Scanning Electron Microscopy Project Portfolio

Size: px
Start display at page:

Download "Scanning Electron Microscopy Project Portfolio"

Transcription

1 Scanning Electron Microscopy Project Portfolio Prepared by: Submitted for: CME 596 Scanning Electron Microscopy Fall 2015 N.C. Brown Center for ultrastructure Studies

2 Part I A portfolio of micrographs exhibiting the following techniques: Critical Point Drying Depth of Field Backscatter Low Voltage Image of an Uncoated Sample High Magnification (>50,000x) Stereo Pair Cryofracture

3 Critical Point Drying Figure 1. Scanning electron micrograph of truffle fungal spores in a hyphal mass Magnification: 1900x Voltage: 7kV Working Distance: 13 Spot Size: 11 Chevrons Aperture: 1

4 Depth of Field Figure 2a. Scanning electron micrograph of truffle surface Magnification: 190x Voltage: 5kV Working Distance: 7 Spot Size: 12 Chevrons Aperture: 1 Tilt: +38.4

5 Depth of Field Figure 2b. Scanning electron micrograph of truffle surface Magnification: 600x Voltage: 5kV Working Distance: 22 Spot Size: 11 Chevrons Aperture: 1 Tilt: +29.7

6 Backscatter Figure 3a. Backscatter scanning electron micrograph of Chromium, an atomic number of 24 (left). and Tungsten, an atomic weight of 74 (right) Magnification: 800x Voltage: 20kV Working Distance: 13 Spot Size: 16 Chevrons Aperture: 2 Figure 3b. Secondary scanning micrograph of Chromium, Cr (left), and Tungsten, W (right) Magnification: 800x Voltage: 20kV Working Distance: 13 Spot Size: 16 Chevrons Aperture: 2

7 Low Voltage Image of an Uncoated Sample Figure 4. Scanning electron micrograph of Vanadium Magnification: 1200x Voltage: 1.8kV Working Distance: 12 Spot Size: 11 Chevrons Aperture: 1

8 High Magnification Figure 5. Scanning electron micrograph of the facial hair of a Wasp. A second sputter coating of the specimen should prove to reduce the charging at high magnification Magnification: 55000x Voltage: 5kV Working Distance: 13 Spot Size: 8 Chevrons Aperture:1

9 Stereo Pair Figure 6. Scanning electron micrograph stereo pair of truffle hyphae Magnification: 500x Voltage: 5kV Working Distance: 13 Spot Size: 12 Chevrons Aperture: 1 Tilt: -7.9

10 Cryofracture Figure 7. Scanning electron micrograph of a cryo-fractured oak leaf stem, looking down the stem Magnification: 1900x Voltage: 7kV Working Distance: 11 Spot Size: 12 Chevrons Aperture 1

11 Part II Biological Sample: A series of micrographs relating to a biological specimen Fungal Specimens fixed in paraformaldehyde (4%), gluteraldehyde (0.1%) in PBS buffer and stained with osmium tetroxide (1% in water). Specimens were then critically point dried, placed on an aluminum stub with carbon paint and sputter coated. Insect specimens were placed on an aluminum stub and sputter coated. Non-biological: A series of micrographs relating to a non-biological specimen Paperclip specimens were uncoated and mounted on an aluminum stub with carbon paint Thread was sputter coated and mounted on an aluminum stub with carbon paint Vanadium (Vn) was uncoated and mounted on an aluminum stub with carbon paint

12 Biological Specimen Figure 8. Scanning electron micrograph of a truffle spore attached to hyphae. The spores are located on the inside of the truffle. This is a cross-sectioned image. Magnification: 2300x Voltage: 7kV Working Distance: 13 Spot Size: 10 Chevrons Aperture 1

13 Biological Specimen Figure 9. Scanning electron micrograph of a truffle spore attached to hyphae. Some charging can be seen on the left hand side of the image and was decreased by double coating the specimen Magnification: 3500x Voltage: 7kV Working Distance: 13 Spot Size: 10 Chevrons Aperture 1

