SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

Size: px
Start display at page:

Download "SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS"

Transcription

1 SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS Robert Edward Lee Electron Microscopy Center Department of Anatomy and Neurobiology Colorado State University P T R Prentice Hall, Englewood Cliffs, New Jersey 07632

2 Acknowledgments xiii Chapter 1 The Scanning Electron Microscope 1 HOW THE SCANNING ELECTRON MICROSCOPE PRODUCES AN IMAGE 2 CHARACTERISTICS OF THE IMAGE PRODUCED BY THE SCANNING ELECTRON MICROSCOPE 7 DEVELOPMENT OF THE SCANNING ELECTRON MICROSCOPE 7 THE MODERN SCANNING ELECTRON MICROSCOPE 13 Chapter 2 Electron Emission 16 TYPES OF ELECTRON EMISSION 16 THERMIONIC EMISSION 19 v

3 vi Contents ELECTRON GUNS 21 ELECTRON GUN WITH THERMIONIC EMISSION FROM A TUNGSTEN CATHODE 22 Wehnelt Cylinder, 27 Operation of the Self-biased Gun, 29 Distance between the Tungsten Cathode and the Wehnelt Cylinder, 34 Failure of the Tungsten Filament, 35 Brightness of Illumination, 37 Effect on the Electron Beam of Biasing the Wehnelt Cylinder, 38 Accelerating Voltage, 39 Pointed Tungsten Filaments, 40 LANTHANUM HEXABORIDE CATHODE 40 FIELD EMISSION 44 Chapter 3 Lenses and Magnetism 50 PATH OF RADIATION THROUGH LENSES 50 CREATION OF MAGNETIC FIELDS 53 MAGNETIC FIELDS CREATED BY AN ELECTRICAL CURRENT 55 PATH OF AN ELECTRON THROUGH AN ELECTROMAGNET 61 VECTOR FORCES IN THE CORE OF AN ELECTROMAGNETIC LENS 63 DESIGN OF ELECTROMAGNETIC LENSES 72 Chapter 4 Lens Aberrations 75 SPHERICAL ABERRATION 75 CHROMATIC ABERRATION 81 ASTIGMATISM 84 Causes of Astigmatism, 87 Stigmators, 88

4 Chapter 5 Assembled Column of the Scanning Electron Microscope 93 vii ELECTRON GUN 94 ANODE 95 BEAM (SHIFT AND TILT) DEFLECTOR COILS 95 LENSES AND APERTURES 100 Demagnification of the Electron Beam to Produce the Final Probe Diameter, 100 Working Distance, 102 Design of the Objective Lens, 104 Demagnification and the Amount of Current in the Electron Beam, 105 FOCUSING 109 APERTURES 112 OBJECTIVE STIGMATOR 115 SCANNING COILS 115 Chapter 6 Electron Beam-Specimen Interactions 119 TYPES OF SIGNALS PRODUCED 119 ATOMIC STRUCTURE IN METALS AND INSULATORS 120 ELASTIC VERSUS INELASTIC SCATTERING 122 YIELD OF SECONDARY AND BACKSCATTERED ELECTRONS IN METALS AND INSULATORS 123 INFLUENCE OF ATOMIC NUMBER OF THE SPECIMEN ON ELASTIC AND INELASTIC EVENTS 124 DIMENSIONS OF THE SPECIMEN INTERACTION VOLUME 125 DIRECTION OF ELECTRONS ESCAPING FROM A SPECIMEN 126

5 viii Contents ELASTIC SCATTERING PRODUCES BACKSCATTERED ELECTRONS 128 INELASTIC SCATTERING PRODUCES SECONDARY ELECTRONS, AUGER ELECTRONS, X-RAYS, CATHODOLUMINESCENCE, AND HEAT 130 X-Rays, 134 Auger Electrons, 142 Cathodoluminescence and Phonons, 145 ESCAPE DEPTHS OF SIGNALS FROM A SPECIMEN 147 Chapter 7 Detectors 149 SCINTILLATOR-PHOTOMULTIPLIER SYSTEMS (EVERHART-THORNLEY DETECTOR) 150 Faraday Cage, 150 Scintillator, 151 Light Guide Pipe, 151 Photomultiplier, 152 Modification of the Everhart-Thornley Detector, 154 TAKE-OFF ANGLE AND SOLID ANGLE OF COLLECTION 155 MAXIMIZING THE COLLECTION OF BACKSCATTERED ELECTRONS 156 Multiple Detectors, 157 Reversing the Specimen Current, 158 SPECIMEN CURRENT USED AS A DETECTOR 158 AUGER ELECTRON DETECTORS 160 CATHODOLUMINESCENCE DETECTORS 163 Chapter 8 Image Reconstruction 166 IMAGE CONSTRUCTION IN TELEVISION 166

