits

### Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes

Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Purpose: In this experiment, we learn a little about some of the new components which we will use in future projects. The first is the 555

### UNITII. Other LICs and Data Converters

UNITII Other LICs and Data Converters Other LICs and Data Converters: 555 timer Block diagram and features Astable Multivibrator Applications - Square wave oscillator, Ramp generator, Triangular waveform

### University of Southern California

University of Southern California Department of Electrical Engineering - Electrophysics EE 202L Linear Circuits Lab #7 This lab uses the 555 timer IC as an astable multivibrator, a circuit with a periodic

### TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit

The MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In

### ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A Name Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets. On all questions:

### LABORATORY 6 v3 TIME DOMAIN

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 6 v3 TIME DOMAIN Inductors and capacitors add a host of new circuit

### 1 sur 8 07/04/ :06

1 sur 8 07/04/2012 12:06 Les Banki Circuit Updated Version August 16, 2007 Synchronized 3 Frequency PWM circuit & cell drivers (for resonance electrolysis of water) Background The basic idea for this design

### CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

### . VERY LOW POWER CONSUMPTION :.WIDE SINGLE SUPPLY RANGE : . PIN-TO-PIN AND FUNCTIONALLY COMPAT- . OUTPUT COMPATIBLE WITH TTL,CMOS TS3V555

TS3555 3 LOW POWE SINGLE TIMES. DEDICATED TO 3.3 O BATTEY SUPPLY (Specified at 3 and 5). EY LOW POWE CONSUMPTION : 90µA at CC =3.WIDE SINGLE SUPPLY ANGE : +2.7 to +16. HIGH OUTPUT CUENT CAPABILITY. SUPPLY

### The Design of 0.35um Smith Sawtooth Generator

The Design of 0.35um Smith Sawtooth Generator Yuan-Paio Lee ChienKuo Technology University, ChungHua, Taiwan, ROC ABSTRACT In this study, the use of the relaxation oscillation theory, successful design

### Getting to know the 555

Getting to know the 555 Created by Dave Astels Last updated on 2018-04-10 09:32:58 PM UTC Guide Contents Guide Contents Overview Background Voltage dividers RC Circuits The basics RS FlipFlop Transistor

### Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

### Process Components. Process component

What are PROCESS COMPONENTS? Input Transducer Process component Output Transducer The input transducer circuits are connected to PROCESS COMPONENTS. These components control the action of the OUTPUT components

### DIGITAL ELECTRONICS ANALOG ELECTRONICS

DIGITAL ELECTRONICS 1. N10 4 Bit Binary Universal shift register. 2. N22- Random Access Memory (16*4). 3. N23- Read Only Memory. 4. N4-R-S/D-T Flip flop, characteristic and comparison. 5. Master Slave