14 Biological Specimen Figure 10. Scanning electron micrograph of a truffle spore attached to hyphae. Charging was corrected by as second sputter coat Magnification: 5500x Voltage: 7kV Working Distance: 13 Spot Size: 10 Chevrons Aperture: 1

15 Biological Specimen Figure 11. Scanning electron micrograph of a broken wasp mouth mandible Magnification: 900x Voltage: 8kV Working Distance: 12 Spot Size: 12 Chevrons Aperture 1

16 Biological Specimen Figure 12. Scanning electron micrograph of a broken wasp mouth mandible Magnification: 1800x Voltage: 8kV Working Distance: 12 Spot Size: 12 Chevrons Aperture 1

17 Non-Biological Specimen Figure 13. Scanning electron micrograph of an uncoated paperclip Magnification: 1800x Voltage: 8kV Working Distance: 12 Spot Size: 12 Chevrons Aperture 1

18 Non-Biological Specimen Figure 14. Scanning electron micrograph of an uncoated paperclip. The marks seen here are indentations from a pair of pliers used to break the paperclip. Magnification: 300x Voltage: 8kV Working Distance: 14 Spot Size: 13 Chevrons Aperture 1

19 Non-Biological Specimen Figure 15. Scanning electron micrograph of a sputter coated mass of sweater thread. Some charging can be seen where the coating was too thin. Magnification: 1800x Voltage: 8kV Working Distance: 12 Spot Size: 12 Chevrons Aperture 1

20 Non-Biological Specimen Figure 16. Scanning electron micrograph of an uncoated sample of Vanadium (Vn). Magnification: 1600x Voltage: 1.8kV Working Distance: 12 Spot Size: 11 Chevrons Aperture 1

Scanning Electron Microscopy Student Image Portfolio

Scanning Electron Microscopy Student Image Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 12-7-2016 Scanning Electron Microscopy Student Image Portfolio Matthew DaRin SUNY

More information

MCR Scanning Electron Microscopy Laboratory Portfolio

MCR Scanning Electron Microscopy Laboratory Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 2016 MCR 484 - Scanning Electron Microscopy Laboratory Portfolio Timothy Gervascio

More information

Scanning Electron Microscopy Laboratory Portfolio

Scanning Electron Microscopy Laboratory Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 2016 Scanning Electron Microscopy Laboratory Portfolio Kensey Portman SUNY College

More information

Scanning Electron Microscopy Laboratory Portfolio

Scanning Electron Microscopy Laboratory Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 2016 Scanning Electron Microscopy Laboratory Portfolio Nadia Abuqube SUNY College

More information

Scanning Electron Microscopy Laboratory Portfolio

Scanning Electron Microscopy Laboratory Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 2016 Scanning Electron Microscopy Laboratory Portfolio Marissa Lanzatella SUNY

More information

MODULE I SCANNING ELECTRON MICROSCOPE (SEM)

MODULE I SCANNING ELECTRON MICROSCOPE (SEM) MODULE I SCANNING ELECTRON MICROSCOPE (SEM) Scanning Electron Microscope (SEM) Initially, the plan of SEM was offered by H. Stintzing in 1927 (a German patent application). His suggested procedure was

More information

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners)

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) Microscopy101 Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) V.M. Dusevich*, J.H. Purk, and J.D. Eick University of Missouri Kansas City, School of Dentistry, 650 E. 25

More information

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering Scanning Electron Microscopy SEM Warren Straszheim, PhD MARL, 23 Town Engineering wesaia@iastate.edu 515-294-8187 How it works Create a focused electron beam Accelerate it Scan it across the sample Map

More information

Supporting Information

Supporting Information Strength of recluse spider s silk originates from nanofibrils Supporting Information Qijue Wang, Hannes C. Schniepp* Applied Science Department, The College of William & Mary, P.O. Box 8795, Williamsburg,