6 ix IMAGE CONSTRUCTION IN THE SCANNING ELECTRON MICROSCOPE 168 Line Scan, 170 MAGNIFICATION 176 RESOLUTION AND IMAGE QUALITY IN THE SCANNING ELECTRON MICROSCOPE 179 DEPTH OF FOCUS (FIELD) 184 CONTRAST 189 Topographic Contrast, 189 Atomic Number (Compositional) Contrast, 192 DISTORTIONS OF THE IMAGE 193 Projection Distortions, 193 Tilt Distortions, 194 Moire Effects, 196 THE HARD COPY 197 Photographing the Image, 197 Videoprinters, 204 STEREO PHOTOGRAPHS 207 Chapter 9 Image Processing 209 OPTICAL PHOTOGRAPHIC METHODS 209 ELECTRICAL ANALOG METHODS 209 Linear Amplification, 210 Nonlinear Amplification (Gamma), 212 Contrast Reversal, 213 Area Scan Using Y-modulated Raster Lines, 214 DIGITAL IMAGE PROCESSING 216 Image Processor, 216 Digital Computer, 219 Display and Recording Devices, 219 Storage Devices, 219 PROCESSING THE IMAGE 219 Point-processing Operations, 220 Examples of Point-processing Operations, 221 Spatial-processing Operations, 228

7 Geometric-processing Operations, 233 Multiple-image Operations, 237 Colorization of the Black and White Image, 237 Chapter 10 Vacuum 239 GASES AND VAPORS 240 Effect of Pressure and Temperature on a Gas, 240 Total Pressure and Partial Pressure, 241 Diffusion, 242 Flow of Gases, 242 Outgassing, 243 VACUUM PUMPS 243 Mechanical Rotary Oil Pump, 243 Diffusion Pumps, 247 Turbomolecular Pumps, 252 Ion-getter Pumps, 254 VACUUM GAUGES 259 Thermal Conductivity Vacuum Gauges, 259 Penning (Cold Cathode Ionization) Gauges, 263 SEALS 266 O-rings, 266 Metal Gaskets, 268 VALVES 269 Types of Valves Used in Electron 269 Microscopes, Chapter 11 Specimen Preparation 272 DRY SPECIMENS 272 SPECIMENS CONTAINING VOLATILE COMPONENTS 273 Chemical Fixation, 273 Dehydration, 285 Specimen Drying, 286 Fixation by Rapid Freezing Followed by Freeze Drying, 297 Freeze Drying, 307 Specimen Coating, 310

8 xi Chapter 12 X-ray Microanalysis 329 HISTORY OF X-RAYS 329 WAVELENGTH DISPERSIVE SPECTROSCOPY 331 ENERGY DISPERSIVE SPECTROSCOPY 343 Semiconductors, 344 Solid-state X-ray Detectors, 347 Preamplifier (Head Amplifier), 354 Cryostat, 355 Main Amplifier, 360 Multichannel Analyzer, 361 Summary of the Components of an Energy Dispersive Spectrometer, 364 Deadtime, 365 Artifacts Produced by the Energy Dispersive Spectrometer, 365 Detector Efficiency, 373 Advantages of Energy Dispersive Spectroscopy, 374 Disadvantages of Energy Dispersive Spectroscopy, 374 Operation of the Scanning Electron Microscope during Energy Dispersive Spectroscopy, 375 QUALITATIVE ANALYSIS 381 Calibration of the X-ray Microanalytical 362 Distinguishing X-ray Peaks, 383 X-ray Mapping, 388 QUANTITATIVE MICROANALYSIS 391 Unit, Acquisition of an X-ray Spectrum for Quantitative Microanalysis, 392 Processing of the X-ray Spectrum for Quantitative Microanalysis, 395 Analysis of the X-ray Spectrum, 396 Computer Programs Used to Quantify X-ray Spectra, 406 Appendix I Steradian Definition 409 Appendix SI Pressure Conversion Chart 411

