NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida

Size: px
Start display at page:

Download "NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida"

Transcription

1 TEM Techniques Summary The TEM is an analytical instrument in which a thin membrane (typically < 100nm) is placed in the path of an energetic and highly coherent beam of electrons. Typical operating voltages are between kV. As the electrons transit the thin membrane, they interact with the atoms of specimen giving rise to a number of observable phenomena or signals. The resultant signals may be collected by the appropriate detector and analyzed to obtain information about the morphology, microstructure, composition, and chemistry of the specimen. The TEM may be used to form images of the specimen, produce electron diffraction patterns, or collect spectroscopic data. The TEM may be operated in a number of different modes, conventional imaging (CTEM), scanning transmission electron microscopy (STEM), diffraction mode, either selected area diffraction (SAD), or convergent beam diffraction (CBED), energy filtered imaging (EFTEM) and spectroscopy mode, X-ray energy-dispersive spectrometry (X-EDS) and electron energy loss spectrometry (EELS). The contrast observed in conventional TEM images is the result of three mechanisms; diffraction contrast, phase contrast, and mass-thickness contrast. Diffraction contrast occurs in crystalline specimens when the crystallographic planes that are oriented nearly parallel to the incident beam act as minute diffraction gratings that divert the post specimen electrons away from the optic axis. Diffraction contrast in a bright field (BF) TEM image causes the strongly diffracting regions of the image to appear dark in the image. BF diffraction contrast is enhanced by inserting an aperture into the back focal plane of the objective lens. Diffraction contrast is also the operative mechanism in dark field (DF) TEM imaging. A centered dark field (CDF) TEM image of a crystalline specimen is created by tilting the incident beam so that the incident beam approaches the specimen at an angle equal and opposite to a selected diffraction angle. The action of tilting the incident beam causes the transmitted beam to be laterally shifted off the optic axis of the TEM while selected diffracted beams are simultaneously directed down the optic axis. If an aperture is concurrently inserted into the back focal plane of the objective lens, only the rays passing through the central opening of the annulus will contribute to the image. By precisely varying and recording the tilt and rotation angles of the incident beam, reflections from specific crystallographic planes can be directed down the optic axis and thus contribute to the dark field images. Crystals with lattice planes that are diffracting down the optic axis at a given tilt angle will appear bright on the image. The second contrast mechanism, phase contrast, occurs due to the wave nature of the electrons. As the beam passes through various portions of the specimen the relative phase of the electron waves is modified. The superposition or recombination of the post specimen waves causes spatially varying regions of constructive and destructive interference that results in an observable intensity deviation or contrast. The third contrast mechanism, massthickness contrast occurs due to variations in specimen thickness and/or atomic composition. Electron scattering increases with increasing specimen thickness and increasing atomic number (Z). Thus, regions that are thicker or are composed of higher Z elements will strongly scatter the beam electrons and will appear darker on the image. Mass thickness contrast is an important contrast mechanism in amorphous specimens. STEM imaging is performed when the incident electron probe is focused to a few nanometers in diameter and is rastered over the specimen. The image is formed digitally as the intensity recorded at the each of the raster coordinates is mapped to the corresponding pixels in the image. Both bright field and dark field STEM imaging is possible. Diffraction contrast and mass-thickness contrast are observed in STEM images. Contrast that arises primarily due to atomic composition (Z contrast) is due to Rutherford scattering. Rutherford scattering is characterized by a large angular deviation from the optic axis. By using a high angular dark field detector (HAADF) and concurrently selecting a small camera length, Z-contrast becomes the dominant contrast mechanism in the observed HAADF STEM image.

