attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

Size: px
Start display at page:

Download "attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G"

Transcription

1 APPLICATION NOTE M06 attosnom I: Topography and Force Images Scanning near-field optical microscopy is the outstanding technique to simultaneously measure the topography and the optical contrast of a sample. A new low coherence, optical system has been implemented in force detection schemes for scanning near-field optical microscopy applications. The experimental setup of the low coherence inter-ferometric system is presented in Fig. 1. A laser beam is coupled into a single mode fiber which guides the light through a 50/50 coupler directly to a specially prepared SNOM cantilever (Witec system*).the laser beam is partially reflected on the back side of that cantilever and coupled again into the control fiber. The resulting interference fringes are measured by the detector 1, thus providing the measurement of the tip vibration amplitude. The distance between the SNOM tip and the control fiber is typically 2 to 20 microns. As the tip approaches the sample surface, the cantilever amplitude drops sharply with decreasing tip-sample distance in the nanometer range. The vibration amplitude serves as the input of a feedback loop, which maintains the tip oscillations constant, and consequently the tip-sample forces interactions at a certain level. The output of the feedback loop is recorded during the scan, providing a topography image simultaneously with the near-field optical image. The fiber based low coherence system allows characterizing the tip oscillation modes and amplitudes on the one hand, and, on the other hand, performing topographical measurements with a high precision. Fig. 1: Schematic drawing of the experimental setup of the sensor system based on low coherence interferometry. R1 (=4%) and R2 (=96%) are the reflection coefficients at the end of the control fiber and the SNOM tip. Fig. 2: Optical transmission measurement of a detector glass plate (9x9 microns). Local defects are resolved by the SNOM technique. Fig. 4: The attosnom I microscope sensor head. Fig. 3: Topography and optical measurement of a gold grating (4x4 microns). Different local defects are resolved. attosnom I cantilever based scanning nearfield

2 APPLICATION NOTE M07 attosnom II: Optical Inspection of Waveguides Scanning near-field optical microscopy (SNOM) allows the measurements of both the topography and the optical contrast of a sample with subwavelength resolution. attosnom II works by scanning a sub-wavelength sized probe in the near field of a sample surface. The probe consists of a glass tip that can be covered with an opaque metal layer, with a clear nanometric aperture at the tip apex. The near-field fiber based probe acts simultaneously as a topographic sensor and a nanometric optical aperture that records an optical signal. The attosnom has a novel force detection scheme based on an all fiber low-coherence interferometer. The probe-sample distance control mechanism works by detecting the damping of the oscillating tip by sub-pn lateral forces (the so called shear force ) close to the surface. The probe oscillation amplitude is measured with a precision better than 100 fm/hz 1/2. The oscillation is damped when the probe approaches the sample in the nanometric range due to the shear force. Stable feedback in air and fluids is obtained for tip-sample interaction forces below 1 pn. The instrument records simultaneously this force and the optical signal while scanning the probe on the sample surface. Fig. 3: Principle of measurement: the optical fiber tip (red beam) is scanned very close to the surface of the waveguide, so that the collection of the emitted evanescent field is possible. The upper fiber (yellow beam) serves as a sensor of the tip vibration (distance control). Fig. 1: SEM micrograph of an attocube systems SNOM tip: a 100 nm thin coating guides the laser light to the end of the tip. Fig. 2: The attosnom II microscope sensor head. Fig. 4: Measurement of the evanescent field decay length on the surface of a waveguide. This decay is a function of the effective index of the propagating mode in the waveguide. This method brings the key information when investigating optical waveguides in telecom applications. attosnom II all fiber based scanning nearfield

3 APPLICATION NOTE M08 attosnom II: High Optical Resolution Imaging Scanning near-field s (SNOM) are designed to measure the optical contrast of a sample with sub-wavelength resolution. The attosnom II works by scanning a sharp probe in the near field of a sample surface. The probe consists of a glass tip that can be covered with an opaque metal layer, with a clear nanometric aperture dimension at the tip apex that records an optical signal. The research and development of new probe concepts are gaining increasing interest in near-field optical microscopy. The aim is a better control of the light distribution at the probe aperture, a higher light transmission and an increase in the achievable resolution in the nearfield. One possible solution is the use of a radiating gold nanostructure as a probe for near-field optical microscopy. The gold protruding nanostructure provides the facility to locally graft at the end of the tip a chemical linker to a specific molecule. The probe consequently consists of a topographical, optical and chemical sensor at the same time. Related article: O. Sqalli, M. Bernal, P. Hoffmann and F. Marquis-Weible, Improved tip performance for Scanning Near-Field Optical Microscopy by the attachment of a single gold nano-particle, Appl. Phys. Lett. 76, 2134 (2000). Fig. 1: SEM (Scanning Electron Microscopy) picture of a SNOM tip where a single gold particle is attached at the apex of the probe. Fig. 3: The attosnom II microscope sensor head. Fig. 2: Light transmission over a chromium on glass grating with a period of 372 nm before and after the attachment of a single gold nanoparticle at the tip apex: (a) no particle (b) with particle. attosnom II fiber based scanning nearfield

