# Prepare Sample 3.1. Place Sample in Stage. Replace Probe (optional) Align Laser 3.2. Probe Approach 3.3. Optimize Feedback 3.4. Scan Sample 3.

Size: px
Start display at page:

Download "Prepare Sample 3.1. Place Sample in Stage. Replace Probe (optional) Align Laser 3.2. Probe Approach 3.3. Optimize Feedback 3.4. Scan Sample 3."

## Transcription

1 CHAPTER 3 Measuring AFM Images Learning to operate an AFM well enough to get an image usually takes a few hours of instruction and practice. It takes 5 to 10 minutes to measure an image if the sample is properly prepared. However, if it is an unknown sample that has never been scanned with an AFM before, it can take substantially more time to acquire meaningful images. The following sections discuss the steps required for measuring an AFM image, illustrated in Figure 3-1. Prepare Sample 3.1 Place Sample in Stage Replace Probe (optional) Align Laser 3.2 Probe Approach 3.3 Optimize Feedback 3.4 Scan Sample 3.5 Zoom on Feature 3.5 Tip Retract FIGURE 3-1 Sequential steps required for measuring an AFM image. 61

2 This chapter assumes that contact mode is being used for scanning. If a vibrating mode is being used, Section 3.2 will change to include measuring the resonant curve of the cantilever. 3.1 Sample Preparation Sample preparation for an AFM is reasonably simple. There are a few basic rules that must be followed to adequately prepare a sample for AFM scanning. The rules are: a) Sample must be adhered to the surface: If the sample has material adhered to the surface, the material must be rigidly mounted to the surface. If the material is not rigidly adhered two problems can occur. First, the probe can push the material to the edge of the scan range. When this occurs, the image appears as though there is nothing on the surface and only the substrate is observed. Second, the probe can pick up material from the surface because the material has a greater affinity for the probe than the surface. In this case the images often have streaks in them. The streaks are created by material moving on and off the probe, i.e. the probe geometry is changed by the material from the surface. b) Sample must be clean: AFM imaging requires that the probe move directly across the sample s surface topography. If the surface is dirty with a thick contamination layer, the probe needs to penetrate through the contamination layer to reach the surface. The contamination layer then causes severe distortion in the image (see Section 6.5.1). c) Sample dimensions must be realistic: The AFM can image a large variety of samples; however, there are a few constraints. Features on the sample s surface must be smaller than the dynamic range of the Z ceramic. Typically this is less than 10 microns. If the features on the surface are larger than 10 microns, then the Z piezo will not be able to move the probe over the features. Second, the probe must be able to directly access the features. As an example, if the sample has a 10 nm diameter hole, and the probe is 40 nm in diameter, the probe will not reach into the hole. 62

3 d) Sample must be rigidly mounted in the AFM stage: When the sample is fastened into the AFM stage, it must be mounted rigidly. If the sample is not mounted rigidly, it can vibrate. Vibrations substantially reduced the resolution of the microscope and often make it impossible to see small surface features. 3.2 Probe Laser Alignment If there is no probe in the AFM scanner, or the probe in the scanner is broken, a new probe must be inserted. The specifics of inserting a probe into the microscope depend on the particular type of AFM being used. It usually takes only seconds to replace the probe. The probe must be selected such that it matches the mode and application. After the probe is securely fastened into the AFM scanner: a) Adjust laser on cantilever An AFM scanner has two laser adjustment screws, one for moving the laser in the X direction, and one to move the laser in the Y direction. These screws are adjusted so that the laser light is on the end of the cantilever. If the AFM stage has an optical microscope, the laser can readily be seen on the cantilever. b) Move detector Like the laser, the photo detector has two adjustment screws, one for the X and one for the Y direction. The photo-detector position is adjusted so that the laser is at the center of the photo-detector. Typically, a software window has information that helps adjust the detector (see Figure 3-2). FIGURE 3-2 This software window shows the position of the laser on the photo-detector. By moving the position of the photo-detector in the x-y axis, the position of the red dot moves relative to the photo detector. At the right of the red dot is a vertical red bar that indicates the total laser power on the detector. 3.3 Probe Approach Once the sample and cantilever are in the microscope stage, the next step 63