More information

Operation Guide. Hitachi S-3400N. Variable Pressure Scanning Electron Microscope. with. Deben Peltier Coolstage

Operation Guide. Hitachi S-3400N. Variable Pressure Scanning Electron Microscope. with. Deben Peltier Coolstage Operation Guide Hitachi S-3400N Variable Pressure Scanning Electron Microscope with Deben Peltier Coolstage www.deben.co.uk www.taltos.stanford.edu www.hitachi-hta.com Index Main Unit 3 Electron Optical

More information

Secondary Electron Detector

Secondary Electron Detector Secondary Electron Detector Fig. 17 Everhart-Thornley Detector (Fig. 7-9, p. 215, Bozzola and Russell) Secondary electrons (SE) are attracted to Faraday cage because of its positive charge. Detector surface

More information

Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation

Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation Chapter 2 The Study of Microbial Structure: Microscopy and Specimen Preparation 1 Lenses and the Bending of Light light is refracted (bent) when passing from one medium to another refractive index a measure

More information

Cryo-Electron Microscopy of Viruses

Cryo-Electron Microscopy of Viruses Blockkurs Biophysic and Structural Biology 2013 Praktikumsversuch at C-CINA Cryo-Electron Microscopy of Viruses In this practical we will compare electron microscopy of negatively stained and frozen-hydrated

More information

TB80: Scanning Electron Microscopy of Insects: Techniques for the Novice

TB80: Scanning Electron Microscopy of Insects: Techniques for the Novice The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 6-1-1979 TB80: Scanning Electron Microscopy of Insects: Techniques for the Novice G. P.

More information

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation The FlexSEM 1000: A Scanning Electron Microscope Specializing

More information

SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University)

SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University) 213 0 Journal of the Royal MicroscopicalSociety, VoZ. 83, Pts. I & 2, June 1964. Pages 213-216 SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University) PLATE 97-98 AND

More information

SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only

SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only Version 1.0 Prepared by D. Turnbull February 21, 2007. Please submit any omissions to the Author Note: This SEM is a recent

More information

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS Robert Edward Lee Electron Microscopy Center Department of Anatomy and Neurobiology Colorado State University P T R Prentice Hall, Englewood Cliffs,

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Center for Microscopy and Image Analysis. A short introduction to light and electron microscopy

Center for Microscopy and Image Analysis. A short introduction to light and electron microscopy A short introduction to light and electron microscopy 2 1. General Introduction Microscopy enables a direct imaging of organisms, tissues, cells, organelles, molecular assemblies and even individual proteins.

More information

The light microscope

The light microscope What is a microscope? The microscope is an essential tool in modern biology. It allows us to view structural details of organs, tissue, and cells not visible to the naked eye. The microscope should always

More information

Chapter 2 Alignment C. Robert Bagnell, Jr., Ph.D., 2012

Chapter 2 Alignment C. Robert Bagnell, Jr., Ph.D., 2012 Chapter 2 Alignment C. Robert Bagnell, Jr., Ph.D., 2012 Figure 2.1 is an image of striated muscle taken with a misaligned microscope and figure 2.2 is with a properly aligned microscope. To the untrained

More information

SECONDARY ELECTRON DETECTION

SECONDARY ELECTRON DETECTION SECONDARY ELECTRON DETECTION CAMTEC Workshop Presentation Haitian Xu June 14 th 2010 Introduction SEM Raster scan specimen surface with focused high energy e- beam Signal produced by beam interaction with

More information

Topics 3b,c Electron Microscopy

Topics 3b,c Electron Microscopy Topics 3b,c Electron Microscopy 1.0 Introduction and History 1.1 Characteristic Information 2.0 Basic Principles 2.1 Electron-Solid Interactions 2.2 Electromagnetic Lenses 2.3 Breakdown of an Electron

