Chapter 16 Light Waves and Color

Size: px
Start display at page:

Download "Chapter 16 Light Waves and Color"

Transcription

1 Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 What causes color? What causes reflection?

3 What causes color? What causes reflection? Why does a soap film display different colors? How do we see color? Why is the sky blue?

4 What do light, radio waves, microwaves, and X rays have in common? a) They all can travel through empty space. b) They all travel at the same speed. c) They all have no mass. d) All the above are true. e) Only answers a and b are true. d) These are all forms of electromagnetic waves. Although seemingly quite different, they share many properties, including a, b, and c.

5 Electromagnetic Waves An electromagnetic wave consists of timevarying electric and magnetic fields, in directions perpendicular to each other as well as to the direction the wave is traveling.

6 The electric and the magnetic fields can be produced by charged particles. An electric field surrounds any charged particle. A magnetic field surrounds moving charged particles. A rapidly alternating electric current in a wire generates magnetic fields whose direction and magnitude change with time. This changing magnetic field in turn produces a changing electric field.

7 Likewise, a changing electric field produces a magnetic field. Maxwell realized a wave involving these fields could propagate through space: A changing magnetic field produces a changing electric field, which produces a changing magnetic field, etc... Thus a transverse wave of associated changing electric and magnetic fields is produced.

8 Maxwell predicted the speed of electromagnetic waves in a vacuum using the Coulomb constant k in Coulomb s law and the magnetic force constant k in Ampere s law: v k k m s This was equal to the known value for the speed of light! c m s Fizeau s wheel for measuring the speed of light

9 There is a wide spectrum of frequencies and wavelengths of electromagnetic waves. Different types of electromagnetic waves have different wavelengths and frequencies.

10 There is a wide spectrum of frequencies and wavelengths of electromagnetic waves. Together they form the electromagnetic spectrum.

11 There is a wide spectrum of frequencies and wavelengths of electromagnetic waves. Since they all travel at the speed of light c in a vacuum, their frequencies and wavelengths are related by: v = c = f

12 What is the frequency of radio waves with a wavelength of 10 m? = 10 m v = c = 3 x 10 8 m/s v = f f = v / = (3 x 10 8 m/s) / 10 m = 3 x 10 7 Hz

13 What is the frequency of light waves with a wavelength of 6 x 10-7 m? = 6 x 10-7 m v = c = 3 x 10 8 m/s v = f f = v / = (3 x 10 8 m/s) / 6 x 10-7 m = 5 x Hz

14 Waves in different parts of the electromagnetic spectrum differ not only in wavelength and frequency but also in how they are generated and what materials they will travel through. Radio waves are generated by accelerated charges in an oscillating electrical circuit. X rays come from energy transitions of atomic electrons. Gamma rays originate inside an atomic nucleus.

15 Waves in different parts of the electromagnetic spectrum differ not only in wavelength and frequency but also in how they are generated and what materials they will travel through. Infrared light is radiated by all warm bodies. Oscillating atoms within the molecules of the warm body serve as the antennas.

16 Waves in different parts of the electromagnetic spectrum differ not only in wavelength and frequency but also in how they are generated and what materials they will travel through. X rays will pass through materials that are opaque to visible light. Radio waves will pass through walls that light cannot penetrate.

17 Different wavelengths of visible light are associated with different colors. Violet is about 3.8 x 10-7 m. Wavelengths shorter than the violet comprise ultraviolet light. Red is about 7.5 x 10-7 m. Wavelengths longer than the red comprise infrared light. In between, the colors are red, orange, yellow, green, blue, indigo, and violet.

18 Wavelength and Color How do we perceive? What causes different objects to have? Why is the sky?

19 Newton demonstrated that white light is a mixture of colors. He showed that white light from the sun, after being split into different colors by one prism, can be recombined by a second prism to form white light again.

20 How do our eyes distinguish color? Light is focused by the cornea and lens onto the retina. The retina is made up of light-sensitive cells called rods and cones. Three types of cones are sensitive to light in different parts of the spectrum.