4 is to initiate a probe approach. Probe approach moves the probe from approximately 1 mm from the surface to a condition of feedback. If tip approach is not implemented correctly, there is a great risk that the tip will crash into the surface and break. Typically, the woodpecker method is used for doing tip approach. In the woodpecker method, the probe is moved in steps in the Z direction towards the surface until the force sensor detects forces associated with the surface. Section describes the woodpecker method for probe approach. Figure 3-3 illustrates an SEM image of a probe that was damaged in tip approach. Probes crash into the surface if the probe approach is made too rapidly or if the feedback electronics are not switched on rapidly enough after the surface is detected by the force sensor. FIGURE 3-3 An operator must know how to operate the AFM such that probes are not damaged. Left: SEM image of sharp probe and an AFM image measured with the sharp probe. Right: SEM image of damaged probe and an AFM image measured with the damaged probe. 3.4 Optimizing Scan Conditions Assuming that probe approach is completed, the AFM probe can be scanned 64

5 across the surface. The scanning can be made in two dimensions; the probe is scanned in a line scan, back and forth across the surface. Alternatively, a scan can be initiated. The motion of the probe as well as the Z error signal are displayed in a two dimensional oscilloscope window (see Figure 3-4). FIGURE 3-4 Optimizing the PID parameters is done by assuring that the probe is tracking surface features. An oscilloscope window is often helpful for this. The scan parameters such as the set-point voltage, and the PID parameters are adjusted as the line scan is being made. The goal in adjusting the scan parameters is to have the probe track the surface. The probe is tracking the surface when the Z error signal image has a minimal signal. Establishing the optimal conditions requires practice and some intuition. When first learning to operate an AFM, it is helpful to operate with a test sample and adjust the PID settings to see the effect on the Z voltage and the Z error signal, as shown in Figure 3-5. FIGURE 3-5 Top: If the PID parameters are all zero, the cantilever will bend as it moves across the surface features. Bottom: If the PID parameters are optimized, the cantilever defl ection remains constant while scanning Scan Image / Zoom After the scan parameters are optimized, a scan is initiated. The range of the first scan depends on the specific sample being examined. A scan that 65

6 is far greater than the desired features is typically made. After the initial scan, a zoomed scan is made of the specific region of interest (see Figure 3-6). Often it is necessary to zoom in many times before it is possible to get an image of the region of interest. After the scanning is completed, the tip retract function is activated. Once the probe is removed from the surface, the sample can be removed from the microscope stage. FIGURE 3-6 Typically a large area is scanned (left) and then a smaller area is scanned so that a high resolution image is made of a specific area. 3.6 AFM Scanning Suggestions High Resolution Scanning Learning to measure AFM images with a resolution of 50 nm is very simple. It can be considerably harder when higher resolution images are required. It is recommended that when learning to measure images with < 50 nm resolution, a tip check sample is used. After practicing with the tip checker sample and getting great images, switch to other unknown samples. Choosing a Topography Scanning Mode There are two primary topography scanning modes (see Section 4.1), contact mode and vibrating mode. Contact mode should be used with hard samples and when a resolution of > 50 nm is required. Vibrating mode should be used on soft samples and when a resolution of < 50 nm is required. 66

7 False Feedback Sometimes, especially with vibrating mode, the AFM will enter a false feedback condition during probe approach. In the false feedback condition, tip approach is stopped when the probe is slightly above the surface. Often a false feedback is caused by contamination on the surface. In the event of false feedback, the Z motors can usually be overridden to get the probe closer to the surface. Damaged Probes The most frequent problem that occurs in an AFM is that the probe is broken before the image is measured. The probe could be broken in tip approach or it could be broken before it is placed into the microscope. It is suggested that, when it is not possible to get a high resolution image, the probe be changed. 67

### Standard Operating Procedure of Atomic Force Microscope (Anasys afm+)

Standard Operating Procedure of Atomic Force Microscope (Anasys afm+) The Anasys Instruments afm+ system incorporates an Atomic Force Microscope which can scan the sample in the contact mode and generate

### Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)