2 Energy filtered EFTEM imaging, spectrum imaging, and electron energy loss spectroscopy EELS are possible because certain electron beam/atomic interactions cause the incident electrons to lose energy. Such interactions are collectively called inelastic scattering processes. As the incident highenergy electrons pass through the thin membrane they have the potential to interact with the core electrons of the constituent atoms. If an incident electron causes the ejection of a core electron from the specimen, then the incident electron loses a quantum of energy equal to the characteristic ionization energy of the ejected core electron. Thus, by using an electron spectrometer, which consists of several lenses, a magnetic prism and an energy-selecting slit, the emerging electrons can be filtered according to their post specimen energy. Energy filtered imaging and EELS are closely related techniques both based on the inelastic interactions between the electron beam and the specimen. The same system, the Gatan Image Filter (GIF), acts as both a parallel EEL-spectrometer as well as an energy-filtering system. The difference between the two techniques is a function of user-selected microscope operating parameters. The back focal plane (BFP) of the last projector lens in the TEM column serves as the object plane for the spectrometer. Selecting TEM lens settings that will place a diffraction pattern in the object plane and consequently the dispersion plane of the spectrometer allows the post slit lens assembly of the spectrometer to form an image on the square 1024 x 1024 pixel charged coupled device (CCD) camera. The microscope is said to be in image mode but the spectrometer is diffraction coupled. If the energy-selecting slit is inserted into the dispersion plane of the spectrometer then an energy filtered (EFTEM) image is formed. By adjusting the strength of the magnetic prism and the width of the energy-selecting slit (typically 10-50eV), only electrons of a specifically determined energy are allowed to contribute to the image. A zero loss EFTEM image is formed when only electrons that have lost no energy while transiting the specimen are selected to contribute to the image. If the spectrometer is operated as described above with no energy slit inserted then an unfiltered image is formed. Although an unfiltered image is collected with the GIF camera, the primary contrast mechanisms are the same as in any BF TEM image. The GIF system acts as a spectrometer when the TEM lens settings are adjusted so that an image is present in the object and dispersion planes of the spectrometer. The post slit lens assembly then projects a dispersed energy spectrum on a linear 1024 x 1 array CCD. The microscope is said to be in diffraction mode but the spectrometer is said to be image coupled. Because the entire spectrum is collected simultaneously, the technique is specifically referred to as parallel electron energy loss spectroscopy (PEELS). A PEELS spectrum from a single spot may be collected either with the TEM in conventional imaging mode, diffraction mode or in STEM mode. A PEELS line scan or PEELS areal scan is only possible when operating in STEM mode. A PEELS areal scan is more accurately referred to as a spectrum image because a complete spectrum is recorded from each (x,y) coordinate in the raster. Thus, a data cube is generated and elemental maps can be subsequently generated from the stored data.

3 Figure 1. Schematic diagram of a Gatan imaging filter energy (GIF) showing collection planes for an energy loss spectrum J(E) and an energy filtered image, respectively. PEELS and EFTEM imaging are tools for qualitative and quantitative elemental analysis in very thin specimens. Detection limits can be as low as 0.1% by weight. Because PEELS is characterized by exceptionally high energy resolution it can with very careful parameterization be used to obtain chemical or bonding information. Both EFTEM and PEELS provide a means for elemental mapping based on the characteristic ionization energies of the elements.

4 Inelastic scattering events occur when the electrons transiting the specimen lose energy due to interactions with the atoms of that specimen. Such events are completely characterized by recording the scattering intensity as a function of the variables J(x, y, z, q x, q y, E), where x, y and z refer to position in real space, q x, q y are scattering vectors and E is energy. It would be cumbersome to record and manipulate this large amount of data simultaneously. Thus, as a matter practicality, the energy loss data acquisition is restricted into categories. An energy loss spectrum J(E) which is a single PEELS spectrum where the number of electrons (intensity) having lost a given amount of energy is plotted as a function of energy. Figure 2. An energy loss spectrum J(E)

5 A line plot J(y, E) or J(q y, E) is created as the electron beam is advanced along a spatially defined path on the specimen. A single spectrum is collected at each position of the beam. Post acquisition, the individual spectra are analyzed and the number of electrons (intensity) having lost energy within a range specified by the analyst is plotted as a function of position on the specimen. The energy ranges selected for analysis typically correspond to known characteristic energy loss ranges corresponding to specific elements. Figure 3. A single energy loss spectrum J(E) in which an energy range has been defined by the green energy window. A line spectrum J(y, E) (figure 4) is generated point by point from integrated intensity within the limits of the energy window for each spectrum collected along the path of the beam. The intensity is plotted as a function of beam position on the TEM specimen. Figure 4a. High angle annular dark field image with red line showing path of the beam along the TEM specimen; b line plot showing intensity of carbon signal as a function of beam position.