9 xii Appendix III Appendix IV Contents Wavelengths, Energies, and Critical Excitation Energies of К X-ray Lines 412 Wavelengths and Energies of L Lines and Critical Excitation Energies of l\w Shell Electrons 413 Appendix V Wavelengths and Energies of M Lines 415 Appendix VI Principle Emission and Absorption Energies of Elements 416 Glossary 418 Bibliography 439 Index 443

SECONDARY ELECTRON DETECTION

SECONDARY ELECTRON DETECTION SECONDARY ELECTRON DETECTION CAMTEC Workshop Presentation Haitian Xu June 14 th 2010 Introduction SEM Raster scan specimen surface with focused high energy e- beam Signal produced by beam interaction with

More information

Scanning Electron Microscopy. EMSE-515 F. Ernst

Scanning Electron Microscopy. EMSE-515 F. Ernst Scanning Electron Microscopy EMSE-515 F. Ernst 1 2 Scanning Electron Microscopy Max Knoll Manfred von Ardenne Manfred von Ardenne Principle of Scanning Electron Microscopy 3 Principle of Scanning Electron

More information

Introduction: Why electrons?

Introduction: Why electrons? Introduction: Why electrons? 1 Radiations Visible light X-rays Electrons Neutrons Advantages Not very damaging Easily focused Eye wonderful detector Small wavelength (Angstroms) Good penetration Small

More information

MODULE I SCANNING ELECTRON MICROSCOPE (SEM)

MODULE I SCANNING ELECTRON MICROSCOPE (SEM) MODULE I SCANNING ELECTRON MICROSCOPE (SEM) Scanning Electron Microscope (SEM) Initially, the plan of SEM was offered by H. Stintzing in 1927 (a German patent application). His suggested procedure was

More information

Scanning Electron Microscopy Basics and Applications

Scanning Electron Microscopy Basics and Applications Scanning Electron Microscopy Basics and Applications Dr. Julia Deuschle Stuttgart Center for Electron Microscopy MPI for Solid State Research Room: 1E15, phone: 0711/ 689-1193 email: j.deuschle@fkf.mpg.de

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 5 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Detectors

More information

Introduction to Scanning Electron Microscopy

Introduction to Scanning Electron Microscopy Introduction to Scanning Electron Microscopy By: Brandon Cheney Ant s Leg Integrated Circuit Nano-composite This document was created as part of a Senior Project in the Materials Engineering Department

More information

S200 Course LECTURE 1 TEM

S200 Course LECTURE 1 TEM S200 Course LECTURE 1 TEM Development of Electron Microscopy 1897 Discovery of the electron (J.J. Thompson) 1924 Particle and wave theory (L. de Broglie) 1926 Electromagnetic Lens (H. Busch) 1932 Construction

More information

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni 021/

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni 021/ 2.Components of an electron microscope a) vacuum systems, b) electron guns, c) electron optics, d) detectors, 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME Summary Electron propagation

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 6 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Chamber and

More information

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering Scanning Electron Microscopy SEM Warren Straszheim, PhD MARL, 23 Town Engineering wesaia@iastate.edu 515-294-8187 How it works Create a focused electron beam Accelerate it Scan it across the sample Map

More information

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni, 021/

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni, 021/ 2.Components of an electron microscope a) vacuum systems, b) electron guns, c) electron optics, d) detectors Marco Cantoni, 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME MSE-603

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Fundamentals of optical and scanning electron microscopy Dr. S. Sankaran Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module 03 Unit-6 Instrumental details

More information

Oct. 30th- Nov. 1st, 2017

Oct. 30th- Nov. 1st, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors SEM Doctoral Course MS-636 Oct. 30th- Nov. 1st, 2017 Summary Electron propagation is only possible