Basic methods in imaging of micro and nano P2538000 AFM Theory The basic principle of AFM is very simple. The AFM detects the force interaction between a sample and a very tiny tip (

### Oxford Scholarship Online

University Press Scholarship Online Oxford Scholarship Online Atomic Force Microscopy Peter Eaton and Paul West Print publication date: 2010 Print ISBN-13: 9780199570454 Published to Oxford Scholarship

### Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced SPM techniques Applications in semiconductor research and industry

1 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced SPM techniques Applications in semiconductor research and industry 2 Back to our solutions: The main problem: How to get nm

### Standard Operating Procedure

Standard Operating Procedure Nanosurf Atomic Force Microscopy Operation Facility NCCRD Nanotechnology Center for Collaborative Research and Development Department of Chemistry and Engineering Physics The

### UNIVERSITY OF WATERLOO Physics 360/460 Experiment #2 ATOMIC FORCE MICROSCOPY

UNIVERSITY OF WATERLOO Physics 360/460 Experiment #2 ATOMIC FORCE MICROSCOPY References: http://virlab.virginia.edu/vl/home.htm (University of Virginia virtual lab. Click on the AFM link) An atomic force

### Atomic Force Microscopy (Bruker MultiMode Nanoscope IIIA)

Atomic Force Microscopy (Bruker MultiMode Nanoscope IIIA) This operating procedure intends to provide guidance for general measurements with the AFM. For more advanced measurements or measurements with

### Manufacturing Metrology Team

The Team has a range of state-of-the-art equipment for the measurement of surface texture and form. We are happy to discuss potential measurement issues and collaborative research Manufacturing Metrology

### Nanonics Systems are the Only SPMs that Allow for On-line Integration with Standard MicroRaman Geometries

Nanonics Systems are the Only SPMs that Allow for On-line Integration with Standard MicroRaman Geometries 2002 Photonics Circle of Excellence Award PLC Ltd, England, a premier provider of Raman microspectral

### Keysight Technologies Using Non-Contact AFM to Image Liquid Topographies. Application Note

Keysight Technologies Using Non-Contact AFM to Image Liquid Topographies Application Note Introduction High resolution images of patterned liquid surfaces have been acquired without inducing either capillary

### attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

APPLICATION NOTE M06 attosnom I: Topography and Force Images Scanning near-field optical microscopy is the outstanding technique to simultaneously measure the topography and the optical contrast of a sample.

### Indentation Cantilevers

curve is recorded utilizing the DC displacement of the cantilever versus the extension of the scanner. Many indentations may be made using various forces, rates, etc. Upon exiting indentation mode, TappingMode

### Bruker Dimension Icon AFM Quick User s Guide

Bruker Dimension Icon AFM Quick User s Guide March 3, 2015 GLA Contacts Jingjing Jiang (jjiang2@caltech.edu 626-616-6357) Xinghao Zhou (xzzhou@caltech.edu 626-375-0855) Bruker Tech Support (AFMSupport@bruker-nano.com

### Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

### Electric polarization properties of single bacteria measured with electrostatic force microscopy

Electric polarization properties of single bacteria measured with electrostatic force microscopy Theoretical and practical studies of Dielectric constant of single bacteria and smaller elements Daniel

### Bruker Dimension Icon AFM Quick User s Guide

Bruker Dimension Icon AFM Quick User s Guide August 8 2014 GLA Contacts Jingjing Jiang (jjiang2@caltech.edu 626-616-6357) Xinghao Zhou (xzzhou@caltech.edu 626-375-0855) Bruker Tech Support (AFMSupport@bruker-nano.com

### Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy

Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy C. Durkan a) and I. V. Shvets Department of Physics, Trinity College Dublin, Ireland Received 31 May 1995;

### Akiyama-Probe (A-Probe) guide

Akiyama-Probe (A-Probe) guide This guide presents: what is Akiyama-Probe, how it works, and what you can do Dynamic mode AFM Version: 2.0 Introduction NANOSENSORS Akiyama-Probe (A-Probe) is a self-sensing

### ATOMIC FORCE MICROSCOPY

B47 Physikalisches Praktikum für Fortgeschrittene Supervision: Prof. Dr. Sabine Maier sabine.maier@physik.uni-erlangen.de ATOMIC FORCE MICROSCOPY Version: E1.4 first edit: 15/09/2015 last edit: 05/10/2018