21 S cones are most sensitive to shorter wavelengths. M cones are most sensitive to medium wavelengths. L cones are most sensitive to longer wavelengths. The sensitivity ranges overlap, so that light near the middle of the visible spectrum will stimulate all three cone types. Light of 650 nm wavelength stimulates L cones strongest and S cones weakest; the brain identifies the color red.

22 S cones are most sensitive to shorter wavelengths. M cones are most sensitive to medium wavelengths. L cones are most sensitive to longer wavelengths. The sensitivity ranges overlap, so that light near the middle of the visible spectrum will stimulate all three cone types. Light of 450 nm stimulates the S cones most strongly, and the brain interprets that as the color blue.

23 S cones are most sensitive to shorter wavelengths. M cones are most sensitive to medium wavelengths. L cones are most sensitive to longer wavelengths. The sensitivity ranges overlap, so that light near the middle of the visible spectrum will stimulate all three cone types. Light of 580 nm stimulates both the M and L cones strongly, and the brain identifies that as the color yellow. A mixture of red and green light will produce a similar response.

24 Color Mixing The process of mixing two different wavelengths of light, such as red and green, to produce a response interpreted as another color, such as yellow, is additive color mixing. Combining the three primary colors blue, green, and red in different amounts can produce responses in our brains corresponding to all the colors we are used to identifying. Red and green make yellow, blue and green make cyan, and blue and red make magenta. Combining all three colors produces white.

25 Color Mixing The pigments used in paints or dyes work by selective color mixing. They absorb some wavelengths of light more than others. When light strikes an object, some of the light undergoes specular reflection: all the light is reflected as if by a mirror.

26 Color Mixing The pigments used in paints or dyes work by selective color mixing. They absorb some wavelengths of light more than others. The rest of the light undergoes diffuse reflection: it is reflected in all directions. Some of the light may be selectively absorbed, affecting the color we see. If red light is absorbed, we see blue-green.

27 Color Mixing The selective absorption of light is a form of subtractive color mixing. In color printing, the three primary pigments are cyan, yellow, and magenta. Cyan absorbs red but transmits and reflects blue and green. Yellow absorbs blue but transmits and reflects green and red. Magenta absorbs green but transmits and reflects blue and red.

28 Color Mixing The selective absorption of light is a form of subtractive color mixing. In color printing, the three primary pigments are cyan, yellow, and magenta. Cyan mixed with yellow absorb blue and red, resulting in green. Cyan and magenta produce blue. Yellow and magenta produce red. These resulting colors are the primary colors for additive color mixing.

29 Why is the sky blue?

30 The white light coming from the sun is actually a mixture of light of different wavelengths (colors). The longer wavelengths of blue light are scattered by gas molecules in the atmosphere more than shorter wavelengths such as red light. The blue light enters our eyes after being scattered multiple times, so appears to come from all parts of the sky.

31 Why is the sunset red?

32 The shorter wavelengths of blue light are scattered by gas molecules in the atmosphere more than longer wavelengths such as red light. When the sun is low on the horizon, the light must pass through more atmosphere than when the sun is directly above. By the time the sun s light reaches our eyes, the shorter wavelengths such as blue and yellow have been removed by scattering, leaving only orange and red light coming straight from the sun.

33 Interference of Light Waves Is light a wave or a particle? If it is a wave, it should exhibit interference effects: Recall that two waves can interfere constructively or destructively depending on their phase.

34 Light from a single slit is split by passing through two slits, resulting in two light waves in phase with each other. The two waves will interfere constructively or destructively, depending on a difference in the path length. If the two waves travel equal distances to the screen, they interfere constructively and a bright spot or line is seen.

