T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland

Size: px
Start display at page:

Download "T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland"

Transcription

1 1 MOSFET Modeling for Ultra Low-Power RF Design T. Taris, H. Kraïmia, JB. Begueret, Y. Deval Bordeaux, France

2 2 Context More services in Environment survey Energy management Process optimisation Aging follow up Human to machine interaction Wireless Sensor Networks Item tracking Localisation service Health monitoring 2

3 3 Challenges Energy management Context Environment survey More services in Process optimisation Aging follow up Wireless Sensor Networks Localisation service Human to machine interaction Low cost Item tracking Small form factor Health monitoring Low power Price/node <1$ 1 cm 3 Run 10 years! 3

4 4 Challenges Energy management Context Environment survey More services in Process optimisation Aging follow up Wireless Sensor Networks Localisation service Human to machine interaction Low cost Item tracking Small form factor Health monitoring Low power Price/node <1$ 1 cm 3 Run 10 years! 4

5 5 Context WSN Node Basics Large Power Consumption Data processing Computation Memory writing/reading Radio module Data broadcasting Communications Radio Data processing Power Unit Sensor/ Actuator Sensor/Actuator Environment Interface Power Unit Supply Energy Management/Storage

6 6 Context Low Duty Cycle WSN Node Basics Large Power Consumption Rx Tx WSN node in Rx mode most of the time Radio module Data Sensor/ Radio Sensor/Actuator processing Power Unit Actuator Data broadcasting Environment Interface Communications Power Unit Supply Energy Management/Storage

7 7 Context Radio Circuit/System Considerations Various approaches to improve the power saving in Radio LNC LNA Transistor & System Level RF Compact RF Demodulator BB Data SOM Mixer LO Compact RFFE Demodulators LNA Transistor Level Building Block Combination RF rmances Perfor Mixer LO Targeted Area Demod Concept Standalone Building Blocks Optimum biasing Circuit technique Compact RFFE LNC, SOM. ULP LNA, Mixer, System Level Power Consumption 7

8 8 Context Radio Circuit/System Considerations Various approaches to improve the power saving in Radio LNC LNA Transistor & System Level RF Compact RF Demodulator BB Data SOM Mixer LO Compact RFFE Demodulators LNA Transistor Level Building Block Combination RF rmances Perfor Mixer LO Targeted Area Demod Concept Standalone Building Blocks Optimum biasing Circuit technique Compact RFFE LNC, SOM. ULP LNA, Mixer, System Level Power Consumption 8

9 9 OUTLINE Context From analog to RF Metric Low Noise Amplifier Implementation Conclusions & Perspectives 9

10 1 0 From analog to RF Metric Low Power Analog Amplifiers Voltage Amplifier v in A v BW v out GBW A v. BW Figure Of Merit for Low Power amplifier FOM LPamplifier GBW I D 10

11 1 1 Voltage Amplifier From analog to RF Metric Low Power Analog Amplifiers Configurations v in v out v out or A v BW vin + - I d C L vin + - R s C gs I d v out GBW A v. BW GBW gm 2. C L g 2. C m GBW. gs r R ds S Figure Of Merit for Low Power amplifier FOM LPamplifier GBW I D g C. I m D g I m D 11

12 1 2 From analog to RF Metric Low Power Analog Metric Figure Of Merit for Low Power Analog Maximum in WI region Transductor gain of the device FOMLP ana Current log g I m D 1 ) gm/id(v ,00 0,20 0,40 0,60 0,80 1,00 consumption Weak Inversion Strong Inversion Vgs(V) Moderate Inversion FOM LPanalog is maximum in WI region 12

13 1 3 From analog to RF Metric Low Power RF Circuits RF Building Blocks LNA G V IP3 NF CP1 Mixer IP3 LO>IF G V LO>RF Oscillator BW PN P out FOM LNA FOM mixer FOM osc System Level FOM RFBlock 13