4 APPLICATION NOTE M09 attosnom III: Topography and Force Imaging Scanning near-field optical microscopy (SNOM) has drawn considerable research interest in recent years since it allows the measurements of both the topography and the optical contrast of a sample with subwavelength resolution. The attosnom III has a piezo-based force detection sensor for scanning near-field optical microscopy applications. The probe-sample distance control works by detecting the damping of the oscillating tip as the tip approaches the sample in the nanometer range. Two different detection methods can be used: 1. PI feedback loop: The force between the tip and the sample serves the input of the PI feedback electronic that keeps the force value constant and equal to a value defined by the user. A Lock-In amplifier is used to measure very small signals. Therefore, the user can plot two images: the so called topography (that corresponds to the piezo voltage of the z- stage) and also the phase between the dither piezo (that makes the tip vibrating) and the measured oscillation. The dephasing of these signals gives additional information. 2. PLL (Phase Locked Loop): The PLL has the same functionalities as the PI electronics, but some more advantages. Unlike the PI electronics, the PLL makes the tip vibrate at its resonance frequency. During the scan, the mechanical resonance frequency of the tip changes, due to interaction forces between the tip and the sample. The PLL can either record an image that is the resonance frequency of the tip, or plot an image that corresponds to the shift of the resonance frequency due to interactions between the tip and the sample. Additional information, such as elasticity of the sample, etc... is then available. Fig. 1: Topography measurement of a chess board with 2 microns in period. Top: data taken with a PI analog feedback; Bottom: phase measurement with a PLL analog feedback loop. Related article: K. Karrai et al., Interfacial Shear-Force Micros-copy, Phys. Rev B 62, (2000) Fig. 1: Left: topographic image of quantum dots performed in vacuum at 4K; Right: the noise in that measurement is well below 0.1 nm. Fig. 3: Line cut of the images shown in Fig. 2. attosnom III scanning nearfield optical microscope

5 Cantilever based Low Temperature Scanning Near-Field Optical Microscope Laser L Detector 1 Detail Interferometer Scanning near-field s (SNOMs) are designed to measure the optical contrast of a sample with sub-wavelength resolution. The attosnom I works by scanning a cantilever in the optical near-field of a sample surface. This microfabricated SNOM sensor, distributed by WITec, consists of a Silicon cantilever with a hollow Aluminum pyramid as tip. At its apex the pyramid has a small aperture of approx. 100 nm in diameter. The near-field probe in this configuration acts simultaneously as a topographic sensor in contact or modulation mode, hence enabling also force measurements, and as an optical aperture. One major advantage of these robust, mass-produced tips is the ease of probe handling unique in SNOM technology. The well known tip-sample distance control using the interferometric detection scheme as also applied in attoafms is another key feature of this system. The schematic drawing in Figure 1 describes this setup. A laser beam coupled into a single mode fiber (port 1) is used to illuminate the SNOM cantilever via a fiber coupler. Hereby, the backside of the cantilver and the fiber end form a Fabry-Perot interferometer and monitoring the intensity of the interference fringes allows to measure the tip vibration amplitude. The non-reflected part of the light is guided through the hollow cantilever and illuminates the sample through the aperture. The cantilever is scanned across the sample in a proximity smaller than the wavelength and the scattered light can be detected in transmission or reflection. Detector 2 (optional) Coupler z-axis y-axis x-axis Scanner x-axis y-axis z-axis liquid He Vacuum Window Thin-Walled Stainless Steel Vacuum Tube Single Mode Fiber for Deflection Detection Detail Interferometer SNOM Cantilever Sample R1 R2 Superconducting Magnet (optional) Ultra Stable Titanium Housing attocube systems Positioning Stages Liquid He Dewar (optional) Figure 1: Schematic drawing of the low temperature attosnom I system. Figure 2 shows the results of simultanously conducted measurements on a Vanadium rhomb-structure on glass substrate with the attosnom I. Whereas the left picture illustrates the topography of the sample, the right one depicts the results of a near-field measurement in transmission. The image shown in Figure 2 was acquired at room temperature and ambient conditions, but ongoing studies are currently establishing these measurements at cryogenic temperatures around 4 K. The attosnom I is an easy-to-use system that combines the advantages of SNOM and Atomic Force Microscopy in a single instrument which is highly suitable for applications under extreme environments such as low temperature and high magnetic fields. attocube systems explore your nanoworld attosnom I ANPxyz101/LT /LT ASC500 cantilever based scanning nearfield high precision, highly stable piezo electric, inertial positioner electronic stepper controller scanning probe microscopy controller attocube systems AG, Königinstrasse 11 A (Rgb), D München, Germany, Tel. +49 (0) , Fax. +49 (0) mm 5 mm Figure 2: Topography measurement (left) and simultaneously obtained near-field measurement in transmission (right) using the attosnom I. Sample: Vanadium rhomb-structure on glass substrate with a layer thickness of 10 nm and a period of 5 µm. Distance control: interferometric sensor. (attocube application labs, 2007). attocube systems AG All rights reserved.