6 Figure 5. Line plot shown in figure 4 overlaid on high angle annular dark field image.

7 An energy selected or EFTEM image J(x, y,) or filtered diffraction pattern J(qx, qy,) is created when the lens configurations are adjusted so that an image is projected on the GIF camera. In a fashion that is conceptually similar to the placement of the energy window over a desired range in the line spectrum shown above, an energy range is selected by placing a physical slit in the path of the spectrum and the subsequent image is formed with only electrons that have passed through the slit, i.e., electrons that have lost a specified amount of energy. Figure 6a. EFTEM image formed with only the electrons that have undergone no energy loss to elastic scattering events; b. EFTEM image formed with only the electrons that lost energy via momentum transfer with the nitrogen K-shell electrons; b. EFTEM image formed with only the electrons that lost energy via momentum transfer to the nitrogen K-shell electrons; c. EFTEM image formed with only the electrons that lost energy via momentum transfer to the titanium L-shell electrons; d. EFTEM image formed with only the electrons that lost energy via momentum transfer to the oxygen K-shell electrons e. multicolor overlay of EFTEM images each formed with only the electrons that lost energy via momentum transfer to the elements listed in the key. NanoSpective, Inc Progress Drive Suite 137 Orlando, Florida 32826

8 A spectrum image J(x, y, E) an energy loss spectrum is recorded at each pixel which generates a cube of data. From this cube either a PEELS spectrum or EFTEM image may be retrieved post analysis. Figure 7. Cube of data resulting from spectrum imaging. The x and y axes represent the position coordinates on the TEM specimen. The ΔE axis represents the distribution of energy lost by the incident electrons while transiting the TEM specimen, where the energy scale is increasing from top to bottom. Each xy plane contains an energy filtered image J(x,y) where the energy loss to be mapped is a coordinate on the vertical energy axis. Each vertical column contains a PEELS spectrum J(E) where the xy coordinates correspond to the collection location on the TEM specimen.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. JY/T

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. JY/T Translated English of Chinese Standard: JY/T011-1996 www.chinesestandard.net Sales@ChineseStandard.net INDUSTRY STANDARD OF THE JY PEOPLE S REPUBLIC OF CHINA General rules for transmission electron microscopy

More information

Transmission electron Microscopy

Transmission electron Microscopy Transmission electron Microscopy Image formation of a concave lens in geometrical optics Some basic features of the transmission electron microscope (TEM) can be understood from by analogy with the operation

More information

NANO 703-Notes. Chapter 9-The Instrument

NANO 703-Notes. Chapter 9-The Instrument 1 Chapter 9-The Instrument Illumination (condenser) system Before (above) the sample, the purpose of electron lenses is to form the beam/probe that will illuminate the sample. Our electron source is macroscopic

More information

Chapter 4 Imaging Lecture 17

Chapter 4 Imaging Lecture 17 Chapter 4 Imaging Lecture 17 d (110) Imaging Imaging in the TEM Diffraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging STEM imaging Imaging in the TEM What is

More information

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7. Chapter 2 CHEM Fall L. Ma

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7. Chapter 2 CHEM Fall L. Ma Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 7 Outline Electron Sources (Electron Guns) Thermionic: LaB 6 or W Field emission gun: cold or Schottky Lenses Focusing Aberration Probe

More information

Filter & Spectrometer Electron Optics

Filter & Spectrometer Electron Optics Filter & Spectrometer Electron Optics Parameters Affecting Practical Performance Daniel Moonen & Harold A. Brink Did Something Go Wrong? 30 20 10 0 500 600 700 800 900 1000 1100 ev 1 Content The Prism