More information

Oct. 30th- Nov. 1st, 2017

Oct. 30th- Nov. 1st, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors SEM Doctoral Course MS-636 Oct. 30th- Nov. 1st, 2017 Summary Electron propagation is only possible

More information

Electron Sources, Optics and Detectors

Electron Sources, Optics and Detectors Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors TEM Doctoral Course MS-637 April 16 th -18 th, 2018 Summary Electron propagation is only possible

More information

Secondary Electron Detector

Secondary Electron Detector Secondary Electron Detector Fig. 17 Everhart-Thornley Detector (Fig. 7-9, p. 215, Bozzola and Russell) Secondary electrons (SE) are attracted to Faraday cage because of its positive charge. Detector surface

More information

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu ELECTRON MICROSCOPY 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN

More information

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Transmission Electron Microscopy 9. The Instrument. Outline

Transmission Electron Microscopy 9. The Instrument. Outline Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. JY/T

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. JY/T Translated English of Chinese Standard: JY/T011-1996 www.chinesestandard.net Sales@ChineseStandard.net INDUSTRY STANDARD OF THE JY PEOPLE S REPUBLIC OF CHINA General rules for transmission electron microscopy

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

Scanning Electron Microscopy

Scanning Electron Microscopy Scanning Electron Microscopy For the semiconductor industry A tutorial Titel Vorname Nachname Titel Jobtitle, Bereich/Abteilung Overview Scanning Electron microscopy Scanning Electron Microscopy (SEM)

More information

ZEISS EVO SOP. May 2017 ELECTRON OPTICS

ZEISS EVO SOP. May 2017 ELECTRON OPTICS ZEISS EVO SOP May 2017 ELECTRON OPTICS The patented EVO column is the area of the SEM, where electrons are emitted, accelerated, deflected, focused, and scanned. Main characteristics of the EVO optics

More information

Functions of the SEM subsystems

Functions of the SEM subsystems Functions of the SEM subsystems Electronic column It consists of an electron gun and two or more electron lenses, which influence the path of electrons traveling down an evacuated tube. The base of the

More information

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida

NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida TEM Techniques Summary The TEM is an analytical instrument in which a thin membrane (typically < 100nm) is placed in the path of an energetic and highly coherent beam of electrons. Typical operating voltages

More information

5. The Scanning Electron Microscope

5. The Scanning Electron Microscope Physical Principles of Electron Microscopy 5. The Scanning Electron Microscope Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

Topics 3b,c Electron Microscopy

Topics 3b,c Electron Microscopy Topics 3b,c Electron Microscopy 1.0 Introduction and History 1.1 Characteristic Information 2.0 Basic Principles 2.1 Electron-Solid Interactions 2.2 Electromagnetic Lenses 2.3 Breakdown of an Electron

More information

Nanotechnology and material science Lecture V

Nanotechnology and material science Lecture V Most widely used nanoscale microscopy. Based on possibility to create bright electron beam with sub-nm spot size. History: Ernst Ruska (1931), Nobel Prize (1986) For visible light λ=400-700nm, for electrons

More information

ELECTRON MICROSCOPY. 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Introduction to Transmission Electron Microscopy (Physical Sciences)

Introduction to Transmission Electron Microscopy (Physical Sciences) Introduction to Transmission Electron Microscopy (Physical Sciences) Centre for Advanced Microscopy Program 9:30 10:45 Lecture 1 Basics of TEM 10:45 11:00 Morning tea 11:00 12:15 Lecture 2 Diffraction

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Design and fabrication of a scanning electron microscope using a finite element analysis for electron optical system

Design and fabrication of a scanning electron microscope using a finite element analysis for electron optical system Journal of Mechanical Science and Technology 22 (2008) 1734~1746 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0317-9 Design and fabrication

More information

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 1. Utility Requirements a. System power is supplied by two 120 VAC/20 A circuits. When doing maintenance

More information

SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University)

SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University) 213 0 Journal of the Royal MicroscopicalSociety, VoZ. 83, Pts. I & 2, June 1964. Pages 213-216 SCANNING ELECTRON MICROSCOPY By W. C. NIXON (Engineering Laboratory, Cambridge University) PLATE 97-98 AND