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G APPLICATION NOTE M01 attocfm I for Surface Quality Inspection Confocal microscopes work by scanning a tiny light spot on a sample and by measuring the scattered light in the illuminated volume. First,

More information

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm.

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm. PAGE 30 & 2008 2007 PRODUCT CATALOG Confocal Microscopy - CFM fundamentals :... Over the years, confocal microscopy has become the method of choice for obtaining clear, three-dimensional optical images

More information

Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy

Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy C. Durkan a) and I. V. Shvets Department of Physics, Trinity College Dublin, Ireland Received 31 May 1995;

More information

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations PAGE 88 & 2008 2007 PRODUCT CATALOG CRYOGENIC PROBE STATION fundamentals...................... 90 principles of cryogenic probe stations attocps I.......................... 92 ultra stable cryogenic probe

More information

Microscopic Structures

Microscopic Structures Microscopic Structures Image Analysis Metal, 3D Image (Red-Green) The microscopic methods range from dark field / bright field microscopy through polarisation- and inverse microscopy to techniques like

More information

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy - Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy Yongho Seo Near-field Photonics Group Leader Wonho Jhe Director School of Physics and Center for Near-field

More information

NSOM (SNOM) Overview

NSOM (SNOM) Overview NSOM (SNOM) Overview The limits of far field imaging In the early 1870s, Ernst Abbe formulated a rigorous criterion for being able to resolve two objects in a light microscope: d > ë / (2sinè) where d

More information

Nanonics Systems are the Only SPMs that Allow for On-line Integration with Standard MicroRaman Geometries

Nanonics Systems are the Only SPMs that Allow for On-line Integration with Standard MicroRaman Geometries Nanonics Systems are the Only SPMs that Allow for On-line Integration with Standard MicroRaman Geometries 2002 Photonics Circle of Excellence Award PLC Ltd, England, a premier provider of Raman microspectral

More information

; A=4π(2m) 1/2 /h. exp (Fowler Nordheim Eq.) 2 const

; A=4π(2m) 1/2 /h. exp (Fowler Nordheim Eq.) 2 const Scanning Tunneling Microscopy (STM) Brief background: In 1981, G. Binnig, H. Rohrer, Ch. Gerber and J. Weibel observed vacuum tunneling of electrons between a sharp tip and a platinum surface. The tunnel

More information

Lecture 20: Optical Tools for MEMS Imaging

Lecture 20: Optical Tools for MEMS Imaging MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 20: Optical Tools for MEMS Imaging 1 Overview Optical Microscopes Video Microscopes Scanning Electron

More information

Near-field Optical Microscopy

Near-field Optical Microscopy Near-field Optical Microscopy R. Fernandez, X. Wang, N. Li, K. Parker, and A. La Rosa Physics Department Portland State University Portland, Oregon Near-Field SPIE Optics Microscopy East 2005 Group PSU

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

SENSOR+TEST Conference SENSOR 2009 Proceedings II

SENSOR+TEST Conference SENSOR 2009 Proceedings II B8.4 Optical 3D Measurement of Micro Structures Ettemeyer, Andreas; Marxer, Michael; Keferstein, Claus NTB Interstaatliche Hochschule für Technik Buchs Werdenbergstr. 4, 8471 Buchs, Switzerland Introduction

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)

Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM) Basic methods in imaging of micro and nano P2538000 AFM Theory The basic principle of AFM is very simple. The AFM detects the force interaction between a sample and a very tiny tip (

More information

attocube systems explore your nanoworld

attocube systems explore your nanoworld Low Temperature Scanning Probe Microscopes Low Temperature Scanning Probe Microscopes attocfm/snom Low Temperature Confocal & Scanning Near-Field Optical Microscopes 20, attocube systems AG - Germany.