More information

STEM Spectrum Imaging Tutorial

STEM Spectrum Imaging Tutorial STEM Spectrum Imaging Tutorial Gatan, Inc. 5933 Coronado Lane, Pleasanton, CA 94588 Tel: (925) 463-0200 Fax: (925) 463-0204 April 2001 Contents 1 Introduction 1.1 What is Spectrum Imaging? 2 Hardware 3

More information

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Indiana University JEM-3200FS

Indiana University JEM-3200FS Indiana University JEM-3200FS Installation Specification Model: JEM 3200FS Serial Number: EM 15000013 Objective Lens Configuration: High Resolution Pole Piece (HRP) JEOL Engineer: Michael P. Van Etten

More information

Transmission Electron Microscopy 9. The Instrument. Outline

Transmission Electron Microscopy 9. The Instrument. Outline Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation

More information

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope Scientific / Metrology Instruments Multi-purpose Electron Microscope JEM-F200 Multi-purpose Electron Microscope JEM-F200/F2 is a multi-purpose electron microscope of the new generation to meet today's

More information

Introduction to Transmission Electron Microscopy (Physical Sciences)

Introduction to Transmission Electron Microscopy (Physical Sciences) Introduction to Transmission Electron Microscopy (Physical Sciences) Centre for Advanced Microscopy Program 9:30 10:45 Lecture 1 Basics of TEM 10:45 11:00 Morning tea 11:00 12:15 Lecture 2 Diffraction

More information

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu ELECTRON MICROSCOPY 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN

More information

ELECTRON MICROSCOPY. 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 09:10 12:00, Oct. 27, 2006 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products Advances in Transmission Electron Microscopy Friday, April 21, 2017 October 31, 2014 The webinar will begin at 1pm Eastern Time Click here to watch the webinar recording

More information

Recent results from the JEOL JEM-3000F FEGTEM in Oxford

Recent results from the JEOL JEM-3000F FEGTEM in Oxford Recent results from the JEOL JEM-3000F FEGTEM in Oxford R.E. Dunin-Borkowski a, J. Sloan b, R.R. Meyer c, A.I. Kirkland c,d and J. L. Hutchison a a b c d Department of Materials, Parks Road, Oxford OX1

More information

Low-energy Electron Diffractive Imaging for Three dimensional Light-element Materials

Low-energy Electron Diffractive Imaging for Three dimensional Light-element Materials Low-energy Electron Diffractive Imaging for Three dimensional Light-element Materials Hitachi Review Vol. 61 (2012), No. 6 269 Osamu Kamimura, Ph. D. Takashi Dobashi OVERVIEW: Hitachi has been developing

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Fundamentals of optical and scanning electron microscopy Dr. S. Sankaran Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module 03 Unit-6 Instrumental details

More information

Transmissions Electron Microscopy (TEM)

Transmissions Electron Microscopy (TEM) Transmissions Electron Microscopy (TEM) Basic principles Diffraction Imaging Specimen preparation A.E. Gunnæs MENA3100 V17 TEM is based on three possible set of techniqes Diffraction From regions down

More information

Introduction to Electron Microscopy

Introduction to Electron Microscopy Introduction to Electron Microscopy Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

Advanced Materials Characterization Workshop

Advanced Materials Characterization Workshop University of Illinois at Urbana-Champaign Materials Research Laboratory Advanced Materials Characterization Workshop June 3 rd and 4 th, 2013 Transmission Electron Microscopy Wacek Swiech, Honghui Zhou,

More information

Microscopic Structures

Microscopic Structures Microscopic Structures Image Analysis Metal, 3D Image (Red-Green) The microscopic methods range from dark field / bright field microscopy through polarisation- and inverse microscopy to techniques like

More information

ELECTRON MICROSCOPY AN OVERVIEW

ELECTRON MICROSCOPY AN OVERVIEW ELECTRON MICROSCOPY AN OVERVIEW Anjali Priya 1, Abhishek Singh 2, Nikhil Anand Srivastava 3 1,2,3 Department of Electrical & Instrumentation, Sant Longowal Institute of Engg. & Technology, Sangrur, India.