### University of MN, Minnesota Nano Center Standard Operating Procedure

Equipment Name: Atomic Force Microscope Badger name: afm DI5000 PAN Revisionist Paul Kimani Model: Dimension 5000 Date: October 6, 2017 Location: Bay 1 PAN Revision: 1 A. Description i. Enhanced Motorized

### Akiyama-Probe (A-Probe) guide

Akiyama-Probe (A-Probe) guide This guide presents: what is Akiyama-Probe, how it works, and its performance. Akiyama-Probe is a patented technology. Version: 2009-03-23 Introduction NANOSENSORS Akiyama-Probe

### - Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy Yongho Seo Near-field Photonics Group Leader Wonho Jhe Director School of Physics and Center for Near-field

### Advanced Nanoscale Metrology with AFM

Advanced Nanoscale Metrology with AFM Sang-il Park Corp. SPM: the Key to the Nano World Initiated by the invention of STM in 1982. By G. Binnig, H. Rohrer, Ch. Gerber at IBM Zürich. Expanded by the invention

### Bringing Answers to the Surface

3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

### AFM of High-Profile Surfaces

AFM of High-Profile Surfaces Fig. 1. AFM topograpgy image of black Si made using SCD probe tip. Scan size 4. Profile height is more than 8. See details and other application examples below. High Aspect

### Pattern Transfer CD-AFM. Resist Features on Poly. Poly Features on Oxide. Quate Group, Stanford University

Resist Features on Poly Pattern Transfer Poly Features on Oxide CD-AFM The Critical Dimension AFM Boot -Shaped Tip Tip shape is optimized to sense topography on vertical surfaces Two-dimensional feedback

### Instructions for easyscan Atomic Force Microscope

UVA's Hands-on Introduction to Nanoscience Instructions for easyscan Atomic Force Microscope (revision 8 November 2012) NOTE: Instructions assume software is pre-configured per "UVA Instructor Guide for

### Lecture 20: Optical Tools for MEMS Imaging

MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 20: Optical Tools for MEMS Imaging 1 Overview Optical Microscopes Video Microscopes Scanning Electron

### OPTICS IN MOTION. Introduction: Competing Technologies: 1 of 6 3/18/2012 6:27 PM.

1 of 6 3/18/2012 6:27 PM OPTICS IN MOTION STANDARD AND CUSTOM FAST STEERING MIRRORS Home Products Contact Tutorial Navigate Our Site 1) Laser Beam Stabilization to design and build a custom 3.5 x 5 inch,

### Investigate in magnetic micro and nano structures by Magnetic Force Microscopy (MFM)

Investigate in magnetic micro and nano 5.3.85- Related Topics Magnetic Forces, Magnetic Force Microscopy (MFM), phase contrast imaging, vibration amplitude, resonance shift, force Principle Caution! -

### How to do the Thermal Noise Lab. And also your DNA melting lab report

How to do the Thermal Noise Lab And also your DNA melting lab report Agenda for our Theory Free Day How to put away your DNA melting apparatus DNA melting lab report The teaching AFM Tips for the thermal

### Fast Optical Form Measurements of Rough Cylindrical and Conical Surfaces in Diesel Fuel Injection Components

Fast Optical Form Measurements of Rough Cylindrical and Conical Surfaces in Diesel Fuel Injection Components Thomas J. Dunn, Robert Michaels, Simon Lee, Mark Tronolone, and Andrew Kulawiec; Corning Tropel

### SOP for Micro Mechanical Analyzer

Page 1 of 7 SOP for Micro Mechanical Analyzer Note: This document is frequently updated; if you feel that information should be added, please indicate that to the facility manager (Currently Philip Carubia;

### Unit-25 Scanning Tunneling Microscope (STM)

Unit-5 Scanning Tunneling Microscope (STM) Objective: Imaging formation of scanning tunneling microscope (STM) is due to tunneling effect of quantum physics, which is in nano scale. This experiment shows

### INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

IIT Bombay requests quotations for a high frequency conducting-atomic Force Microscope (c-afm) instrument to be set up as a Central Facility for a wide range of experimental requirements. The instrument

### Figure for the aim4np Report

Figure for the aim4np Report This file contains the figures to which reference is made in the text submitted to SESAM. There is one page per figure. At the beginning of the document, there is the front-page

### HybridStage - Automated, large sample-area mapping made easy

HybridStage - Automated, large sample-area mapping made easy Motivation Crucial parameters that affect cell adhesion, morphogenesis, cell differentiation and cancer invasion include the molecular interactions

### Comparison of resolution specifications for micro- and nanometer measurement techniques

P4.5 Comparison of resolution specifications for micro- and nanometer measurement techniques Weckenmann/Albert, Tan/Özgür, Shaw/Laura, Zschiegner/Nils Chair Quality Management and Manufacturing Metrology

### Chapter 30: Principles of Active Vibration Control: Piezoelectric Accelerometers

Chapter 30: Principles of Active Vibration Control: Piezoelectric Accelerometers Introduction: Active vibration control is defined as a technique in which the vibration of a structure is reduced or controlled

### Akiyama-Probe (A-Probe) technical guide This technical guide presents: how to make a proper setup for operation of Akiyama-Probe.

Akiyama-Probe (A-Probe) technical guide This technical guide presents: how to make a proper setup for operation of Akiyama-Probe. Version: 2.0 Introduction To benefit from the advantages of Akiyama-Probe,

### The End of Thresholds: Subwavelength Optical Linewidth Measurement Using the Flux-Area Technique

The End of Thresholds: Subwavelength Optical Linewidth Measurement Using the Flux-Area Technique Peter Fiekowsky Automated Visual Inspection, Los Altos, California ABSTRACT The patented Flux-Area technique

### Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis.

Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis www.parkafm.com Park NX-Hivac High vacuum scanning for failure analysis applications 4 x 07 / Cm3 Current (µa)

### Near-field Optical Microscopy

Near-field Optical Microscopy R. Fernandez, X. Wang, N. Li, K. Parker, and A. La Rosa Physics Department Portland State University Portland, Oregon Near-Field SPIE Optics Microscopy East 2005 Group PSU

### Profile Measurement of Resist Surface Using Multi-Array-Probe System

Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Profile Measurement of Resist Surface Using Multi-Array-Probe System Shujie LIU, Yuanliang ZHANG and Zuolan YUAN School

### Fastener Hole Crack Detection Using Adjustable Slide Probes

Fastener Hole Crack Detection Using Adjustable Slide Probes General The guidelines for the adjustable sliding probes are similar to the fixed types, therefore much of the information that is given here

### Large Signal Displacement Measurement with an Asylum SA Atomic Force Microscope Rev B

Radiant Technologies, Inc. 2835D Pan American Freeway NE Albuquerque, NM 87107 Tel: 505-842-8007 Fax: 505-842-0366 e-mail: radiant@ferrodevices.com www.ferrodevices.com Large Signal Displacement Measurement

### Atomic Force Microscopy (I)

Atomic Force Microscopy (I) - Optical Grating AFM and the thermal noise measurement 2.674 Lab 10 Spring 2016 Pappalardo II Micro/Nano Laboratories AFM Imaging (with home-made AFMs) I. Safety Notes This

### Scanning Tunneling Microscopy

EMSE-515 02 Scanning Tunneling Microscopy EMSE-515 F. Ernst 1 Scanning Tunneling Microscope: Working Principle 2 Scanning Tunneling Microscope: Construction Principle 1 sample 2 sample holder 3 clamps

### Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch

Imaging Carbon Nanotubes Magdalena Preciado López, David Zahora, Monica Plisch I. Introduction In this lab you will image your carbon nanotube sample from last week with an atomic force microscope. You

### Electron Microscopy Sciences

Electron Microscopy Sciences INSTRUCTIONAL MANUAL CAT. #7670 FlipScribe P.O. Box 550 s1560 Industry Road s Hatfield PA 19440 1 Overview The FlipScribe enables cleaving through frontside targets with a