More information

Manufacturing Metrology Team

Manufacturing Metrology Team The Team has a range of state-of-the-art equipment for the measurement of surface texture and form. We are happy to discuss potential measurement issues and collaborative research Manufacturing Metrology

More information

Prepare Sample 3.1. Place Sample in Stage. Replace Probe (optional) Align Laser 3.2. Probe Approach 3.3. Optimize Feedback 3.4. Scan Sample 3.

Prepare Sample 3.1. Place Sample in Stage. Replace Probe (optional) Align Laser 3.2. Probe Approach 3.3. Optimize Feedback 3.4. Scan Sample 3. CHAPTER 3 Measuring AFM Images Learning to operate an AFM well enough to get an image usually takes a few hours of instruction and practice. It takes 5 to 10 minutes to measure an image if the sample is

More information

Comparison of resolution specifications for micro- and nanometer measurement techniques

Comparison of resolution specifications for micro- and nanometer measurement techniques P4.5 Comparison of resolution specifications for micro- and nanometer measurement techniques Weckenmann/Albert, Tan/Özgür, Shaw/Laura, Zschiegner/Nils Chair Quality Management and Manufacturing Metrology

More information

3D simulations of the experimental signal measured in near-field optical microscopy

3D simulations of the experimental signal measured in near-field optical microscopy Journal of Microscopy, Vol. 194, Pt 2/3, May/June 1999, pp. 235 239. Received 6 December 1998; accepted 4 February 1999 3D simulations of the experimental signal measured in near-field optical microscopy

More information

Design, Fabrication and Characterization of Very Small Aperture Lasers

Design, Fabrication and Characterization of Very Small Aperture Lasers 372 Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 Design, Fabrication and Characterization of Very Small Aperture Lasers Jiying Xu, Jia Wang, and Qian Tian Tsinghua

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

Akiyama-Probe (A-Probe) guide

Akiyama-Probe (A-Probe) guide Akiyama-Probe (A-Probe) guide This guide presents: what is Akiyama-Probe, how it works, and its performance. Akiyama-Probe is a patented technology. Version: 2009-03-23 Introduction NANOSENSORS Akiyama-Probe

More information

Akiyama-Probe (A-Probe) guide

Akiyama-Probe (A-Probe) guide Akiyama-Probe (A-Probe) guide This guide presents: what is Akiyama-Probe, how it works, and what you can do Dynamic mode AFM Version: 2.0 Introduction NANOSENSORS Akiyama-Probe (A-Probe) is a self-sensing

More information

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser

Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Investigation of the Near-field Distribution at Novel Nanometric Aperture Laser Tiejun Xu, Jia Wang, Liqun Sun, Jiying Xu, Qian Tian Presented at the th International Conference on Electronic Materials

More information

Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

More information

PACS Nos v, Fc, Yd, Fs

PACS Nos v, Fc, Yd, Fs A Shear Force Feedback Control System for Near-field Scanning Optical Microscopes without Lock-in Detection J. W. P. Hsu *,a, A. A. McDaniel a, and H. D. Hallen b a Department of Physics, University of

More information

Lateral Force: F L = k L * x

Lateral Force: F L = k L * x Scanning Force Microscopy (SFM): Conventional SFM Application: Topography measurements Force: F N = k N * k N Ppring constant: Spring deflection: Pieo Scanner Interaction or force dampening field Contact

More information

Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced SPM techniques Applications in semiconductor research and industry

Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced SPM techniques Applications in semiconductor research and industry 1 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced SPM techniques Applications in semiconductor research and industry 2 Back to our solutions: The main problem: How to get nm

More information

Nano Scale Optics with Nearfield Scanning Optical Microscopy (NSOM)

Nano Scale Optics with Nearfield Scanning Optical Microscopy (NSOM) Nano Scale Optics with Nearfield Scanning Optical Microscopy (NSOM) Presentation Overview Motivation for nearfield optics Introduction to NSOM What is NSOM today? What can you do with NSOM? November 2,