More information

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS Robert Edward Lee Electron Microscopy Center Department of Anatomy and Neurobiology Colorado State University P T R Prentice Hall, Englewood Cliffs,

More information

Full-screen mode Popup controls. Overview of the microscope user interface, TEM User Interface and TIA on the left and EDS on the right

Full-screen mode Popup controls. Overview of the microscope user interface, TEM User Interface and TIA on the left and EDS on the right Quick Guide to Operating FEI Titan Themis G2 200 (S)TEM: TEM mode Susheng Tan Nanoscale Fabrication and Characterization Facility, University of Pittsburgh Office: M104/B01 Benedum Hall, 412-383-5978,

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

SECONDARY ELECTRON DETECTION

SECONDARY ELECTRON DETECTION SECONDARY ELECTRON DETECTION CAMTEC Workshop Presentation Haitian Xu June 14 th 2010 Introduction SEM Raster scan specimen surface with focused high energy e- beam Signal produced by beam interaction with

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Electron

Electron Electron 1897: Sir Joseph John Thomson (1856-1940) discovered corpuscles small particles with a charge-to-mass ratio over 1000 times greater than that of protons. Plum pudding model : electrons in a sea

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Improving the Collection Efficiency of Raman Scattering

Improving the Collection Efficiency of Raman Scattering PERFORMANCE Unparalleled signal-to-noise ratio with diffraction-limited spectral and imaging resolution Deep-cooled CCD with excelon sensor technology Aberration-free optical design for uniform high resolution

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

The designs for a high resolution Czerny-Turner spectrometer are presented. The results of optical

The designs for a high resolution Czerny-Turner spectrometer are presented. The results of optical ARTICLE High Resolution Multi-grating Spectrometer Controlled by an Arduino Karl Haebler, Anson Lau, Jackson Qiu, Michal Bajcsy University of Waterloo, Waterloo, Ontario, Canada Abstract The designs for

More information

TEM theory Basic optics, image formation and key elements

TEM theory Basic optics, image formation and key elements Workshop series of Chinese 3DEM community Get acquainted with Cryo-Electron Microscopy: First Chinese Workshop for Structural Biologists TEM theory Basic optics, image formation and key elements Jianlin

More information

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the ECEN 4606 Lab 8 Spectroscopy SUMMARY: ROBLEM 1: Pedrotti 3 12-10. In this lab, you will design, build and test an optical spectrum analyzer and use it for both absorption and emission spectroscopy. The

More information

High Resolution Transmission Electron Microscopy (HRTEM) Summary 4/11/2018. Thomas LaGrange Faculty Lecturer and Senior Staff Scientist

High Resolution Transmission Electron Microscopy (HRTEM) Summary 4/11/2018. Thomas LaGrange Faculty Lecturer and Senior Staff Scientist Thomas LaGrange Faculty Lecturer and Senior Staff Scientist High Resolution Transmission Electron Microscopy (HRTEM) Doctoral Course MS-637 April 16-18th, 2018 Summary Contrast in TEM images results from

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Chapter 28 Physical Optics: Interference and Diffraction

Chapter 28 Physical Optics: Interference and Diffraction Chapter 28 Physical Optics: Interference and Diffraction 1 Overview of Chapter 28 Superposition and Interference Young s Two-Slit Experiment Interference in Reflected Waves Diffraction Resolution Diffraction

More information

Nanotechnology and material science Lecture V

Nanotechnology and material science Lecture V Most widely used nanoscale microscopy. Based on possibility to create bright electron beam with sub-nm spot size. History: Ernst Ruska (1931), Nobel Prize (1986) For visible light λ=400-700nm, for electrons