More information

Functions of the SEM subsystems

Functions of the SEM subsystems Functions of the SEM subsystems Electronic column It consists of an electron gun and two or more electron lenses, which influence the path of electrons traveling down an evacuated tube. The base of the

More information

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE by Doug Bray Department of Biological Sciences University of Lethbridge Revised September, 2000 Note: The terms in bold in this document represent

More information

Scanning Electron Microscopy. EMSE-515 F. Ernst

Scanning Electron Microscopy. EMSE-515 F. Ernst Scanning Electron Microscopy EMSE-515 F. Ernst 1 2 Scanning Electron Microscopy Max Knoll Manfred von Ardenne Manfred von Ardenne Principle of Scanning Electron Microscopy 3 Principle of Scanning Electron

More information

Match the microscope structures given in the left column with the statements in the right column that identify or describe them.

Match the microscope structures given in the left column with the statements in the right column that identify or describe them. 49 Prelab for Name Match the microscope structures given in the left column with the statements in the right column that identify or describe them. Key: a. coarse adjustment knob f. turret or nosepiece

More information

NeoScope. Simple Operation to 40,000. Table Top SEM. Serving Advanced Technology

NeoScope. Simple Operation to 40,000. Table Top SEM. Serving Advanced Technology Table Top SEM Simple Operation to 40,000 Serving Advanced Technology From 10 to 40,000 Table Top SEM Notebook PC version Just plug it to a wall outlet after placing it on a table Desktop PC version Option

More information

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu ELECTRON MICROSCOPY 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN

More information

Chapter 4 Imaging Lecture 17

Chapter 4 Imaging Lecture 17 Chapter 4 Imaging Lecture 17 d (110) Imaging Imaging in the TEM Diffraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging STEM imaging Imaging in the TEM What is

More information

Standard Operating Procedure

Standard Operating Procedure Standard Operating Procedure Title Subtitle NANoREG Work package/task: Owner and co-owner(s) Transmission electron microscopic imaging of nanomaterials WP2 Synthesis, supplying and characterization See

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Fundamentals of optical and scanning electron microscopy Dr. S. Sankaran Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module 03 Unit-6 Instrumental details

More information

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 1. Utility Requirements a. System power is supplied by two 120 VAC/20 A circuits. When doing maintenance

More information

Chapter 1. Basic Electron Optics (Lecture 2)

Chapter 1. Basic Electron Optics (Lecture 2) Chapter 1. Basic Electron Optics (Lecture 2) Basic concepts of microscope (Cont ) Fundamental properties of electrons Electron Scattering Instrumentation Basic conceptions of microscope (Cont ) Ray diagram

More information

Leading in Desktop SEM Imaging and Analysis

Leading in Desktop SEM Imaging and Analysis Leading in Desktop SEM Imaging and Analysis Fast. Outstanding. Reliable SEM imaging and analysis. The Phenom: World s Fastest Scanning Electron Microscope With its market-leading Phenom desktop Scanning

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens.

More information

Microscopy. ( greek mikros = small; skopein = to observe)

Microscopy. ( greek mikros = small; skopein = to observe) Microscopy ( greek mikros = small; skopein = to observe) Zacharias Jansen put several lenses in a tube (first compound microscope) and the object near the end of tube appeared to be greatly enlarged, much

More information

ELECTRON MICROSCOPY AN OVERVIEW

ELECTRON MICROSCOPY AN OVERVIEW ELECTRON MICROSCOPY AN OVERVIEW Anjali Priya 1, Abhishek Singh 2, Nikhil Anand Srivastava 3 1,2,3 Department of Electrical & Instrumentation, Sant Longowal Institute of Engg. & Technology, Sangrur, India.