14 1 4 From analog to RF Metric Low Power RF Circuits RF Building Blocks Topologies / Architectures LNA G V IP3 NF CP1 Mixer IP3 LO>IF G V LO>RF Oscillator BW PN P out Single or diff. Active or Passive Harmonic or Relax Cascode Common gate Common source Single device Fully or Single balanced Cross Coupled LC RC oscillator Ring oscillator FOM LNA FOM mixer FOM osc System Level FOM RFBlock gm? I D Transistor Level 14

15 1 5 From analog to RF Metric Low Power RF LNA Low Noise Amplifier Topologies / Architectures input G V P cons NF IP3 RF output Most important characteristics A large voltage gain G v at f RF A low noise figure NF at f RF Figure Of Merit for Low Power LNA G. f FOM V RF LPLNA ( F 1 ). Pcons System Level Transistor Level 15

16 1 6 From analog to RF Metric Low Power RF LNA Low Noise Amplifier Topologies / Architectures input G V P cons NF IP3 RF output Most important characteristics v in I D v out v out I D v in v in I D v out A large voltage gain G v at f RF Common Source Common Gate Cascode A low noise figure NF at f RF Figure Of Merit for Low Power LNA G. f FOM V RF LPLNA ( F 1 ). Pcons System Level Transistor Level 16

17 1 7 From analog to RF Metric Low Power RF LNA Low Noise Amplifier Common Source Analysis I D v out input G V P cons NF IP3 RF output vin + - R s Cgs i ² ( f ) 4kT. d g m Most important characteristics A large voltage gain G v at f RF A low noise figure NF at f RF Figure Of Merit for Low Power LNA G V MOS 1 g jc m gs Pcons I D 1 Fmin 1 MOS g. R m gm R C R s s gs RF with f T gm 2. C gs G. f FOM V RF LPLNA ( F 1 ). Pcons System Level gm. ft FOM LPLNA MOS ID Transistor Level 17

18 1 8 From analog to RF Metric Low Power RF LNA Figure Of Merit for low power LNA Maximum in MI region Transductor gain of the device gm. f FOMLP LNA I D Cutoff frequency of the device T (S.THz/A) 0,60 0,50 0,40 0,30 0, ,10 Current 0,00 0,20 0,40 0,60 0,80 1,00 consumption Weak Inversion Strong Inversion Moderate Inversion FOM LPLNA is maximum in MI region 18

19 1 9 OUTLINE Context From analog to RF Metric Low Noise Amplifier Implementation Conclusions & Perspectives 19

20 2 0 Ultra Low Power LNA Forward Body Biased Cascode LNA 2.4 GHz LNA - CMOS 0.13µm 440µW@0.5V L pk C m2 M V C m3 out I d =880µA 10dB gain S21(dB) S22(dB) S11(dB) -25 1,50 2,00 2,50 3,00 3,50 L g M1 0.3V Freq(GHz) in R pol 8 NF(dB) Nfmin(dB) V pol L s 3.4dB NF MOS device in MI region to maximise FOM LPLNA 0 Bulk forward biasing to reduce V th 1,00 1,50 2,00 2,50 3,00 3,50 4,00 Freq(GHz) 20

21 GHz LNA - CMOS 0.13µm Ultra Low Power LNA L pk C m2 M V out C m3 Forward Body Biased Cascode LNA Gain & NF vs Power Consumption [db] 8 6 S 21 NF i d 4 v in in L g M1 0.3V 2 P cons [µw] R pol L s V pol Limited value on Si Peaking Load 21

22 GHz LNA - CMOS 0.13µm Ultra Low Power LNA L pk C m2 M V out C m3 Forward Body Biased Cascode LNA Gain & NF vs Power Consumption [db] 8 6 S 21 NF i d 4 v in in L g M1 0.3V 2 P cons [µw] R pol L s V pol Only 6.8 db@250µw! Limited value on Si Peaking Load 22

23 GHz LNA - CMOS 0.13µm Ultra Low Power LNA L pk C m2 M V out C m3 Forward Body Biased Cascode LNA Gain & NF vs Power Consumption [db] 8 6 S 21 NF i d 4 v in in L g M1 0.3V 2 P cons [µw] R pol L s f T decrease V pol i v d in f f T R s 1 1(2fR s )² Inductive Degeneration Only 6.8 db@250µw! Limited value on Si Peaking Load 23