### Cutting-edge Atomic Force Microscopy techniques for large and multiple samples

Cutting-edge Atomic Force Microscopy techniques for large and multiple samples Study of up to 200 mm samples using the widest set of AFM modes Industrial standards of automation A unique combination of

### Optical Microscope. Active anti-vibration table. Mechanical Head. Computer and Software. Acoustic/Electrical Shield Enclosure

Optical Microscope On-axis optical view with max. X magnification Motorized zoom and focus Max Field of view: mm x mm (depends on zoom) Resolution : um Working Distance : mm Magnification : max. X Zoom

### MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

### Scanning Microwave. Expanding Impedance Measurements to the Nanoscale: Coupling the Power of Scanning Probe Microscopy with the PNA

Agilent Technologies Scanning Microwave Microscopy (SMM) Expanding Impedance Measurements to the Nanoscale: Coupling the Power of Scanning Probe Microscopy with the PNA Presented by: Craig Wall PhD Product

### nanovea.com PROFILOMETERS 3D Non Contact Metrology

PROFILOMETERS 3D Non Contact Metrology nanovea.com PROFILOMETER INTRO Nanovea 3D Non-Contact Profilometers are designed with leading edge optical pens using superior white light axial chromatism. Nano

### Supplementary Materials

Supplementary Materials In the supplementary materials of this paper we discuss some practical consideration for alignment of optical components to help unexperienced users to achieve a high performance

### Executive Decision Maker Pro Assembly Guide

Assembly Guide 1 Introduction Congratulations with acquiring your Executive Decision Make Pro. This guide attempts to follow you through the entire assembly process and should give you help to find order

### ATOMIC FORCE MICROSCOPY

B47 PhysikalischesPraktikumfür Fortgeschrittene Supervision: Prof.Dr.SabineMaier sabine.maier@physik.unierlangen.de ATOMICFORCEMICROSCOPY Version:E1.3 firstedit:15/09/2015 lastedit:16/12/2016 2 0BIntroduction

### Nanosurf Nanite. Automated AFM for Industry & Research.

Nanosurf Nanite Automated AFM for Industry & Research www.nanosurf.com Multiple Measurements Automated Got work? Nanosurf has the solution! The Swiss-based innovator and manufacturer of the most compact

University of Nevada, Reno Design and Characterization of Scanning Probe Microscopy Platform with Active Electro-Thermal Microcantilever for Multifunctional Applications A thesis submitted in partial fulfillment

### Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

### Exp. No. 13 Measuring the runtime of light in the fiber

Exp. No. 13 Measuring the runtime of light in the fiber Aim of Experiment The aim of experiment is measuring the runtime of light in optical fiber with length of 1 km and the refractive index of optical

### Large Signal Displacement Measurement with an MTI Photonic Sensor Rev B

Radiant Technologies, Inc. 2835D Pan American Freeway NE Albuquerque, NM 8717 Tel: 55-842-87 Fax: 55-842-366 e-mail: radiant@ferrodevices.com www.ferrodevices.com Large Signal Displacement Measurement

### INSTALLATION MANUAL FORTRESS SERIES

Guardian Security Structures TEL 1-406-212-2334 EMAIL rg@gssdoors.com WEB www.gssdoors.com FORTRESS SERIES GENERAL INSTALLATION GUIDELINES 1. The door frame is installed using 16 bolt screws 7,5 mm in

### Park NX-Hivac: Phase-lock Loop for Frequency Modulation Non-Contact AFM

Park Atomic Force Microscopy Application note #21 www.parkafm.com Hosung Seo, Dan Goo and Gordon Jung, Park Systems Corporation Romain Stomp and James Wei Zurich Instruments Park NX-Hivac: Phase-lock Loop

### ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015)

ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015) Purpose The purpose of the lab is (i) To measure the spot size and profile of the He-Ne laser beam and a laser pointer laser beam. (ii) To create a beam expander

### Microscopic Structures

Microscopic Structures Image Analysis Metal, 3D Image (Red-Green) The microscopic methods range from dark field / bright field microscopy through polarisation- and inverse microscopy to techniques like