35 If the distances traveled differ by half a wavelength, the two waves interfere destructively and a dark spot or line appears on the screen. If the distances traveled differ by a full wavelength, the two waves interfere constructively again resulting in another bright spot or line. The resulting interference pattern of alternating bright and dark lines is a fringe pattern. path difference d y x

36 Red light with a wavelength of 630 nm strikes a double slit with a spacing of 0.5 mm. If the interference pattern is observed on a screen located 1 m from the double slit, how far from the center of the screen is the second bright line from the central (zenith) bright line? = 630 nm = 6.3 x 10-7 m d = 0.5 mm = 5 x 10-4 m x = 1 m path difference 2 d y x y 2 x d m 1 m m m 2.5 mm

37 Similarly, interference can occur when light waves are reflected from the top and bottom surfaces of a soap film or oil slick. The difference in the path length of the two waves can produce an interference pattern. This is called thin-film interference.

38 Different wavelengths of light interfere constructively or destructively as the thickness of the film varies. This results in the many different colors seen.

39 The thin film may also be air between two glass plates. Each band represents a different thickness of film.

40 Diffraction and Gratings The bright fringes in a double-slit interference pattern are not all equally bright. They become less bright farther from the center. They seem to fade in and out. This effect, called diffraction, is due to interference of light coming from different parts of the same slit or opening.

41 When the path difference between light coming from the top half of the slit and that coming from the bottom half is 1/2 of a wavelength, a dark line appears on the single-slit diffraction pattern. The position of the first dark fringe is: y x w

42 Light with a wavelength of 550 nm strikes a single slit that is 0.4 mm wide. The diffraction pattern produced is observed on a wall a distance of 3.0 m from the slit. What is the distance from the center of the pattern to the first dark fringe? = 550 nm = 5.5 x 10-7 m w = 0.4 mm = 4 x 10-4 m x = 3.0 m y x w m 3.0 m m m 4.1mm

43 How wide is the central bright fringe of this diffraction pattern? The central bright fringe extends out to the first dark fringe on either side, so its width is just twice the distance y: = 550 nm = 5.5 x 10-7 m w = 0.4 mm = 4 x 10-4 m x = 3.0 m 2y mm 8.2 mm

44 The diffraction pattern produced by a square opening has an array of bright spots. Looking at a star or distant street light through a window screen can produce a similar diffraction pattern.

45 A diffraction grating has a very large number of slits very closely spaced. Whenever the path difference is equal to an integer multiple of the light wavelength, we get a strong bright fringe for d y m, m 0, 1, 2,... that wavelength. x Different wavelengths will appear at different points on the screen, spreading the light into its spectrum. Diffraction gratings in spectrometers are used to separate and measure the wavelengths of light. Gratings also produce the effects seen in novelty glasses, reflective gift wrappings, and in the colors seen on a CD.

46 Polarized Light How do polarizing sunglasses and camera filters work? What is polarized light? Recall that light is an electromagnetic wave consisting of oscillating electric and magnetic fields:

47 The oscillating electric field vector shown is in the vertical plane, and the magnetic field is horizontal. Actually, the electric field could oscillate in the horizontal with the magnetic field in the vertical plane, or the electric field could oscillate at some angle to the horizontal. As long as the electric field is always pointing in the same direction for all the waves, the light is polarized.

48 The electric field vector oscillates in a single direction for polarized light. Unpolarized light has random directions of orientation. Light is usually produced unpolarized. To make light polarized, something must occur to select just one direction of field oscillation.

49 Polarizing filters allows only that component of each electric field vector that is aligned with the filter s axis of transmission to pass through. The component perpendicular to this axis is absorbed.

50 Reflection from a smooth surface of a transparent material such as glass or water can also polarize light. Incoming sunlight is unpolarized. When the angle between the reflected wave and the transmitted wave is a right angle, the reflected wave is polarized. Polarizing sunglasses can help reduce glare from reflected sunlight.

51 Many interesting and colorful effects are related to the phenomenon of birefringence. Birefringence is also called double refraction. Light with different polarizations travels with different velocities when passing through a birefringent material. This causes colorful displays when the birefringent material is viewed through crossed polarizers. Calcite crystals are a good example of birefringent material. Lines are doubled when viewed through a calcite crystal.