24 GHz LNA - CMOS 0.13µm Ultra Low Power LNA L pk C m2 M V out C m3 Forward Body Biased Cascode LNA Gain & NF vs Power Consumption [db] 8 6 S 21 NF i d 4 v in in L g M1 0.3V 2 P cons [µw] R pol L s f T decrease V pol i v d in f f T R s 1 1(2fR Limited value on Si s )² Inductive Degeneration Peaking Load Only 6.8 db@250µw! Strong Inversion Techniques 24

25 2 5 Ultra Low Power LNA Select the best suited topology To compensate for the low g m in MI region I I bias M P I d M P I d M P I d out R F MN in R F MNout OR? in R F out in M N in M N M N Single Transistor Stage (STS) Self Biased Inverter (SBI) active load configurations are preferred! 25

26 2 6 Ultra Low Power LNA Select the best suited topology Comparison of the Gain BandWidth (GBW) product 30 Gain (d db) Self Biased Inverter (SBI) 0 1G Single Transistor Stage (STS) GBW STS 10G Frequency (Hz) 100G GBW SBI the one of self biased inverter is the largest! 26

27 2 7 Ultra Low Power LNA Current reuse LNA 24GH 2.4 GHz LNA - CMOS 0.13µm 0.6V VCC VDD 04V 0.4V I d 900µm L pk R F M 2 R F V pol2 C m2 out in out in L M C g C 3 m3 l C m1 M 1 700µm C L g L pk C tune L g V pol1 LNA core buffer Transistors are in MI region to maximise FOM LPLNA 27

28 2 8 Ultra Low Power LNA Current reuse LNA 24GH 2.4 GHz LNA - CMOS 0.13µm 100µW@0.5V 0.6V 15 VCC VDD 15dB gain V I d 5 L pk (db) 0 S 21 R F M 2 V pol2 C m2 out S 11 in L g C l M 1 C m1 C tune M 3 C m3 4.8dB NF -15 6,5 NF@0.6V NF@0.5V NF@0.4V freq (GHz) V pol1 LNA core buffer Noise Fugure (db) ,5 5 4, ,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 freq (GHz) 28

29 2 9 Ultra Low Power LNA Current reuse LNA 24GH 2.4 GHz LNA - CMOS 0.13µm 100µW@0.5V in L g VCC 0.4V R F C l 0.6V I d M 2 M 1 C m1 V pol2 VDD L pk M 3 C m2 out C m3 [db] Gain & NF vs Power Consumption C tune S 21 NF P cons [µw] V pol1 Still 13.4dB@60µW! 29

30 3 0 Ultra Low Power LNA Current reuse LNA 24GH 2.4 GHz LNA - CMOS 0.13µm 100µW@0.5V in L g VCC 0.4V R F C l 0.6V I d M 2 M 1 C m1 V pol2 VDD L pk M 3 C m2 out C m3 [db] Gain & NF vs Power Consumption C tune S 21 NF P cons [µw] V pol1 f T decrease Still 13.4dB@60µW! i. d C C tune gst Capacitive feedback v in C gdt 2 30

31 3 1 Ultra Low Power LNA Current reuse LNA 24GH 2.4 GHz LNA - CMOS 0.13µm 100µW@0.5V in L g VCC 0.4V R F C l 0.6V I d M 2 M 1 C m1 V pol2 VDD L pk M 3 C m2 out C m3 [db] Gain & NF vs Power Consumption C tune S 21 NF P cons [µw] V pol1 f T decrease Still 13.4dB@60µW! id Ctune v in C gdt C gst. 2 Capacitive feedback Suited for MI operation 31