### Constant Frequency / Lock-In (AM-AFM) Constant Excitation (FM-AFM) Constant Amplitude (FM-AFM)

HF2PLL Phase-locked Loop Connecting an HF2PLL to a Bruker Icon AFM / Nanoscope V Controller Zurich Instruments Technical Note Keywords: AM-AFM, FM-AFM, AFM control Release date: February 2012 Introduction

### DETECTING DEFECTS by Larry Adams, senior editor. Finding flaws and imperfections in a tube or pipe is made easier using new inspection technologies

DETECTING DEFECTS by Larry Adams, senior editor Finding flaws and imperfections in a tube or pipe is made easier using new inspection technologies This inspection system is designed to detect flaws on

### The History and Future of Measurement Technology in Sumitomo Electric

ANALYSIS TECHNOLOGY The History and Future of Measurement Technology in Sumitomo Electric Noritsugu HAMADA This paper looks back on the history of the development of measurement technology that has contributed

### Installation Guide for Panel Mount Product

Installation Guide for Panel Mount Product There are 2 installation solutions for itech Panel Mount Product : I. Screw Mount Installation II. Clamp Mount Installation In general, screw mount is for those

### Leica DMi8A Quick Guide

Leica DMi8A Quick Guide 1 Optical Microscope Quick Start Guide The following instructions are provided as a Quick Start Guide for powering up, running measurements, and shutting down Leica s DMi8A Inverted

### SPM The Industry s Performance Leader High Resolution Closed-loop System Fast, Easy Tip & Sample Exchange Versatility and Value Powerful Research

SPM The Industry s Performance Leader High Resolution Closed-loop System Fast, Easy Tip & Sample Exchange Versatility and Value Powerful Research Flexibility Atomic resolution STM image of highly-oriented

### attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

APPLICATION NOTE M01 attocfm I for Surface Quality Inspection Confocal microscopes work by scanning a tiny light spot on a sample and by measuring the scattered light in the illuminated volume. First,

### In-plane capacitance probe holding mechanism Shorya Awtar Alexander Slocum Mechanical Engineering, MIT

In-plane capacitance probe holding mechanism Shorya Awtar Alexander Slocum Mechanical Engineering, MIT In precision metrology it is frequently required to hold capacitance probes such that they are properly

### LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

### Synergy ESPM 3-D Environmental Scanning Probe Microscope Operation Manual

Synergy ESPM 3-D Environmental Scanning Probe Microscope Operation Manual Manufactured in the USA Rev. 01/2005 1. Introduction What Is Atomic Force Microscopy? 3 2. Getting Started Introduction 4 What

### ezafm OPERATING MANUAL

ezafm OPERATING MANUAL 2013rev 2.0 1 Table of Contents CHAPTER 1:ezAFM... 4 1.1. Introduction... 5 1.2. System Components... 5 1.3. Unpacking and Packing the Instrument... 6 1.3.1. Before Installation...

### NTEGRA Spectra Probe NanoLaboratory. SNOM Measuring Head

NTEGRA Spectra Probe NanoLaboratory SNOM Measuring Head Instruction Manual 16 April 2010 Copyright NT-MDT Web Page: http://www.ntmdt.com General Information: spm@ntmdt.ru Technical Support: support@ntmdt.ru

### Screw Driven automation tables

automation tables Precise multi-axis positioning systems play an integral part in today s semiconductor, computer peripheral, solar power, flat panel, life sciences, lab automation, biomedical and electronics

### Supporting Information

Strength of recluse spider s silk originates from nanofibrils Supporting Information Qijue Wang, Hannes C. Schniepp* Applied Science Department, The College of William & Mary, P.O. Box 8795, Williamsburg,

### Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Sheng Liu and I. Charles Ume* School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 3332 (44) 894-7411(P)

### NSOM (SNOM) Overview

NSOM (SNOM) Overview The limits of far field imaging In the early 1870s, Ernst Abbe formulated a rigorous criterion for being able to resolve two objects in a light microscope: d > ë / (2sinè) where d

### Chapter 11 Testing, Assembly, and Packaging

Chapter 11 Testing, Assembly, and Packaging Professor Paul K. Chu Testing The finished wafer is put on a holder and aligned for testing under a microscope Each chip on the wafer is inspected by a multiple-point