52 Many interesting and colorful effects are related to the phenomenon of birefringence. Birefringence is also called double refraction. Light with different polarizations travels with different velocities when passing through a birefringent material. This causes colorful displays when the birefringent material is viewed through crossed polarizers. A plastic lens under compression shows stress birefringence when viewed between crossed polarizers.

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History In Lecture 5 we discussed the two different ways of talking about

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

Slide 1 / 99. Electromagnetic Waves

Slide 1 / 99. Electromagnetic Waves Slide 1 / 99 Electromagnetic Waves Slide 2 / 99 The Nature of Light: Wave or Particle The nature of light has been debated for thousands of years. In the 1600's, Newton argued that light was a stream of

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Electromagnetic Waves Chapter Questions

Electromagnetic Waves Chapter Questions Electromagnetic Waves Chapter Questions 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Exercises The Color Spectrum (pages ) 28.2 Color by Reflection (pages )

Exercises The Color Spectrum (pages ) 28.2 Color by Reflection (pages ) Exercises 28.1 The Spectrum (pages 555 556) 1. was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a. He studied sunlight.

More information

PHYSICS - Chapter 16. Light and Color and More

PHYSICS - Chapter 16. Light and Color and More PHYSICS - Chapter 16 Light and Color and More LIGHT-fundamentals 16.1 Light is the visible part of the electromagnetic spectrum. The electromagnetic spectrum runs from long Radio and TV waves to short

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A disturbance

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

28 Color. The colors of the objects depend on the color of the light that illuminates them.

28 Color. The colors of the objects depend on the color of the light that illuminates them. The colors of the objects depend on the color of the light that illuminates them. Color is in the eye of the beholder and is provoked by the frequencies of light emitted or reflected by things. We see

More information

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 25. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 25 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Unit Test Strand: The Wave Nature of Light

Unit Test Strand: The Wave Nature of Light 22K 11T 2A 3C Unit Test Strand: The Wave Nature of Light Expectations: E1. analyse technologies that use the wave nature of light, and assess their impact on society and the environment; E2. investigate,

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Light waves interact with materials.

Light waves interact with materials. Page of 7 KEY CONCEPT Light waves interact with materials. BEFORE, you learned Mechanical waves respond to a change in medium Visible light is made up of EM waves EM waves interact with a new medium in

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions designed to see whether you understand the main concepts in the chapter. 1. Red laser light shines on a double slit, creating a pattern

More information

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17 Light and Color Lesson 9 Fill in the blanks Reading Skill: Compare and Contrast - questions 3, 17 How Do You Get Color From White Light? 1 A(n) is a triangular piece of polished glass that refracts white

More information

Match the correct description with the correct term. Write the letter in the space provided.

Match the correct description with the correct term. Write the letter in the space provided. Skills Worksheet Directed Reading A Section: Interactions of Light with Matter REFLECTION Write the letter of the correct answer in the space provided. 1. What happens when light travels through a material

More information

Chapter 24. The Wave Nature of Light

Chapter 24. The Wave Nature of Light Ch-24-1 Chapter 24 The Wave Nature of Light Questions 1. Does Huygens principle apply to sound waves? To water waves? Explain how Huygens principle makes sense for water waves, where each point vibrates

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electromagnetic Waves Lecture 14 23.1 The Discovery of Electromagnetic Waves 23.2 Properties of Electromagnetic Waves 23.3 Electromagnetic Waves Carry Energy and Momentum 23.4 Types of Electromagnetic

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it.