More information

RECENTLY, using near-field scanning optical

RECENTLY, using near-field scanning optical 1 2 1 2 Theoretical and Experimental Study of Near-Field Beam Properties of High Power Laser Diodes W. D. Herzog, G. Ulu, B. B. Goldberg, and G. H. Vander Rhodes, M. S. Ünlü L. Brovelli, C. Harder Abstract

More information

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP 7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP Abstract: In this chapter we describe the use of a common path phase sensitive FDOCT set up. The phase measurements

More information

Figure for the aim4np Report

Figure for the aim4np Report Figure for the aim4np Report This file contains the figures to which reference is made in the text submitted to SESAM. There is one page per figure. At the beginning of the document, there is the front-page

More information

Near Field Optical Microscopy Characterization of IC Metrology

Near Field Optical Microscopy Characterization of IC Metrology Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 5-1-1994 Near Field Optical Microscopy Characterization of IC Metrology Ricardo Toledo-Crow Rochester Institute of

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 What are we actually doing here? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method

More information

Dielectric Contrast Imaging Using Apertureless Scanning Near-Field Optical Microscopy in the Reflection Mode

Dielectric Contrast Imaging Using Apertureless Scanning Near-Field Optical Microscopy in the Reflection Mode Journal of the Korean Physical Society, Vol. 47, August 2005, pp. S140 S146 Dielectric Contrast Imaging Using Apertureless Scanning Near-Field Optical Microscopy in the Reflection Mode Debdulal Roy, S.

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY IIT Bombay requests quotations for a high frequency conducting-atomic Force Microscope (c-afm) instrument to be set up as a Central Facility for a wide range of experimental requirements. The instrument

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith 9. Interference Lithography Sponsors: National Science Foundation, DMR-0210321; Dupont Agreement 12/10/99 Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg,

More information

Near-field optical photomask repair with a femtosecond laser

Near-field optical photomask repair with a femtosecond laser Journal of Microscopy, Vol. 194, Pt 2/3, May/June 1999, pp. 537 541. Received 6 December 1998; accepted 9 February 1999 Near-field optical photomask repair with a femtosecond laser K. LIEBERMAN, Y. SHANI,

More information

attocube systems explore your nanoworld

attocube systems explore your nanoworld Compact Low Temperature Scanning Probe Microscopes Compact Low Temperature Scanning Probe Microscopes PPMS SPM Compact Low Temperature Scanning Probe Microscopes 2010, attocube systems AG - Germany. attocube

More information

Nanosurf Nanite. Automated AFM for Industry & Research.

Nanosurf Nanite. Automated AFM for Industry & Research. Nanosurf Nanite Automated AFM for Industry & Research www.nanosurf.com Multiple Measurements Automated Got work? Nanosurf has the solution! The Swiss-based innovator and manufacturer of the most compact

More information

A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect Ting Xie 1, a), Michael Dreyer 2, David Bowen 3, Dan Hinkel 3, R. E. Butera

More information

Advanced 3D Optical Profiler using Grasshopper3 USB3 Vision camera

Advanced 3D Optical Profiler using Grasshopper3 USB3 Vision camera Advanced 3D Optical Profiler using Grasshopper3 USB3 Vision camera Figure 1. The Zeta-20 uses the Grasshopper3 and produces true color 3D optical images with multi mode optics technology 3D optical profiling

More information

Indentation Cantilevers

Indentation Cantilevers curve is recorded utilizing the DC displacement of the cantilever versus the extension of the scanner. Many indentations may be made using various forces, rates, etc. Upon exiting indentation mode, TappingMode

More information

Defect Study in Fused Silica using Near Field Scanning Optical Microscopy

Defect Study in Fused Silica using Near Field Scanning Optical Microscopy PREPRINT Defect Study in Fused Silica using Near Field Scanning Optical Microscopy M. Yan L. Wang W. Siekhaus M. Kozlowski J. Yang U. Mohideen This paper was prepared for and presented at the 29th Annual

More information

Constant Frequency / Lock-In (AM-AFM) Constant Excitation (FM-AFM) Constant Amplitude (FM-AFM)

Constant Frequency / Lock-In (AM-AFM) Constant Excitation (FM-AFM) Constant Amplitude (FM-AFM) HF2PLL Phase-locked Loop Connecting an HF2PLL to a Bruker Icon AFM / Nanoscope V Controller Zurich Instruments Technical Note Keywords: AM-AFM, FM-AFM, AFM control Release date: February 2012 Introduction

More information

ELECTRON MICROSCOPY AN OVERVIEW

ELECTRON MICROSCOPY AN OVERVIEW ELECTRON MICROSCOPY AN OVERVIEW Anjali Priya 1, Abhishek Singh 2, Nikhil Anand Srivastava 3 1,2,3 Department of Electrical & Instrumentation, Sant Longowal Institute of Engg. & Technology, Sangrur, India.