32 3 2 Ultra Low Power LNA Comparison with the state of art 30 FOM LNA [13] 1 [14] Gv IIP abs 3 f mw RF FOM LNA [11] [12] 1 ( F 1) P abs cons mw [12] 2 GHz P DC (µw) [10] A. Shameli A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback, IEEE ESSCIRC, Montreux, Switzerland, Sep. 2006, pp [11] B. G. Perumana, A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier, IEEE MiWCL, Vol. 15, N. 6, pp , June [12] H. Lee, A 3 GHz subthreshold CMOS low noise amplifier, IEEE RFIC Symposium, San Francisco, CA, USA, June 2006, pp [13] V. Aaron, «A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band, IEEE MTT, Vol. 56, N 2, pp , feb [14] J. Li, S. Hassan A 0.7 V 850µW CMOS LNA for UHF RFID reader, MOTL, Vol. 52, N 12, pp , dec [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee A 1.5 V, 140 µa CMOS Ultra Low Power Common Gate LNA, IEEE RFIC, Baltimore, USA, June 2011, pp

33 3 3 Ultra Low Power LNA Comparison with the state of art This work Cascode FOM LNA 2 1 [13] 1 (g m.f T /I D ) max 10 1 [15] [14] G [10] v IIP abs 3 f mw RF FOM LNA [11] [12] 1 ( F 1) P abs cons mw [12] 2 GHz P DC (µw) [10] A. Shameli A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback, IEEE ESSCIRC, Montreux, Switzerland, Sep. 2006, pp [11] B. G. Perumana, A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier, IEEE MiWCL, Vol. 15, N. 6, pp , June [12] H. Lee, A 3 GHz subthreshold CMOS low noise amplifier, IEEE RFIC Symposium,, San Francisco, CA, USA, June 2006, pp [13] V. Aaron, «A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band, IEEE MTT, Vol. 56, N 2, pp , feb [14] J. Li, S. Hassan A 0.7 V 850µW CMOS LNA for UHF RFID reader, MOTL, Vol. 52, N 12, pp , dec [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee A 1.5 V, 140 µa CMOS Ultra Low Power Common Gate LNA, IEEE RFIC, Baltimore, USA, June 2011, pp

34 3 4 Ultra Low Power LNA Comparison with the state of art This work SBI This work Cascode FOM LNA 30 Dedicated MI design Circuit technique 1 (g m.f T /I D ) max [13] 2 2 [13] [15] [14] G [10] v IIP abs 3 f mw RF FOM LNA [11] [12] 1 ( F 1) P abs cons mw [12] 2 GHz P DC (µw) [10] A. Shameli A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback, IEEE ESSCIRC, Montreux, Switzerland, Sep. 2006, pp [11] B. G. Perumana, A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier, IEEE MiWCL, Vol. 15, N. 6, pp , June [12] H. Lee, A 3 GHz subthreshold CMOS low noise amplifier, IEEE RFIC Symposium,, San Francisco, CA, USA, June 2006, pp [13] V. Aaron, «A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band, IEEE MTT, Vol. 56, N 2, pp , feb [14] J. Li, S. Hassan A 0.7 V 850µW CMOS LNA for UHF RFID reader, MOTL, Vol. 52, N 12, pp , dec [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee A 1.5 V, 140 µa CMOS Ultra Low Power Common Gate LNA, IEEE RFIC, Baltimore, USA, June 2011, pp

35 3 5 OUTLINE Context From analog to RF Metric Low Noise Amplifier Implementation Conclusions & Perspectives 35

36 3 6 Case of study LNA Conclusions & Perspectives RF Building Block Design Methodology Circuit performances Capacitive divider RF Circuit technique Optimize FOM vs Power FOM circuit G. f FOM V RF LPLNA ( F 1 ). Pcons Self Biased Inverter Best suited topology FOM transistor g m. T FOM LPLNA MOS ID f Active Device biasing MI region 36

37 3 7 Conclusions & Perspectives RF Building Block Design Methodology To do Mixer, Oscillator Circuit performances 65nm 28nm RF Circuit technique Optimize FOM vs Power FOM circuit Best suited topology FOM transistor Active Device biasing 37

38 3 8 Conclusions & Perspectives RF CMOS biasing in future nodes FOM RFblock@transistor versus technology scaling? FOM LPLNA =g m.f T /I D FOM LPLNA =g m.f T /I D 28nm 28nm???? 130nm OR?? 130nm WI MI SI WI MI SI A matter of Device Modelling 38