### Roughness Pad - Measurements Report

Roughness Pad - Measurements Report 17/05/2016 General 1. The following report describes the results obtained in measuring a roughness pad (AKA polishing pad) sample. 2. The objective was to measure the

### Service Manual for XLE/XLT Series Laser Engravers

Service Manual for XLE/XLT Series Laser Engravers Table of Contents Maintenance...1 Beam alignment...3 Auto focus alignment...8 Bridge alignment...10 Electronics panel replacement...11 X motor change...12

### DIRECT PART MARKING THE NEXT GENERATION OF DIRECT PART MARKING (DPM)

DIRECT PART MARKING THE NEXT GENERATION OF DIRECT PART MARKING (DPM) Direct Part Marking (DPM) is a process by which bar codes are permanently marked onto a variety of materials. The DPM process allows

### Evaluation of Confocal Microscopy. for Measurement of the Roughness of Deuterium Ice. Ryan Menezes. Webster Schroeder High School.

Evaluation of Confocal Microscopy for Measurement of the Roughness of Deuterium Ice Webster Schroeder High School Webster, NY Advisor: Dr. David Harding Senior Scientist Laboratory for Laser Energetics

### Author(s) Issue Date Text Version author. DOI / /18/9/095501

Title Author(s) Citation Refinement of Conditions of Point-Contact Current Imaging Atomic Force Microscopy for Molecular-Scale Conduction Measurements Yajima, Takashi; Tanaka, Hirofumi; Matsumoto, Takuya;

### Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy

Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy F. Sarioglu, M. Liu, K. Vijayraghavan, A. Gellineau, O. Solgaard E. L. Ginzton Laboratory University Tip-sample

### SUPPLEMENTARY INFORMATION

Figure S. Experimental set-up www.nature.com/nature Figure S2. Dependence of ESR frequencies (GHz) on a magnetic field (G) applied in different directions with respect to NV axis ( θ 2π). The angle with

### Alejandro Mendez, Ph.D. President & CEO Mendezized Metals Corporation

ATOMIC FORCE MICROSCOPY (AFM) PHOTO CONDUCTIVE ANALYSIS AND CALCULATION FOR REGULAR AND MENDEZIZED COMMERCIAL 24 KARATS GOLD BARS CONDUCTED IN FIVE DIFFERENT TRIPLICATE SERIES. Date: June 23, 2016 Conducted

### Renishaw InVia Raman microscope

Laser Spectroscopy Labs Renishaw InVia Raman microscope Operation instructions 1. Turn On the power switch, system power switch is located towards the back of the system on the right hand side. Wait ~10

### Assembly Manual. OLM Retractable Canopy for 12X16 Breeze Pergola by Outdoor Living Today. Revision #12 October 4, 2017

Assembly Manual OLM Retractable Canopy for 12X16 Breeze Pergola by Outdoor Living Today Revision #12 October 4, 2017 Care and Maintenance - Canopy should be removed in winter to reduce the chance of collapse

### Akiyama-Probe (A-Probe) simple DIY controller This technical guide presents: simple and low-budget DIY controller

Akiyama-Probe (A-Probe) simple DIY controller This technical guide presents: simple and low-budget DIY controller Version: 2.0 Introduction NANOSENSORS has developed a simple and low-budget controller

### Design and Construction of a Variable Temperature Atomic Force Microscope. Bethany J. Little

Design and Construction of a Variable Temperature Atomic Force Microscope By Bethany J. Little A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science Houghton

### Nanodrawing of Aligned Single Carbon. Nanotubes with a Nanopen

Supporting Information Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen Talia Yeshua, 1,2 Christian Lehmann, 3 Uwe Hübner, 4 Suzanna Azoubel, 2,5 Shlomo Magdassi, 2,5 Eleanor E. B. Campbell,

### KEYENCE VKX LASER-SCANNING CONFOCAL MICROSCOPE Standard Operating Procedures (updated Oct 2017)

KEYENCE VKX LASER-SCANNING CONFOCAL MICROSCOPE Standard Operating Procedures (updated Oct 2017) 1 Introduction You must be trained to operate the Laser-scanning confocal microscope (LSCM) independently.