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

More information

Introduction to Electron Microscopy-II

Introduction to Electron Microscopy-II Introduction to Electron Microscopy-II Prof. David Muller, dm24@cornell.edu Rm 274 Clark Hall, 255-4065 Ernst Ruska and Max Knoll built the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

More information

STEM alignment procedures

STEM alignment procedures STEM alignment procedures Step 1. ASID alignment mode 1. Write down STD for TEM, and then open the ASID control window from dialogue. Also, start Simple imager viewer program on the Desktop. 2. Click on

More information

Introduction to Scanning Electron Microscopy

Introduction to Scanning Electron Microscopy Introduction to Scanning Electron Microscopy By: Brandon Cheney Ant s Leg Integrated Circuit Nano-composite This document was created as part of a Senior Project in the Materials Engineering Department

More information

Instructions for the Experiment

Instructions for the Experiment Instructions for the Experiment Excitonic States in Atomically Thin Semiconductors 1. Introduction Alongside with electrical measurements, optical measurements are an indispensable tool for the study of

More information

Chemical Imaging. Whiskbroom Imaging. Staring Imaging. Pushbroom Imaging. Whiskbroom. Staring. Pushbroom

Chemical Imaging. Whiskbroom Imaging. Staring Imaging. Pushbroom Imaging. Whiskbroom. Staring. Pushbroom Chemical Imaging Whiskbroom Chemical Imaging (CI) combines different technologies like optical microscopy, digital imaging and molecular spectroscopy in combination with multivariate data analysis methods.

More information

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer Page 1 of 11 Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer The Aramis Raman system is a software selectable multi-wavelength Raman system with mapping capabilities with a 400mm monochromator and

More information

LEO 912 TEM Short Manual. Prepared/copyrighted by RH Berg Danforth Plant Science Center

LEO 912 TEM Short Manual. Prepared/copyrighted by RH Berg Danforth Plant Science Center LEO 912 TEM Short Manual Prepared/copyrighted by RH Berg Danforth Plant Science Center Specimen holder [1] Never touch the holder (outside of the O-ring, double-headed arrow) because finger oils will contaminate

More information

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation The FlexSEM 1000: A Scanning Electron Microscope Specializing

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Manufacturing Metrology Team

Manufacturing Metrology Team The Team has a range of state-of-the-art equipment for the measurement of surface texture and form. We are happy to discuss potential measurement issues and collaborative research Manufacturing Metrology

More information

Design and first applications of a post-column imaging filter

Design and first applications of a post-column imaging filter Microsc. MicroanaL Microstruct.. 187- APRIL/JUNE 1992, PAGE 187 Classification Physics Abstracts - 07.80 82.80 Design and first applications of a post-column imaging filter Ondrej L. Krivanek (1), Alexander

More information

Microscopy techniques for biomaterials. Engenharia Biomédica. Patrícia Almeida Carvalho

Microscopy techniques for biomaterials. Engenharia Biomédica. Patrícia Almeida Carvalho Microscopy techniques for biomaterials Engenharia Biomédica Patrícia Almeida Carvalho 1 2 Why microscopy? http://www.cellsalive.com/howbig.htm 3 Why microscopy? Resolution of an optical system Diffraction

More information

CS-TEM vs CS-STEM. FEI Titan CIME EPFL. Duncan Alexander EPFL-CIME

CS-TEM vs CS-STEM. FEI Titan CIME EPFL. Duncan Alexander EPFL-CIME CS-TEM vs CS-STEM Duncan Alexander EPFL-CIME 1 FEI Titan Themis @ CIME EPFL 60 300 kv Monochromator High brightness X-FEG Probe Cs-corrected: 0.7 Å @ 300 kv Image Cs-corrected: 0.7 Å @ 300 kv Super-X EDX

More information

Corundum C Axis Device for Sample Preparation Timothy Thomas, M.E., M.S.E.E. GIA Laboratory June 4, 2009