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection Hamid Nejati and Mahmood Barangi 4/14/2010 Outline Introduction System level block diagram Compressive

More information

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation 2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement

More information

A 2.4GHz Cascode CMOS Low Noise Amplifier

A 2.4GHz Cascode CMOS Low Noise Amplifier A 2.4GHz Cascode CMOS Low Noise Amplifier Gustavo Campos Martins, Fernando Rangel de Sousa Federal University of Santa Catarina (UFSC) Integrated Circuits Laboratory (LCI) August 31, 2012 G. C. Martins,

More information

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016 FD-SOI FOR RF IC DESIGN SITRI LETI Workshop Mercier Eric 08 september 2016 UTBB 28 nm FD-SOI : RF DIRECT BENEFITS (1/2) 3 back-end options available Routing possible on the AluCap level no restriction

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology Ch. Anandini 1, Ram Kumar 2, F. A. Talukdar 3 1,2,3 Department of Electronics & Communication Engineering,

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G A 15 GHz and a 2 GHz low noise amplifier in 9 nm RF CMOS Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G Published in: Topical Meeting on Silicon Monolithic

More information

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS A 24GHz Quadrature Receiver Frontend in 90nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2009 IEEE Asia Pacific Microwave Conference Published: 20090101 Link to publication Citation for

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

Design of LNA and MIXER for CMOS Receiver Front ends

Design of LNA and MIXER for CMOS Receiver Front ends Design of LNA and MIXER for CMOS Receiver Front ends R.K.Sreelakshmi and D.Sharath Babu Rao 2 PG Scholar, Dept of ECE (VLSI&ES), GPREC (Autonomous), JNTUA, Kurnool, AP, India. 2 Assistant Professor, Dept

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain Michael Gordon, Sorin P. Voinigescu University of Toronto Toronto, Ontario, Canada ESSCIRC 2004, Leuven, Belgium Outline Motivation

More information

A GSM Band Low-Power LNA 1. LNA Schematic

A GSM Band Low-Power LNA 1. LNA Schematic A GSM Band Low-Power LNA 1. LNA Schematic Fig1.1 Schematic of the Designed LNA 2. Design Summary Specification Required Simulation Results Peak S21 (Gain) > 10dB >11 db 3dB Bandwidth > 200MHz (

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF Ning Li 1, Kenichi Okada 1, Toshihide Suzuki 2, Tatsuya Hirose 2 and Akira 1 1. Tokyo Institute of Technology, Japan 2. Advanced

More information

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Abstract A 5GHz low power consumption LNA has been designed here for the receiver front end using 90nm CMOS technology.

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

CIRF Circuit Intégré Radio Fréquence Low Noise Amplifier. Hassan Aboushady Université Paris VI

CIRF Circuit Intégré Radio Fréquence Low Noise Amplifier. Hassan Aboushady Université Paris VI CIRF Circuit Intégré Radio Fréquence Low Noise Amplifier Hassan Aboushady Université Paris VI Multidisciplinarity of radio design H. Aboushady University of Paris VI References M. Perrott, High Speed Communication

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS International Journal of Electrical and Electronics Engineering Research Vol.1, Issue 1 (2011) 41-56 TJPRC Pvt. Ltd., DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS M.

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM Progress In Electromagnetics Research C, Vol. 9, 25 34, 2009 DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM S.-K. Wong and F. Kung Faculty of Engineering Multimedia University

More information

Design and power optimization of CMOS RF blocks operating in the moderate inversion region

Design and power optimization of CMOS RF blocks operating in the moderate inversion region Design and power optimization of CMOS RF blocks operating in the moderate inversion region Leonardo Barboni, Rafaella Fiorelli, Fernando Silveira Instituto de Ingeniería Eléctrica Facultad de Ingeniería

More information

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Multimode 2.4 GHz Front-End with Tunable g m -C Filter Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010 Overview Introduction Complete System LNA Mixer Gm-C filter Conclusion Introduction

More information

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT Progress In Electromagnetics Research C, Vol. 17, 29 38, 2010 LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT C.-P. Chang, W.-C. Chien, C.-C.