More information

ZEISS EVO SOP. May 2017 ELECTRON OPTICS

ZEISS EVO SOP. May 2017 ELECTRON OPTICS ZEISS EVO SOP May 2017 ELECTRON OPTICS The patented EVO column is the area of the SEM, where electrons are emitted, accelerated, deflected, focused, and scanned. Main characteristics of the EVO optics

More information

SEM methods in surface research on wood

SEM methods in surface research on wood SEM methods in surface research on wood Hrvoje Turkulin - Faculty of Forestry, Zagreb University: Svetosimunska 25, 10000 Zagreb, Croatia 1. Introduction Wood weathering phenomena have been previously

More information

Scanning Electron Microscope in Our Facility

Scanning Electron Microscope in Our Facility SEM Training Scanning Electron Microscope in Our Facility Specifications Table SEM ESEM FE-SEM-F FE-SEM-J FE-SEM-H FE-SEM-CZ Device name TM3030 Inspect S50 Inspect F50 JSM-7600 S-4700 Marlin compact Company

More information

Dickinson College Department of Geology

Dickinson College Department of Geology Dickinson College Department of Geology Title: Equipment: BASIC OPERATION OF THE SCANNING ELECTRON MICROSCOPE (SEM) JEOL JSM-5900 SCANNING ELECTRON MICROSCOPE Revision: 2.2 Effective Date: 1/29/2003 Author(s):

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/eaao4204/dc1 Supplementary Materials for Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells Erin M. Sanehira,

More information

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida TEM Techniques Summary The TEM is an analytical instrument in which a thin membrane (typically < 100nm) is placed in the path of an energetic and highly coherent beam of electrons. Typical operating voltages

More information

ELECTRON MICROSCOPY PROCEDURES MANUAL

ELECTRON MICROSCOPY PROCEDURES MANUAL ELECTRON MICROSCOPY PROCEDURES MANUAL JULY 2010 Electron Microscopy Lab Thomas Building, DE-780 206.667.4289 PROTOCOLS... 1 Specimen Preparation Protocol... 1 1. Fixation:... 1 2. Dehydration:... 1 3.

More information

GBS765 Hybrid methods

GBS765 Hybrid methods GBS765 Hybrid methods Lecture 3 Contrast and image formation 10/20/14 4:37 PM The lens ray diagram Magnification M = A/a = v/u and 1/u + 1/v = 1/f where f is the focal length The lens ray diagram So we

More information

JSM 6060 LV SCANNING ELECTRON MICROSCOPE STANDARD OPERATING PROCEDURES

JSM 6060 LV SCANNING ELECTRON MICROSCOPE STANDARD OPERATING PROCEDURES JSM 6060 LV SCANNING ELECTRON MICROSCOPE STANDARD OPERATING PROCEDURES RULES All users must go through a series of standard operation procedure training. For more information contact: Longlong Liao Teaching

More information

Introduction to Scanning Electron Microscopy

Introduction to Scanning Electron Microscopy Introduction to Scanning Electron Microscopy By: Brandon Cheney Ant s Leg Integrated Circuit Nano-composite This document was created as part of a Senior Project in the Materials Engineering Department

More information

Key Points Refer to How to Use the Compound Light Microscope :

Key Points Refer to How to Use the Compound Light Microscope : MODULE 1 Objective 1.2 Lesson B Introduction to the Microscope Using the Light Microscope and Slide Preparation Course Advanced Biotechnology Unit Biotech Basics Essential Question How do scientists view

More information

Contrast transfer. Contrast transfer and CTF correction. Lecture 6 H Saibil

Contrast transfer. Contrast transfer and CTF correction. Lecture 6 H Saibil Lecture 6 H Saibil Contrast transfer Contrast transfer and CTF correction The weak phase approximation Contrast transfer function Determining defocus CTF correction methods Image processing for cryo microscopy

More information

Observing Microorganisms through a Microscope

Observing Microorganisms through a Microscope 2016/2/19 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 3 Observing Microorganisms through a Microscope 1 Figure 3.2 Microscopes and Magnification.