Corundum C Axis Device for Sample Preparation Timothy Thomas, M.E., M.S.E.E. GIA Laboratory June 4, 2009 Abstract Corundum C Axis Device for Sample Preparation Timothy Thomas, M.E., M.S.E.E. GIA Laboratory June 4, 2009 As a part of GIA s on going project to establish a comprehensive corundum database a need

More information

Development of JEM-2800 High Throughput Electron Microscope

Development of JEM-2800 High Throughput Electron Microscope Development of JEM-2800 High Throughput Electron Microscope Mitsuhide Matsushita, Shuji Kawai, Takeshi Iwama, Katsuhiro Tanaka, Toshiko Kuba and Noriaki Endo EM Business Unit, JEOL Ltd. Electron Optics

More information

Approachable Raman Solutions The Shortest Path from Problem to Answer

Approachable Raman Solutions The Shortest Path from Problem to Answer Approachable Raman Solutions The Shortest Path from Problem to Answer Michael S. Bradley The world leader in serving science Thermo Scientific Raman Spectroscopy: Discover. Solve. Assure. Raman Spectroscopy

More information

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:... Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

More information

The Wave Nature of Light

The Wave Nature of Light The Wave Nature of Light Physics 102 Lecture 7 4 April 2002 Pick up Grating & Foil & Pin 4 Apr 2002 Physics 102 Lecture 7 1 Light acts like a wave! Last week we saw that light travels from place to place

More information

Appreciating the very little things: Status and future prospects of TEM at NUANCE

Appreciating the very little things: Status and future prospects of TEM at NUANCE Appreciating the very little things: Status and future prospects of TEM at NUANCE Dr. Roberto dos Reis roberto.reis@northwestern.edu 11/28/2018 Nature 542, pages75 79 (2017) TEM Facility Manager: Dr. Xiaobing

More information

Supplementary Materials

Supplementary Materials Supplementary Materials In the supplementary materials of this paper we discuss some practical consideration for alignment of optical components to help unexperienced users to achieve a high performance

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D Microscopy Outline 1. Resolution and Simple Optical Microscope 2. Contrast enhancement: Dark field, Fluorescence (Chelsea & Peter), Phase Contrast, DIC 3. Newer Methods: Scanning Tunneling microscopy (STM),

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Functions of the SEM subsystems

Functions of the SEM subsystems Functions of the SEM subsystems Electronic column It consists of an electron gun and two or more electron lenses, which influence the path of electrons traveling down an evacuated tube. The base of the

More information

1.1. In regular TEM imaging mode, find a region of interest and set it at eucentric height.

1.1. In regular TEM imaging mode, find a region of interest and set it at eucentric height. JEOL 2010F operating procedure Covers operation in STEM mode (See separate procedures for operation in TEM mode and operation of EDS system) Nicholas G. Rudawski ngr@ufl.edu (805) 252-4916 NOTE: this operating

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

(1) Research Institute for Scientific Measurements, Tohoku University, Katahira 2-1-1, Aoba-ku,

(1) Research Institute for Scientific Measurements, Tohoku University, Katahira 2-1-1, Aoba-ku, 351 Classification Physics Abstracts 07.80 Performance of a new high-resolution electron energy-loss spectroscopy microscope Masami Thrauchi(1), Ryuichi Kuzuo(1), Futami Satoh(1), Michiyoshi Thnaka(1),

More information

A few concepts in TEM and STEM explained

A few concepts in TEM and STEM explained A few concepts in TEM and STEM explained Martin Ek November 23, 2011 1 Introduction This is a collection of short, qualitative explanations of key concepts in TEM and STEM. Most of them are beyond what

More information

Fabrication of Probes for High Resolution Optical Microscopy

Fabrication of Probes for High Resolution Optical Microscopy Fabrication of Probes for High Resolution Optical Microscopy Physics 564 Applied Optics Professor Andrès La Rosa David Logan May 27, 2010 Abstract Near Field Scanning Optical Microscopy (NSOM) is a technique

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

Introduction to the operating principles of the HyperFine spectrometer

Introduction to the operating principles of the HyperFine spectrometer Introduction to the operating principles of the HyperFine spectrometer LightMachinery Inc., 80 Colonnade Road North, Ottawa ON Canada A spectrometer is an optical instrument designed to split light into

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Optically reconfigurable metasurfaces and photonic devices based on phase change materials S1: Schematic diagram of the experimental setup. A Ti-Sapphire femtosecond laser (Coherent Chameleon Vision S)

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Spectroscopy Lab 2. Reading Your text books. Look under spectra, spectrometer, diffraction.