More information

Characterization of Silicon-based Ultrasonic Nozzles

Characterization of Silicon-based Ultrasonic Nozzles Tamkang Journal of Science and Engineering, Vol. 7, No. 2, pp. 123 127 (24) 123 Characterization of licon-based Ultrasonic Nozzles Y. L. Song 1,2 *, S. C. Tsai 1,3, Y. F. Chou 4, W. J. Chen 1, T. K. Tseng

More information

Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction between Probes

Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction between Probes e-journal of Surface Science and Nanotechnology 26 January 2013 e-j. Surf. Sci. Nanotech. Vol. 11 (2013) 13-17 Regular Paper Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction

More information

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry The Lecture Contains: Laser Doppler Vibrometry Basics of Laser Doppler Vibrometry Components of the LDV system Working with the LDV system file:///d /neha%20backup%20courses%2019-09-2011/structural_health/lecture36/36_1.html

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) Overview of week 12 Monday: FRET Wednesday: NSOM Förster resonance energy transfer (FRET) Fluorescence emission i FRET Donor Acceptor wikipedia

More information

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b, a Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde

More information

NANOSCOPIC EVALUATION OF MICRO-SYSTEMS

NANOSCOPIC EVALUATION OF MICRO-SYSTEMS NANOSCOPIC EVALUATION OF MICRO-SYSTEMS A. Altes 1, L.J. Balk 1, H.L. Hartnagel 2, R. Heiderhoff 1, K. Mutamba 2, and Ch. Thomas 1 1 Bergische Universität Wuppertal, Lehrstuhl für Elektronik, Wuppertal,

More information

Enhanced transmission in near-field imaging of layered plasmonic structures

Enhanced transmission in near-field imaging of layered plasmonic structures Enhanced transmission in near-field imaging of layered plasmonic structures Reuben M. Bakker, Vladimir P. Drachev, Hsiao-Kuan Yuan and Vladimir M. Shalaev School of Electrical and Computer Engineering,

More information

Supplementary Figure S1. Schematic representation of different functionalities that could be

Supplementary Figure S1. Schematic representation of different functionalities that could be Supplementary Figure S1. Schematic representation of different functionalities that could be obtained using the fiber-bundle approach This schematic representation shows some example of the possible functions

More information

Beams and Scanning Probe Microscopy

Beams and Scanning Probe Microscopy IFN-CNR, Sezione di Trento Istituto Trentino di Cultura of Trento Department of Physics University of Trento Towards the joint use of X-ray Beams and Scanning Probe Microscopy Silvia Larcheri SILS 2005

More information

Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch

Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch I. Introduction In this lab you will image your carbon nanotube sample from last week with an atomic force microscope. You

More information

A Project Report Submitted to the Faculty of the Graduate School of the University of Minnesota By

A Project Report Submitted to the Faculty of the Graduate School of the University of Minnesota By Observation and Manipulation of Gold Clusters with Scanning Tunneling Microscopy A Project Report Submitted to the Faculty of the Graduate School of the University of Minnesota By Dogukan Deniz In Partial

More information

Standard Operating Procedure of Atomic Force Microscope (Anasys afm+)

Standard Operating Procedure of Atomic Force Microscope (Anasys afm+) Standard Operating Procedure of Atomic Force Microscope (Anasys afm+) The Anasys Instruments afm+ system incorporates an Atomic Force Microscope which can scan the sample in the contact mode and generate

More information

with valuable information only accessible with optical contrast. One should look at it as a complementary tool with some room for improvement.

with valuable information only accessible with optical contrast. One should look at it as a complementary tool with some room for improvement. Introduction Optical microscopy has come a long way from Zacharias Jansen s first microscope at the end of the 16th century to today s highly developed microscopes. A number of different contrast mechanisms

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

IMAGING TECHNIQUES FOR MEASURING PARTICLE SIZE SSA AND GSV

IMAGING TECHNIQUES FOR MEASURING PARTICLE SIZE SSA AND GSV IMAGING TECHNIQUES FOR MEASURING PARTICLE SIZE SSA AND GSV APPLICATION NOTE SSA-001 (A4) Particle Sizing through Imaging TSI provides several optical techniques for measuring particle size. Two of the