More information

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual Scanning Electron Microscope FEI INSPECT F50 Step by step operation manual Scanning Electron Microscope, FEI Inspect F50 FE-SEM-F Observation Flow Saving Data And Analysis Specimen preparation Error check

More information

S200 Course LECTURE 1 TEM

S200 Course LECTURE 1 TEM S200 Course LECTURE 1 TEM Development of Electron Microscopy 1897 Discovery of the electron (J.J. Thompson) 1924 Particle and wave theory (L. de Broglie) 1926 Electromagnetic Lens (H. Busch) 1932 Construction

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM 25 Low Voltage Electron Microscope fast compact powerful Delong America FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

More information

How to choose a Scanning Electron Microscope (SEM)

How to choose a Scanning Electron Microscope (SEM) www.lambdaphoto.co.uk E-guide How to choose a Scanning Electron Microscope (SEM) Providing guidance in the selection of the right microscope for your research Distribution in the UK & Ireland Table of

More information

Introduction to Electron Microscopy

Introduction to Electron Microscopy Introduction to Electron Microscopy Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful LVEM 25 Low Voltage Electron Mictoscope fast compact powerful FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions. All the benefits

More information

Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens

Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens (3 Journal of Microscopy, Vol. 100, Pt 1,January 1974, pp. 81-92. Received 1 January 1973; revision received 29 June 1973 Measurement of the top bottom effect in scanning transmission electron microscopy

More information

Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope

Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope The procedures given below were written specifically for the FEI Tecnai G 2 Sphera microscope. Modifications will need to

More information

Phase plates for cryo-em

Phase plates for cryo-em Max Planck Institute of Biochemistry Martinsried, Germany MAX PLANCK SOCIETY Phase plates for cryo-em Rado Danev Max Planck Institute of Biochemistry, Martinsried, Germany. EMBO course 2017, London, UK

More information

Microscopy Techniques that make it easy to see things this small.

Microscopy Techniques that make it easy to see things this small. Microscopy Techniques that make it easy to see things this small. What is a Microscope? An instrument for viewing objects that are too small to be seen easily by the naked eye. Dutch spectacle-makers Hans

More information

THE BOTTOM LINE I. THE MICROSCOPE

THE BOTTOM LINE I. THE MICROSCOPE THE BOTTOM LINE This document is designed to help students focus their attention on basic concepts that are important for understanding the fundamental principles of transmission electron microscopy, biological

More information

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument.

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument. JEOL JSM-7400F Table of contents General information.. 3 The operation panel. 4 The different sample holders and inserting the samples.. 5 Turning on the beam... 6 Stage map control... 8 Correcting astigmatism...

More information

Model SU3500 Scanning Electron Microscope

Model SU3500 Scanning Electron Microscope Model SU3500 Scanning Electron Microscope Modified and Parts taken from Hitachi Easy Operation Guide. Before using the Model SU3500 SEM, be sure to read the [GENERAL SAFETY GUIDELINES] in the instruction

More information

Unit Two Part II MICROSCOPY

Unit Two Part II MICROSCOPY Unit Two Part II MICROSCOPY AVERETT 1 0 /9/2013 1 MICROSCOPES Microscopes are devices that produce magnified images of structures that are too small to see with the unaided eye Humans cannot see objects

More information

A NEW TECHNIQUE TO RAPIDLY IDENTIFY LOW LEVEL GATE OXIDE LEAKAGE IN FIELD EFFECT SEMICONDUCTORS USING A SCANNING ELECTRON MICROSCOPE.