Spectroscopy Lab 2. Reading Your text books. Look under spectra, spectrometer, diffraction. 1 Spectroscopy Lab 2 Reading Your text books. Look under spectra, spectrometer, diffraction. Consult Sargent Welch Spectrum Charts on wall of lab. Note that only the most prominent wavelengths are displayed

More information

The diffraction of light

The diffraction of light 7 The diffraction of light 7.1 Introduction As introduced in Chapter 6, the reciprocal lattice is the basis upon which the geometry of X-ray and electron diffraction patterns can be most easily understood

More information

High-resolution imaging on C s -corrected Titan

High-resolution imaging on C s -corrected Titan High-resolution imaging on C s -corrected Titan 80-300 A new era for new results In NanoResearch a detailed knowledge of the structure of the material down to the atomic level is crucial for understanding

More information

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by

PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, Edited by X - R A Y M I C R O S C O P Y A N D M I C R O R A D I O G R A P H Y PROCEEDINGS OF A SYMPOSIUM HELD AT THE CAVENDISH LABORATORY, CAMBRIDGE, 1956 Edited by V. E. COSSLETT Cavendish Laboratory, University

More information

Very short introduction to light microscopy and digital imaging

Very short introduction to light microscopy and digital imaging Very short introduction to light microscopy and digital imaging Hernan G. Garcia August 1, 2005 1 Light Microscopy Basics In this section we will briefly describe the basic principles of operation and

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality Add CLUE to your SEM Designed for your SEM and application The CLUE family offers dedicated CL systems for imaging and spectroscopic analysis suitable for most SEMs. In addition, when combined with other

More information

Topics 3b,c Electron Microscopy

Topics 3b,c Electron Microscopy Topics 3b,c Electron Microscopy 1.0 Introduction and History 1.1 Characteristic Information 2.0 Basic Principles 2.1 Electron-Solid Interactions 2.2 Electromagnetic Lenses 2.3 Breakdown of an Electron

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

CS-TEM vs CS-STEM. FEI Titan CIME EPFL. Duncan Alexander EPFL-CIME

CS-TEM vs CS-STEM. FEI Titan CIME EPFL. Duncan Alexander EPFL-CIME CS-TEM vs CS-STEM Duncan Alexander EPFL-CIME 1 FEI Titan Themis @ CIME EPFL 60 300 kv Monochromator High brightness X-FEG Probe Cs-corrected: 0.7 Å @ 300 kv Image Cs-corrected: 0.7 Å @ 300 kv Super-X EDX

More information

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1 Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction Phys 2435: Chap. 36, Pg 1 Single Slit New Topic Phys 2435: Chap. 36, Pg 2 Diffraction: bending of light around

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Chapter 29: Light Waves

Chapter 29: Light Waves Lecture Outline Chapter 29: Light Waves This lecture will help you understand: Huygens' Principle Diffraction Superposition and Interference Polarization Holography Huygens' Principle Throw a rock in a

More information

FEI Tecnai G 2 F20 Operating Procedures

FEI Tecnai G 2 F20 Operating Procedures FEI Tecnai G 2 F20 Operating Procedures 1. Startup (1) Sign-up in the microscope log-sheet. Please ensure you have written an account number for billing. (2) Log in to the computer: Login to your account

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Supplementary Information for Focusing and Extraction of Light mediated by Bloch Surface Waves Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Emanuele Enrico, Fabrizio Giorgis,

More information