More information

AFM of High-Profile Surfaces

AFM of High-Profile Surfaces AFM of High-Profile Surfaces Fig. 1. AFM topograpgy image of black Si made using SCD probe tip. Scan size 4. Profile height is more than 8. See details and other application examples below. High Aspect

More information

RHK Technology. Application Note: Kelvin Probe Force Microscopy with the RHK R9. ω mod allows to fully nullify any contact potential difference

RHK Technology. Application Note: Kelvin Probe Force Microscopy with the RHK R9. ω mod allows to fully nullify any contact potential difference Peter Milde 1 and Steffen Porthun 2 1-Institut für Angewandte Photophysik, TU Dresden, D-01069 Dresden, Germany 2-RHK Technology, Inc. Introduction Kelvin-probe force microscopy (KPFM) is an operation

More information

Park NX-Hivac: Phase-lock Loop for Frequency Modulation Non-Contact AFM

Park NX-Hivac: Phase-lock Loop for Frequency Modulation Non-Contact AFM Park Atomic Force Microscopy Application note #21 www.parkafm.com Hosung Seo, Dan Goo and Gordon Jung, Park Systems Corporation Romain Stomp and James Wei Zurich Instruments Park NX-Hivac: Phase-lock Loop

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic Optical Modulator Technical Whitepaper MEMS Optical Modulator Technology Overview The BMC MEMS Optical Modulator, shown in Figure 1, was designed for use in free space optical communication systems. The

More information

Nanowires for Quantum Optics

Nanowires for Quantum Optics Nanowires for Quantum Optics N. Akopian 1, E. Bakkers 1, J.C. Harmand 2, R. Heeres 1, M. v Kouwen 1, G. Patriarche 2, M. E. Reimer 1, M. v Weert 1, L. Kouwenhoven 1, V. Zwiller 1 1 Quantum Transport, Kavli

More information

UNIVERSITY OF WATERLOO Physics 360/460 Experiment #2 ATOMIC FORCE MICROSCOPY

UNIVERSITY OF WATERLOO Physics 360/460 Experiment #2 ATOMIC FORCE MICROSCOPY UNIVERSITY OF WATERLOO Physics 360/460 Experiment #2 ATOMIC FORCE MICROSCOPY References: http://virlab.virginia.edu/vl/home.htm (University of Virginia virtual lab. Click on the AFM link) An atomic force

More information

Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy

Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy F. Sarioglu, M. Liu, K. Vijayraghavan, A. Gellineau, O. Solgaard E. L. Ginzton Laboratory University Tip-sample

More information

Cutting-edge Atomic Force Microscopy techniques for large and multiple samples

Cutting-edge Atomic Force Microscopy techniques for large and multiple samples Cutting-edge Atomic Force Microscopy techniques for large and multiple samples Study of up to 200 mm samples using the widest set of AFM modes Industrial standards of automation A unique combination of

More information

Transmission electron Microscopy

Transmission electron Microscopy Transmission electron Microscopy Image formation of a concave lens in geometrical optics Some basic features of the transmission electron microscope (TEM) can be understood from by analogy with the operation

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Surface Finish Measurement Methods and Instrumentation

Surface Finish Measurement Methods and Instrumentation 125 years of innovation Surface Finish Measurement Methods and Instrumentation Contents Visual Inspection Surface Finish Comparison Plates Contact Gauges Inductive / Variable Reluctance (INTRA) Piezo Electric

More information

Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy C. H. Chuang and Y. L. Lo *

Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy C. H. Chuang and Y. L. Lo * Research Express@NCKU Volume 5 Issue 10 - October 3, 2008 [ http://research.ncku.edu.tw/re/articles/e/20081003/2.html ] Analytical analysis of modulated signal in apertureless scanning near-field optical

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications Carlos Macià-Sanahuja and Horacio Lamela-Rivera Optoelectronics and Laser Technology group, Universidad

More information

NanoFocus Inc. Next Generation Scanning Probe Technology. Tel : Fax:

NanoFocus Inc. Next Generation Scanning Probe Technology.  Tel : Fax: NanoFocus Inc. Next Generation Scanning Probe Technology www.nanofocus.kr Tel : 82-2-864-3955 Fax: 82-2-864-3956 Albatross SPM is Multi functional research grade system Flexure scanner and closed-loop

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

Application Note #548 AcuityXR Technology Significantly Enhances Lateral Resolution of White-Light Optical Profilers