More information

Quiz2: Mixer and VCO Design

Quiz2: Mixer and VCO Design Quiz2: Mixer and VCO Design Fei Sun and Hao Zhong 1 Question1 - Mixer Design 1.1 Design Criteria According to the specifications described in the problem, we can get the design criteria for mixer design:

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer Australian Journal of Basic and Applied Sciences, 5(12): 2595-2599, 2011 ISSN 1991-8178 Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer 1 Alishir Moradikordalivand, 2 Sepideh Ebrahimi

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

A CMOS GHz UWB LNA Employing Modified Derivative Superposition Method

A CMOS GHz UWB LNA Employing Modified Derivative Superposition Method Circuits and Systems, 03, 4, 33-37 http://dx.doi.org/0.436/cs.03.43044 Published Online July 03 (http://www.scirp.org/journal/cs) A 3. - 0.6 GHz UWB LNA Employing Modified Derivative Superposition Method

More information

CIRF Circuit Intégré Radio Fréquence. Low Noise Amplifier. Delaram Haghighitalab Hassan Aboushady Université Paris VI

CIRF Circuit Intégré Radio Fréquence. Low Noise Amplifier. Delaram Haghighitalab Hassan Aboushady Université Paris VI CIRF Circuit Intégré Radio Fréquence Low Noise Amplifier Delaram Haghighitalab Hassan Aboushady Université Paris VI Multidisciplinarity of radio design H. Aboushady University of Paris VI References M.

More information

2.Circuits Design 2.1 Proposed balun LNA topology

2.Circuits Design 2.1 Proposed balun LNA topology 3rd International Conference on Multimedia Technology(ICMT 013) Design of 500MHz Wideband RF Front-end Zhengqing Liu, Zhiqun Li + Institute of RF- & OE-ICs, Southeast University, Nanjing, 10096; School

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d Applied Mechanics and Materials Online: 2013-06-27 ISSN: 1662-7482, Vol. 329, pp 416-420 doi:10.4028/www.scientific.net/amm.329.416 2013 Trans Tech Publications, Switzerland A low-if 2.4 GHz Integrated

More information

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.4, DECEMBER, 008 83 Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs Tae-Sung Kim*, Seong-Kyun Kim*, Jin-Sung

More information

Measurement and Modeling of CMOS Devices in Short Millimeter Wave. Minoru Fujishima

Measurement and Modeling of CMOS Devices in Short Millimeter Wave. Minoru Fujishima Measurement and Modeling of CMOS Devices in Short Millimeter Wave Minoru Fujishima Our position We are circuit designers. Our final target is not device modeling, but chip demonstration. Provided device

More information

Wireless Energy for Battery-less Sensors

Wireless Energy for Battery-less Sensors Wireless Energy for Battery-less Sensors Hao Gao Mixed-Signal Microelectronics Outline System of Wireless Power Transfer (WPT) RF Wireless Power Transfer RF Wireless Power Transfer Ultra Low Power sions

More information

Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth

Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth S.P. Voinigescu, R. Beerkens*, T.O. Dickson, and T. Chalvatzis University of Toronto *STMicroelectronics,

More information

IC design for wireless system

IC design for wireless system IC design for wireless system Lecture 6 Dr. Ahmed H. Madian Ahmed.madian@guc.edu.eg 1 outlines Introduction to mixers Mixer metrics Mixer topologies Mixer performance analysis Mixer design issues Dr. Ahmed

More information

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November -, 6 5 A 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in.8µ

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

System-on-Chip Design Beyond 50 GHz

System-on-Chip Design Beyond 50 GHz System-on-Chip Design Beyond 50 GHz Sorin Voinigescu, Michael Gordon, Chihou Lee, Terry Yao, Alain Mangan, and Ken Yau University of Toronto July 20, 2005 1 Outline Motivation Optimal sizing of active

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

CMOS Design of Wideband Inductor-Less LNA

CMOS Design of Wideband Inductor-Less LNA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 8, Issue 3, Ver. I (May.-June. 2018), PP 25-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org CMOS Design of Wideband Inductor-Less