A NEW TECHNIQUE TO RAPIDLY IDENTIFY LOW LEVEL GATE OXIDE LEAKAGE IN FIELD EFFECT SEMICONDUCTORS USING A SCANNING ELECTRON MICROSCOPE. A NEW TECHNIQUE TO RAPIDLY IDENTIFY LOW LEVEL GATE OXIDE LEAKAGE IN FIELD EFFECT SEMICONDUCTORS USING A SCANNING ELECTRON MICROSCOPE. Jim Colvin Waferscale Integration Inc. 47280 Kato Rd. Fremont, CA 94538

More information

Title: Thinking with the Eyes Author(s): Elizabeth Haggerty Hutton Date Created: 8/5/2011 Subject: Biology Grade Level: 9 th Grade Honors Standards:

Title: Thinking with the Eyes Author(s): Elizabeth Haggerty Hutton Date Created: 8/5/2011 Subject: Biology Grade Level: 9 th Grade Honors Standards: Title: Thinking with the Eyes Author(s): Elizabeth Haggerty Hutton Date Created: 8/5/2011 Subject: Biology Grade Level: 9 th Grade Honors Standards: SC.912.N.1.1: The practice of science SC.912.L.14.4:

More information

SEM Training Notebook

SEM Training Notebook SEM Training Notebook Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside December 21, 2017 (rev. 3.4) 1 Before you begin Complete

More information

BioEngineering Unit, University of Strathclyde, Glasgow

BioEngineering Unit, University of Strathclyde, Glasgow SCANNING ELECTRON MICROSCOPE STUDIES OF HUMAN SKIN By K. E. CARR, Ph.D. BioEngineering Unit, University of Strathclyde, Glasgow TrIE mechanical properties of human skin have been examined using engineering

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

Media Cybernetics White Paper Spherical Aberration

Media Cybernetics White Paper Spherical Aberration Media Cybernetics White Paper Spherical Aberration Brian Matsumoto, University of California, Santa Barbara Introduction Digital photomicrographers assume that lens aberrations are corrected by the microscope

More information

Introduction: Why electrons?

Introduction: Why electrons? Introduction: Why electrons? 1 Radiations Visible light X-rays Electrons Neutrons Advantages Not very damaging Easily focused Eye wonderful detector Small wavelength (Angstroms) Good penetration Small

More information

MICROSCOPE TERMS 7X 45X 112.5X 225X

MICROSCOPE TERMS 7X 45X 112.5X 225X Microscopes MICROSCOPE TERMS Magnification- how much larger the image is Resolution- how clear the image is Field of View: Describes the visual picture seen when looking through the eyepiece of the microscope

More information

Welcome to our Wee Work section that will provide you and your child. with a learning activity that will engage their senses and emerging skills.

Welcome to our Wee Work section that will provide you and your child. with a learning activity that will engage their senses and emerging skills. Welcome to our Wee Work section that will provide you and your child with a learning activity that will engage their senses and emerging skills. Scroll down the page to find the activity that meets your

More information

Using the Hitachi 3400-N VP-SEM

Using the Hitachi 3400-N VP-SEM Using the Hitachi 3400-N VP-SEM Opening the Chamber to Load Specimens (This may also be done later using the software) 1. Click the AIR button on the front of the machine: 2. Wait a few minutes until you

More information

Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 17131 IULTCS/IUP 56 First edition 2012-08-15 Leather Identification of leather with microscopy Cuir Identification du cuir par microscopie Reference number ISO 17131:2012(E)

More information

Cryogenic Transmission Electron Microscope

Cryogenic Transmission Electron Microscope Cryogenic Transmission Electron Microscope Hideo Nishioka Application & Research Center, JEOL Ltd. Introduction The transmission electron microscope (TEM) that has been widely used in research in the fields

More information

FZ/T Translated English of Chinese Standard: FZ/T

FZ/T Translated English of Chinese Standard: FZ/T Translated English of Chinese Standard: FZ/T01057.3-2007 www.chinesestandard.net Sales@ChineseStandard.net TEXTILE INDUSTRY STANDARD FZ OF THE PEOPLE S REPUBLIC OF CHINA ICS 59.080.01 W 04 FZ/T 01057.3-2007

More information

2014 HTD-E with options

2014 HTD-E with options with options The HT7700 : a user-friendly, ergonomic digital TEM with options User-Friendly r end Design Ambient light operation. Multiple automated functions for alignment, focus and stigmation as standard

More information

School of Materials Science and Engineering, Beihang University, Beijing , China.