More information

Module 4B7: VLSI Design, Technology, and CAD. Scanning Electron Microscopical Examination of CMOS Integrated Circuit

Module 4B7: VLSI Design, Technology, and CAD. Scanning Electron Microscopical Examination of CMOS Integrated Circuit Engineering Tripos Part IIB FOURTH YEAR Module 4B7: VLSI Design, Technology, and CAD Laboratory Experiment Dr D Holburn and Mr B Breton Scanning Electron Microscopical Examination of CMOS Integrated Circuit

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM 25 Low Voltage Electron Microscope fast compact powerful Delong America FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

More information

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful LVEM 25 Low Voltage Electron Mictoscope fast compact powerful FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions. All the benefits

More information

NANO 703-Notes. Chapter 9-The Instrument

NANO 703-Notes. Chapter 9-The Instrument 1 Chapter 9-The Instrument Illumination (condenser) system Before (above) the sample, the purpose of electron lenses is to form the beam/probe that will illuminate the sample. Our electron source is macroscopic

More information

p q p f f f q f p q f NANO 703-Notes Chapter 5-Magnification and Electron Sources

p q p f f f q f p q f NANO 703-Notes Chapter 5-Magnification and Electron Sources Chapter 5-agnification and Electron Sources Lens equation Let s first consider the properties of an ideal lens. We want rays diverging from a point on an object in front of the lens to converge to a corresponding

More information

Scanning Electron Microscope. Instructions for Use

Scanning Electron Microscope. Instructions for Use Scanning Electron Microscope Instructions for Use The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders are liable for damages.

More information

How to choose a Scanning Electron Microscope (SEM)

How to choose a Scanning Electron Microscope (SEM) www.lambdaphoto.co.uk E-guide How to choose a Scanning Electron Microscope (SEM) Providing guidance in the selection of the right microscope for your research Distribution in the UK & Ireland Table of

More information

Introduction to Electron Microscopy

Introduction to Electron Microscopy Introduction to Electron Microscopy Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

ELECTRON OPTICS. Prof. John G. King Dr. John W. Coleman Dr. Edward H. Jacobsen. Graduate Students. Steven R. Jost Norman D. Punsky

ELECTRON OPTICS. Prof. John G. King Dr. John W. Coleman Dr. Edward H. Jacobsen. Graduate Students. Steven R. Jost Norman D. Punsky II. ELECTRON OPTICS Academic and Research Staff Prof. John G. King Dr. John W. Coleman Dr. Edward H. Jacobsen Graduate Students Steven R. Jost Norman D. Punsky A. HIGH-RESOLUTION HIGH-CONTRAST ELECTRON

More information

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE by Doug Bray Department of Biological Sciences University of Lethbridge Revised September, 2000 Note: The terms in bold in this document represent

More information

Design and Application of a Quadrupole Detector for Low-Voltage Scanning Electron Mcroscopy

Design and Application of a Quadrupole Detector for Low-Voltage Scanning Electron Mcroscopy SCANNING Vol. 8, 294-299 (1986) 0 FACM. Inc. Received: August 29, 1986 Original Paper Design and Application of a Quadrupole Detector for Low-Voltage Scanning Electron Mcroscopy R. Schmid and M. Brunner"

More information

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation The FlexSEM 1000: A Scanning Electron Microscope Specializing

More information

Microscopy techniques for biomaterials. Engenharia Biomédica. Patrícia Almeida Carvalho

Microscopy techniques for biomaterials. Engenharia Biomédica. Patrícia Almeida Carvalho Microscopy techniques for biomaterials Engenharia Biomédica Patrícia Almeida Carvalho 1 2 Why microscopy? http://www.cellsalive.com/howbig.htm 3 Why microscopy? Resolution of an optical system Diffraction

More information

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW TESCAN, a.s. is a Czech joint-stock company focused on research, development and manufacture of scientific instruments and laboratory equipment such as: scanning

More information

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW TESCAN Brno, s.r.o. was established as subsidiary of a multi-national company TESCAN ORSAY HOLDING after the merger (August 2013) of Czech company TESCAN, a global

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Schottky Emission VP FE-SEM

Schottky Emission VP FE-SEM Schottky Emission VP FE-SEM Variable Pressure The Scanning Electron Microscope (SEM) has played an important role for many years for research and development of advanced materials in the leading edge of

More information

ELECTRON MICROSCOPY AN OVERVIEW

ELECTRON MICROSCOPY AN OVERVIEW ELECTRON MICROSCOPY AN OVERVIEW Anjali Priya 1, Abhishek Singh 2, Nikhil Anand Srivastava 3 1,2,3 Department of Electrical & Instrumentation, Sant Longowal Institute of Engg. & Technology, Sangrur, India.