Application Note #548 AcuityXR Technology Significantly Enhances Lateral Resolution of White-Light Optical Profilers Application Note #548 AcuityXR Technology Significantly Enhances Lateral Resolution of White-Light Optical Profilers ContourGT with AcuityXR TM capability White light interferometry is firmly established

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy Yasuhiko Terada, Shoji Yoshida, Osamu Takeuchi, and Hidemi Shigekawa*

More information

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Mode analysis of Oxide-Confined VCSELs using near-far field approaches Annual report 998, Dept. of Optoelectronics, University of Ulm Mode analysis of Oxide-Confined VCSELs using near-far field approaches Safwat William Zaki Mahmoud We analyze the transverse mode structure

More information

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania FemtoFAB Femtosecond laser micromachining system Konstitucijos ave. 23C LT-08105 Vilnius, Lithuania tel. +370 5 272 57 38 fax +370 5 272 37 04 info@wophotonics.com www.wophotonics.com INTRODUCTION FemtoFAB

More information

IMAGING P-N JUNCTIONS BY SCANNING NEAR-FIELD OPTICAL, ATOMIC FORCE AND ELECTRICAL CONTRAST MICROSCOPY. G. Tallarida Laboratorio MDM-INFM

IMAGING P-N JUNCTIONS BY SCANNING NEAR-FIELD OPTICAL, ATOMIC FORCE AND ELECTRICAL CONTRAST MICROSCOPY. G. Tallarida Laboratorio MDM-INFM Laboratorio MDM - INFM Via C.Olivetti 2, I-20041 Agrate Brianza (MI) M D M Materiali e Dispositivi per la Microelettronica IMAGING P-N JUNCTIONS BY SCANNING NEAR-FIELD OPTICAL, ATOMIC FORCE AND ELECTRICAL

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

D.C. Emmony, M.W. Godfrey and R.G. White

D.C. Emmony, M.W. Godfrey and R.G. White A MINIATURE OPTICAL ACOUSTIC EMISSION TRANSDUCER ABSTRACT D.C. Emmony, M.W. Godfrey and R.G. White Department of Physics Loughborough University of Technology Loughborough, Leicestershire LEll 3TU United

More information

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES USING GAS-COUPLED LASER ACOUSTIC DETECTION INTRODUCTION Yuqiao Yang, James N. Caron, and James B. Mehl Department of Physics and Astronomy University

More information

Department of Astronomy, Graduate School of Science, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo , Japan;

Department of Astronomy, Graduate School of Science, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo , Japan; Verification of the controllability of refractive index by subwavelength structure fabricated by photolithography: toward single-material mid- and far-infrared multilayer filters Hironobu Makitsubo* a,b,

More information

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology Dejiao Lin, Xiangqian Jiang and Fang Xie Centre for Precision Technologies,

More information

Development of a Vibration Measurement Method for Cryocoolers

Development of a Vibration Measurement Method for Cryocoolers REVTEX 3.1 Released September 2 Development of a Vibration Measurement Method for Cryocoolers Takayuki Tomaru, Toshikazu Suzuki, Tomiyoshi Haruyama, Takakazu Shintomi, Akira Yamamoto High Energy Accelerator

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

Three-dimensional imaging with optical tweezers

Three-dimensional imaging with optical tweezers Three-dimensional imaging with optical tweezers M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, and N. R. Heckenberg We demonstrate a three-dimensional scanning probe microscope in which the extremely

More information

Absolute distance interferometer in LaserTracer geometry

Absolute distance interferometer in LaserTracer geometry Absolute distance interferometer in LaserTracer geometry Corresponding author: Karl Meiners-Hagen Abstract 1. Introduction 1 In this paper, a combination of variable synthetic and two-wavelength interferometry

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

CONSTRUCTING A SCANNING TUNNELING MICROSCOPE FOR THE STUDY OF SUPERCONDUCTIVITY

CONSTRUCTING A SCANNING TUNNELING MICROSCOPE FOR THE STUDY OF SUPERCONDUCTIVITY CONSTRUCTING A SCANNING TUNNELING MICROSCOPE FOR THE STUDY OF SUPERCONDUCTIVITY CHRISTOPHER STEINER 2012 NSF/REU Program Physics Department, University of Notre Dame Advisors: DR. MORTEN ESKILDSEN CORNELIUS

More information

Diffraction, Fourier Optics and Imaging

Diffraction, Fourier Optics and Imaging 1 Diffraction, Fourier Optics and Imaging 1.1 INTRODUCTION When wave fields pass through obstacles, their behavior cannot be simply described in terms of rays. For example, when a plane wave passes through

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens.

More information