School of Materials Science and Engineering, Beihang University, Beijing , China. EFFECT OF SIZING AGENT ON THE INTERFACIAL ADHESION OF CARBON FIBER-REINFORCED POLYAMIDE 6 COMPOSITES Tao Zhang 1, Yueqing Zhao 2, Hongfu Li 3, Boming Zhang 4 1 School of Materials Science and Engineering,

More information

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G APPLICATION NOTE M06 attosnom I: Topography and Force Images Scanning near-field optical microscopy is the outstanding technique to simultaneously measure the topography and the optical contrast of a sample.

More information

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Andrey Elagin on behalf of the LAPPD collaboration Introduction Performance (timing) Conclusions Large Area Picosecond Photo

More information

JEOL JEM-1400 Transmission Electron Microscope Operating Instructions

JEOL JEM-1400 Transmission Electron Microscope Operating Instructions JEOL JEM-1400 Transmission Electron Microscope Operating Instructions Anti-contamination device Objective aperture Objective aperture translation knobs Specimen holder Pump/air switch Left hand control

More information

Burton's Microbiology for the Health Sciences

Burton's Microbiology for the Health Sciences Burton's Microbiology for the Health Sciences Chapter 2. Viewing the Microbial World Chapter 2 Outline Introduction Using the metric system to express the sizes of microbes Microscopes Simple microscopes

More information

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope Scientific / Metrology Instruments Multi-purpose Electron Microscope JEM-F200 Multi-purpose Electron Microscope JEM-F200/F2 is a multi-purpose electron microscope of the new generation to meet today's

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 5 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Detectors

More information

Lecture 20: Optical Tools for MEMS Imaging

Lecture 20: Optical Tools for MEMS Imaging MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 20: Optical Tools for MEMS Imaging 1 Overview Optical Microscopes Video Microscopes Scanning Electron

More information

Student name: date :

Student name: date : 1 Student name: date : INTRODUCTION A herbarium (plural: herbaria) is a collection of preserved plant specimens. Herbarium specimens form an important recorded of what plants grew where over time. They

More information

1.1. Log on to the TUMI system (you cannot proceed further until this is done).

1.1. Log on to the TUMI system (you cannot proceed further until this is done). FEI DB235 SEM mode operation Nicholas G. Rudawski ngr@ufl.edu (805) 252-4916 1. Sample loading 1.1. Log on to the TUMI system (you cannot proceed further until this is done). 1.2. The FIB software (xp)

More information

Lab: Using a Compound Light Microscope

Lab: Using a Compound Light Microscope Name Date Period Lab: Using a Compound Light Microscope Background: Microscopes are very important tools in biology. The term microscope can be translated as to view the tiny, because microscopes are used

More information

Light field photography and microscopy

Light field photography and microscopy Light field photography and microscopy Marc Levoy Computer Science Department Stanford University The light field (in geometrical optics) Radiance as a function of position and direction in a static scene

More information

Microbiology Laboratory 2

Microbiology Laboratory 2 Microbiology Laboratory 2 Microscopy Background Microorganisms are too small to be seen with the naked eye. Thus a microscope is used to magnify objects so they can be observed. A lens consists of one

More information

MICROSCOPE (3 x 2 hour lesson)

MICROSCOPE (3 x 2 hour lesson) MICROSCOPE (3 x 2 hour lesson) 1ST WEEK (2 HOUR): PRINCIPLE OF MICROSCOPE AND BASIC QUIZ Principle of microscope Make a simple microscope using two convex lenses to learn the principle of microscope. Identification

More information

Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch

Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch I. Introduction In this lab you will image your carbon nanotube sample from last week with an atomic force microscope. You

More information