More information

Mohammed A. Hussein *

Mohammed A. Hussein * International Journal of Physics, 216, Vol. 4, No. 5, 13-134 Available online at http://pubs.sciepub.com/ijp/4/5/3 Science and Education Publishing DOI:1.12691/ijp-4-5-3 Effect of the Geometrical Shape

More information

Tecnai on-line help manual --

Tecnai on-line help manual -- Tecnai on-line help Alignments 1 Tecnai on-line help manual -- Alignments Table of Contents 1 Alignments in the Tecnai microscope...5 2 Alignment procedures...6 3 Introduction to electron optics...11 3.1

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 73 Winter 208 Homework Set 2 (200 Points) Assigned -7-8, due -23-8 by 0:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 229, Friday /9 4:00-5:00pm and SFL 220, Monday /22 4:00-5:30pm. For the

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

Transmissions Electron Microscopy (TEM)

Transmissions Electron Microscopy (TEM) Transmissions Electron Microscopy (TEM) Basic principles Diffraction Imaging Specimen preparation A.E. Gunnæs MENA3100 V17 TEM is based on three possible set of techniqes Diffraction From regions down

More information

Microscopy Techniques that make it easy to see things this small.

Microscopy Techniques that make it easy to see things this small. Microscopy Techniques that make it easy to see things this small. What is a Microscope? An instrument for viewing objects that are too small to be seen easily by the naked eye. Dutch spectacle-makers Hans

More information

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by X - R A Y M I C R O S C O P Y A N D M I C R O R A D I O G R A P H Y PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, 1956 Edited by V. E. COSSLETT Cavendish Laboratory, University

More information

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7. Chapter 2 CHEM Fall L. Ma

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7. Chapter 2 CHEM Fall L. Ma Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7 Outline Electron Sources (Electron Guns) Thermionic: LaB 6 or W Field emission gun: cold or Schottky Lenses Focusing Aberration Probe

More information

New 500 kv Electron Microscope

New 500 kv Electron Microscope New 500 kv Electron Microscope B. T ADANO, H. KIMURA, S. KATAGIRI, M. NISHIGAKI Hitachi Central Research Laboratory, Kokubunji, Tokyo and R. UYEDA, Y. SAKAKI, S. MARUSE, K. MIHAMA, Y. KAMIYA Nagoya University,

More information

Filter & Spectrometer Electron Optics

Filter & Spectrometer Electron Optics Filter & Spectrometer Electron Optics Parameters Affecting Practical Performance Daniel Moonen & Harold A. Brink Did Something Go Wrong? 30 20 10 0 500 600 700 800 900 1000 1100 ev 1 Content The Prism

More information

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens.

More information

Introduction to Electron Microscopy-II

Introduction to Electron Microscopy-II Introduction to Electron Microscopy-II Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

Plasmonic Nanoparticles

Plasmonic Nanoparticles Contra Costa College Lawrence Hall of Science collaboration. Spring 2013 Interdisciplinary Study of silver nanoparticles filtration. ENGIN-230 Introduction to Circuit Analysis (ref 1) As a practical application

More information

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G2 OPTICAL INSTRUMENTS HW/Study Packet Required: READ Tsokos, pp 598-620 SL/HL Supplemental: Hamper, pp 411-450 DO Questions p 605 #1,3 pp 621-623 #6,8,15,18,19,24,26

More information

A Portable Scanning Electron Microscope Column Design Based on the Use of Permanent Magnets

A Portable Scanning Electron Microscope Column Design Based on the Use of Permanent Magnets SCANNING VOL. 20, 87 91 (1998) Received October 8, 1997 FAMS, Inc. Accepted with revision November 9, 1997 A Portable Scanning Electron Microscope Column Design Based on the Use of Permanent Magnets A.