Subtractive because upon reflection from a surface, some wavelengths are absorbed from the white light and subtracted from it. 4/21 Chapter 27 Color Each wavelength in the visible part of the spectrum produces a different color. Additive color scheme RGB Red Green Blue Any color can be produced by adding the appropriate amounts

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

Section 18.3 Behavior of Light

Section 18.3 Behavior of Light Light and Materials When light hits an object it can be Section 18.3 Behavior of Light Light and Materials Objects can be classified as Transparent Translucent Opaque Transparent, Translucent, Opaque Transparent

More information

24-12 Scattering of Light by the Atmosphere

24-12 Scattering of Light by the Atmosphere Unpolarized sunlight Light scattered at right angles is plane-polarized 02 or N2 molecule Observer \^f FIGURE 24-54 Unpolarized sunlight scattered by molecules of the air. An observer at right angles sees

More information

Light. Light: Rainbow colors: F. Y. I. A type of energy that travels as a wave Light Experiments.notebook. May 19, 2015

Light. Light: Rainbow colors: F. Y. I. A type of energy that travels as a wave Light Experiments.notebook. May 19, 2015 Light Light: A type of energy that travels as a wave F. Y. I. Light is different from other kinds of waves. Other kinds of waves, such as sound waves must travel through matter. Light waves do not need

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Chapter 29: Light Waves

Chapter 29: Light Waves Lecture Outline Chapter 29: Light Waves This lecture will help you understand: Huygens' Principle Diffraction Superposition and Interference Polarization Holography Huygens' Principle Throw a rock in a

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

Electromagnetic Waves

Electromagnetic Waves Slide 1 / 125 Slide 2 / 125 Electromagnetic Waves www.njctl.org Table of Contents Slide 3 / 125 Click on the topic to go to that section An Abridged "History" of Light Reflection, Refraction and ispersion

More information

CHAPTER 26: PROPERTIES OF LIGHT 02/19/18

CHAPTER 26: PROPERTIES OF LIGHT 02/19/18 CHAPTER 26: PROPERTIES OF LIGHT 02/19/18 ELECTROMAGNETIC WAVES At the end of last chapter, there was a more general statement of Faraday s Law: o Faraday s Law: An electric field is created in any region

More information

Electromagnetic (Light) Waves Electromagnetic Waves

Electromagnetic (Light) Waves Electromagnetic Waves Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 27: COLOR This lecture will help you understand: Color in Our World Selective Reflection Selective Transmission Mixing Colored Light Mixing Colored Pigments Why

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 13 13 Table of Contents Unit 3: Energy On the Move Chapter 13: Light 13.1: The Behavior of Light 13.2: Light and Color 13.3: Producing Light 13.4: Using Light 13.1 The Behavior of Light Light and Matter

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Light In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Part 1 Electromagnetic Spectrum and Visible Light Remember radio waves are long and gamma rays

More information

Answers to Chapter 11

Answers to Chapter 11 Answers to Chapter 11 11.1 What is Light? #1 Radiation (light) does NOT need a medium to travel through. Conduction needs a solid medium and convection needs liquid or gas medium to travel through. #2

More information

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced

Announcements. EM Induction. Faraday s Law 4/24/15. Why is current induced? EM Induction: Current is Induced Announcements Today: Induction & transformers Wednesday: Finish transformers, start light Reading: review Fig. 26.3 and Fig. 26.8 Recall: N/S poles (opposites attract) Moving electrical charges produce

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

Anastacia.kudinova s Light

Anastacia.kudinova s Light CK-12 FOUNDATION Anastacia.kudinova s Light Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Dann Dann To access a customizable version of this book, as well as other

More information

AP B Webreview ch 24 diffraction and interference

AP B Webreview ch 24 diffraction and interference Name: Class: _ Date: _ AP B Webreview ch 24 diffraction and interference Multiple Choice Identify the choice that best completes the statement or answers the question.. In order to produce a sustained

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

Physical Science Physics

Physical Science Physics Name Physical Science Physics C/By Due Date Code Period Earned Points PSP 5W4 Seeing Problems (divide by 11) Multiple Choice Identify the letter of the choice that best completes the statement or answers

More information

Light, Color, Spectra 05/30/2006. Lecture 17 1

Light, Color, Spectra 05/30/2006. Lecture 17 1 What do we see? Light Our eyes can t t detect intrinsic light from objects (mostly infrared), unless they get red hot The light we see is from the sun or from artificial light When we see objects, we see

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING

Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING OBJECTIVES: 1. Define natural and artificial lighting. 2. Use of fluorescent and filament lamps. 3. Investigation of white light and

More information

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C

2. Which pair of lettered points lie on the same nodal line? a) v and t b) x and r c) x and w d) u and y e) v and u 2 ANS: C 1 Conceptual Questions 1. Which pair of lettered points lie on the central maximum? a) v and t b) x and z c) x and w d) u and y e) v and u 1 ANS: E The central maximum lies on the perpendicular bisector.