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage X-rays Ouch! 1 X-rays X-rays are produced when electrons are accelerated and collide with a target Bremsstrahlung x-rays Characteristic x-rays X-rays are sometimes characterized by the generating voltage

More information

TEM theory Basic optics, image formation and key elements

TEM theory Basic optics, image formation and key elements Workshop series of Chinese 3DEM community Get acquainted with Cryo-Electron Microscopy: First Chinese Workshop for Structural Biologists TEM theory Basic optics, image formation and key elements Jianlin

More information

THE BOTTOM LINE I. THE MICROSCOPE

THE BOTTOM LINE I. THE MICROSCOPE THE BOTTOM LINE This document is designed to help students focus their attention on basic concepts that are important for understanding the fundamental principles of transmission electron microscopy, biological

More information

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer :

Spectrophotometer. An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer An instrument used to make absorbance, transmittance or emission measurements is known as a spectrophotometer : Spectrophotometer components Excitation sources Deuterium Lamp Tungsten

More information

Dickinson College Department of Geology

Dickinson College Department of Geology Dickinson College Department of Geology Title: Equipment: BASIC OPERATION OF THE SCANNING ELECTRON MICROSCOPE (SEM) JEOL JSM-5900 SCANNING ELECTRON MICROSCOPE Revision: 2.2 Effective Date: 1/29/2003 Author(s):

More information

PD233: Design of Biomedical Devices and Systems

PD233: Design of Biomedical Devices and Systems PD233: Design of Biomedical Devices and Systems (Lecture-8 Medical Imaging Systems) (Imaging Systems Basics, X-ray and CT) Dr. Manish Arora CPDM, IISc Course Website: http://cpdm.iisc.ac.in/utsaah/courses/

More information

CHAPTER TWO METALLOGRAPHY & MICROSCOPY

CHAPTER TWO METALLOGRAPHY & MICROSCOPY CHAPTER TWO METALLOGRAPHY & MICROSCOPY 1. INTRODUCTION: Materials characterisation has two main aspects: Accurately measuring the physical, mechanical and chemical properties of materials Accurately measuring

More information

Experiment 6: Franck Hertz Experiment v1.3

Experiment 6: Franck Hertz Experiment v1.3 Experiment 6: Franck Hertz Experiment v1.3 Background This series of experiments demonstrates the energy quantization of atoms. The concept was first implemented by James Franck and Gustaf Ludwig Hertz

More information

JEOL 6500 User Manual

JEOL 6500 User Manual LOG IN to your session on the computer to the left of the microscope. Starting Conditions 1. Press Ctrl-Alt-Del and log on to the microscope computer. Click on JEOL PC SEM 6500 icon. Click yes if message

More information

LEO 912 TEM Short Manual. Prepared/copyrighted by RH Berg Danforth Plant Science Center

LEO 912 TEM Short Manual. Prepared/copyrighted by RH Berg Danforth Plant Science Center LEO 912 TEM Short Manual Prepared/copyrighted by RH Berg Danforth Plant Science Center Specimen holder [1] Never touch the holder (outside of the O-ring, double-headed arrow) because finger oils will contaminate

More information

Image formation (Slides 1-104)

Image formation (Slides 1-104) Image formation (Slides 1-104) (4) Imaging (Conventional) We are accustomed to optical imaging using a lens, both in our eye and in a camera (which form real images on a sensor, whether it is the retina

More information

Preface... xv Acknowledgments... xix. Chapter 1 An Overview of Vacuum Tube Audio Applications... 1

Preface... xv Acknowledgments... xix. Chapter 1 An Overview of Vacuum Tube Audio Applications... 1 Contents Preface... xv Acknowledgments... xix Chapter 1 An Overview of Vacuum Tube Audio Applications... 1 The Evolution of Analog Audio... 1 Technology Waves... 3 Tube vs. Solid State.................................................

More information

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality Add CLUE to your SEM Designed for your SEM and application The CLUE family offers dedicated CL systems for imaging and spectroscopic analysis suitable for most SEMs. In addition, when combined with other

More information

Special Invited Review Scanning transmission electron microscopy*

Special Invited Review Scanning transmission electron microscopy* (0 Journal of Microscopy, Vol. 100, Pt 3, April 1974, pp. 247-259. Received 22 October 1973 Special Invited Review Scanning transmission electron microscopy* by ALBERT V. C R E w E, Departments of Physics

More information

Recent results from the JEOL JEM-3000F FEGTEM in Oxford

Recent results from the JEOL JEM-3000F FEGTEM in Oxford Recent results from the JEOL JEM-3000F FEGTEM in Oxford R.E. Dunin-Borkowski a, J. Sloan b, R.R. Meyer c, A.I. Kirkland c,d and J. L. Hutchison a a b c d Department of Materials, Parks Road, Oxford OX1

More information

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Modern Optical Engineering The Design of Optical Systems Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Fourth Edition Me Graw Hill New York Chicago San Francisco

More information

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl BACKGROUND Multipass optical systems (MOS) are broadly used in absorption, Raman, fluorescence,

More information

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument.

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument. JEOL JSM-7400F Table of contents General information.. 3 The operation panel. 4 The different sample holders and inserting the samples.. 5 Turning on the beam... 6 Stage map control... 8 Correcting astigmatism...

More information

Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope

Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope Procedures for Performing Cryoelectron Microscopy on the FEI Sphera Microscope The procedures given below were written specifically for the FEI Tecnai G 2 Sphera microscope. Modifications will need to

More information

Titan on-line help manual -- Working with a FEG

Titan on-line help manual -- Working with a FEG 1 manual -- Working with a FEG Table of Contents 1 FEG Safety... 2 1.1 The column valves... 2 2 FEG States... 2 3 Starting the FEG... 4 4 Shutting the FEG down... 6 5 FEG Design... 6 5.1 Electron source...

More information

SCCH 4: 211: 2015 SCCH

SCCH 4: 211: 2015 SCCH SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Atitaya Siripinyanond Office Room: C218B Email: atitaya.sir@mahidol.ac.th Course Details October 19 November 30 Topic

More information

Basic Components of Spectroscopic. Instrumentation

Basic Components of Spectroscopic. Instrumentation Basic Components of Spectroscopic Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia

More information

MSE 460 TEM Lab 2: Basic Alignment and Operation of Microscope

MSE 460 TEM Lab 2: Basic Alignment and Operation of Microscope MSE 460 TEM Lab 2: Basic Alignment and Operation of Microscope Last updated on 1/8/2018 Jinsong Wu, jinsong-wu@northwestern.edu Aims: The aim of this lab is to familiarize you with basic TEM alignment

More information

Numerical analysis to verifying the performance of condenser magnetic lens in the scanning electron microscope.

Numerical analysis to verifying the performance of condenser magnetic lens in the scanning electron microscope. Numerical analysis to verifying the performance of condenser magnetic lens in the scanning electron microscope. Mohammed Abdullah Hussein Dept. of mechanization and agricultural equipment, College of agriculture

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Nuclear physics -spectroscopy LEYBOLD Physics Leaflets Detecting radiation with a scintillation counter Objects of the experiments Studying the scintillator pulses with an oscilloscope

More information

Chemistry Instrumental Analysis Lecture 7. Chem 4631

Chemistry Instrumental Analysis Lecture 7. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 7 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Mössbauer ~ Spectrometer. Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support

Mössbauer ~ Spectrometer. Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support www.mossbauer-spectrometers.com Mössbauer ~ Spectrometer Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support Mössbauer ~ Spectrometer > Mössbauer spectroscopy

More information

Title: Amray 1830 SEM#2 Semiconductor & Microsystems Fabrication Laboratory Revision: D Rev Date: 03/18/2016

Title: Amray 1830 SEM#2 Semiconductor & Microsystems Fabrication Laboratory Revision: D Rev Date: 03/18/2016 Approved by: Process Engineer / / / / Equipment Engineer 1 SCOPE The purpose of this document is to detail the use of the Amray 1830 SEM. All users are expected to have read and understood this document.

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information