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

KEY CONCEPTS AND PROCESS SKILLS

KEY CONCEPTS AND PROCESS SKILLS Comparing Colors 94 40- to 1 50-minute session ACTIVITY OVERVIEW L A B O R AT O R Y Students explore light by investigating the colors of the visible spectrum. They first observe how a diffraction grating

More information

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements Announcements 1. This week's topic will be COLOR VISION. DEPTH PERCEPTION will be covered next week. 2. All slides (and my notes for each slide) will be posted on the class web page at the end of the week.

More information

Chapter 28 Physical Optics: Interference and Diffraction

Chapter 28 Physical Optics: Interference and Diffraction Chapter 28 Physical Optics: Interference and Diffraction 1 Overview of Chapter 28 Superposition and Interference Young s Two-Slit Experiment Interference in Reflected Waves Diffraction Resolution Diffraction

More information

The topics are listed below not exactly in the same order as they were presented in class but all relevant topics are on the list!

The topics are listed below not exactly in the same order as they were presented in class but all relevant topics are on the list! Ph332, Fall 2018 Study guide for the final exam, Part Two: (material lectured before the Nov. 1 midterm test, but not used in that test, and the material lectured after the Nov. 1 midterm test.) The final

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

Ch 16: Light. Do you see what I see?

Ch 16: Light. Do you see what I see? Ch 16: Light Do you see what I see? Light Fundamentals What is light? How do we see? A stream of particles emitted by a source? Wavelike behavior as it bends and reflects Today we know light is dual in

More information

Optics looks at the properties and behaviour of light!

Optics looks at the properties and behaviour of light! Optics looks at the properties and behaviour of light! Chapter 4: Wave Model of Light Past Theories Pythagoras believed that light consisted of beams made up of tiny particles that carried information

More information

Light and Reflection. Chapter 13 Page 444

Light and Reflection. Chapter 13 Page 444 Light and Reflection Chapter 13 Page 444 Characteristics of Light Let s talk about the electromagnetic spectrum. This includes visible light. What looks like white light can be split into many different

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Reflection and Color

Reflection and Color CHAPTER 16 13 SECTION Sound and Light Reflection and Color KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it hits an object? Why can you see an image in a?

More information

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET.

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Optics B Science Olympiad North Regional Tournament at the University of Florida 1 DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Part I: General Body Knowledge Questions 2 1) (3 PTS) For much of the

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Teacher s Resource. 2. The student will see the images reversed left to right.

Teacher s Resource. 2. The student will see the images reversed left to right. Teacher s Resource Answer Booklet Reflection of Light With a Plane (Flat) Mirror Trace a Star Page 16 1. The individual students will complete the activity with varying degrees of difficulty. 2. The student

More information

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages

If you forgot about the homework due today: textbook page 542 data analysis questions, I'll collect them tomorrow along with binder pages Light & the Electromagnetic Spectrum Electromagnetic Waves Electromagnetic waves > transverse waves consisting of changing electric & magnetic fields; carry energy from place to place; differ from mechanical

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola LIGHT AND LIGHTING FUNDAMENTALS Prepared by Engr. John Paul Timola LIGHT a form of radiant energy from natural sources and artificial sources. travels in the form of an electromagnetic wave, so it has

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134 PHY 112: Light, Color and Vision Lecture 26 Prof. Clark McGrew Physics D 134 Finalities Final: Thursday May 19, 2:15 to 4:45 pm ESS 079 (this room) Lecture 26 PHY 112 Lecture 1 Introductory Chapters Chapters

More information