More information

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India Quadrature Generation Techniques in CMOS Relaxation Oscillators S. Aniruddhan Indian Institute of Technology Madras Chennai, India Outline Introduction & Motivation Quadrature Relaxation Oscillators (QRXO)

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END Volume 117 No. 16 2017, 685-694 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END 1 S.Manjula,

More information

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER Progress In Electromagnetics Research C, Vol. 7, 183 191, 2009 HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER A. Dorafshan and M. Soleimani Electrical Engineering Department Iran

More information

A 3.5 GHz Low Noise, High Gain Narrow Band Differential Low Noise Amplifier Design for Wi-MAX Applications

A 3.5 GHz Low Noise, High Gain Narrow Band Differential Low Noise Amplifier Design for Wi-MAX Applications International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 4 (2017) pp. 505-516 Research India Publications http://www.ripublication.com A 3.5 GHz Low Noise, High Gain Narrow

More information

A 2.4-Ghz Differential Low-noise Amplifiers using 0.18um CMOS Technology

A 2.4-Ghz Differential Low-noise Amplifiers using 0.18um CMOS Technology International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 3 (2014), pp. 207-212 International Research Publication House http://www.irphouse.com A 2.4-Ghz Differential

More information

A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns

A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns A Volterra Series Approach for the Design of Low-Voltage CG-CS Active Baluns Shan He and Carlos E. Saavedra Gigahertz Integrated Circuits Group Department of Electrical and Computer Engineering Queen s

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications M. Ikram Malek, Suman Saini National Institute of technology, Kurukshetra Kurukshetra, India Abstract Many architectures

More information

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO 82 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 82-86 (213) DOI: 1.6119/JMST-11-123-1 A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz MOS VO Yao-hian Lin, Mei-Ling Yeh, and hung-heng hang

More information

CMOS LNA Design for Ultra Wide Band - Review

CMOS LNA Design for Ultra Wide Band - Review International Journal of Innovation and Scientific Research ISSN 235-804 Vol. No. 2 Nov. 204, pp. 356-362 204 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/ CMOS LNA

More information

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

Design and Simulation of a Low Power RF Front-End for Short Range Outdoor Applications

Design and Simulation of a Low Power RF Front-End for Short Range Outdoor Applications Vol. 5(18) Special Issue, Dec. 2015, PP. 2571-2576 Design and Simulation of a Low Power RF Front-End for Short Range Outdoor Applications Hamid Yadegar Amin, Farshad Piri and Ece Olcay Güneş Dept. of Electronics

More information

7. Low-Noise Amplifier Design

7. Low-Noise Amplifier Design 7. Low-Noise Amplifier Design 1 Outline Low noise amplifier overview Tuned LNA design methodology Tuned LNA frequency scaling and porting Broadband low noise amplifier design methodology 2 7.1 LNA overview

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications*

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* FA 8.2: S. Wu, B. Razavi A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* University of California, Los Angeles, CA This dual-band CMOS receiver for GSM and DCS1800 applications incorporates

More information

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA Texas A&M University Electrical Engineering Department ECEN 665 Laboratory #3: Analysis and Simulation of a CMOS LNA Objectives: To learn the use of s-parameter and periodic steady state (pss) simulation

More information

Cascode Current Mirror for a Variable Gain Stage in a 1.8 GHz Low Noise Amplifier (LNA)

Cascode Current Mirror for a Variable Gain Stage in a 1.8 GHz Low Noise Amplifier (LNA) Cascode Current Mirror for a Variable Gain Stage in a 1.8 GHz Low Noise Amplifier (LNA) 47 Cascode Current Mirror for a Variable Gain Stage in a 1.8 GHz Low Noise Amplifier (LNA) Lini Lee 1, Roslina Mohd

More information

ABabcdfghiejklStanford University

ABabcdfghiejklStanford University Design Methodology or Power-Constrained Low Noise RF Circuits Jung-Suk Goo, Hee-Tae Ahn, Donald J Ladwig, Zhiping Yu, Thomas H Lee, and Robert W Dutton, Stanord University, Stanord CA National Semiconductor,

More information

Analog Circuits and Signal Processing. Series Editors Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada

Analog Circuits and Signal Processing. Series Editors Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada Analog Circuits and Signal Processing Series Editors Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada More information about this series at http://www.springer.com/series/7381 Marco Vigilante

More information

Linearity Enhancement of Folded Cascode LNA for Narrow Band Receiver

Linearity Enhancement of Folded Cascode LNA for Narrow Band Receiver Linearity Enhancement of Folded Cascode LNA for Narrow Band Receiver K.Parimala 1, K.Raju 2 P.G. Student, Department of ECE, GPREC (Autonomous), Kurnool, A.P, India 1 Assistant Professor, Department of

More information

A 25-GHz Differential LC-VCO in 90-nm CMOS

A 25-GHz Differential LC-VCO in 90-nm CMOS A 25-GHz Differential LC-VCO in 90-nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2008 IEEE Asia Pacific Conference on Circuits and Systems Published: 2008-01-01 Link to publication Citation

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

Design of Common Source Low Noise Amplifier with Inductive Source Degeneration in Deep Submicron CMOS Processes

Design of Common Source Low Noise Amplifier with Inductive Source Degeneration in Deep Submicron CMOS Processes Design of Common Source Low Noise Amplifier with Inductive Source Degeneration in Deep Submicron CMOS Processes Kusuma M.S. 1, S. Shanthala 2 and Cyril Prasanna Raj P. 3 1 Research Scholar, Department

More information

ACMOS RF up/down converter would allow a considerable

ACMOS RF up/down converter would allow a considerable IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 7, JULY 1997 1151 Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer P. J. Sullivan, B. A. Xavier, and W. H. Ku Abstract This paper demonstrates

More information

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor A. GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor Najmeh Cheraghi Shirazi, Ebrahim Abiri, and Roozbeh Hamzehyan, ember, IACSIT Abstract By using a differential

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

RF transmitter with Cartesian feedback

RF transmitter with Cartesian feedback UNIVERSITY OF MICHIGAN EECS 522 FINAL PROJECT: RF TRANSMITTER WITH CARTESIAN FEEDBACK 1 RF transmitter with Cartesian feedback Alexandra Holbel, Fu-Pang Hsu, and Chunyang Zhai, University of Michigan Abstract

More information

Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale

Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale M.Sumathi* 1, S.Malarvizhi 2 *1 Research Scholar, Sathyabama University, Chennai -119,Tamilnadu sumagopi206@gmail.com

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

A 3 8 GHz Broadband Low Power Mixer

A 3 8 GHz Broadband Low Power Mixer PIERS ONLINE, VOL. 4, NO. 3, 8 361 A 3 8 GHz Broadband Low Power Mixer Chih-Hau Chen and Christina F. Jou Institute of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan Abstract

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems

Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems Design and Implementation of Power Efficient RF-Frontends for Short Range Radio Systems Dr.-Ing. Lei Liao Infineon Technologies AG Outline Introduction Challenges of Low Power Hardware Design The LPRF

More information

Design of High Gain and Low Noise CMOS Gilbert Cell Mixer for Receiver Front End Design

Design of High Gain and Low Noise CMOS Gilbert Cell Mixer for Receiver Front End Design 2016 International Conference on Information Technology Design of High Gain and Low Noise CMOS Gilbert Cell Mixer for Receiver Front End Design Shasanka Sekhar Rout Department of Electronics & Telecommunication

More information

A 5.2GHz RF Front-End

A 5.2GHz RF Front-End University of Michigan, EECS 522 Final Project, Winter 2011 Natekar, Vasudevan and Viswanath 1 A 5.2GHz RF Front-End Neel Natekar, Vasudha Vasudevan, and Anupam Viswanath, University of Michigan, Ann Arbor.

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology A. Baishya

More information

Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits

Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits IEEE ISCAS 2015 Intro Architecture Circuits Design Results Conclusions 1/27 Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits S. Sutula 1, M. Dei 1, L. Terés 1,2 and F. Serra-Graells

More information

An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer

An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer LETTER IEICE Electronics Express, Vol.14, No.9, 1 11 An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer Donggu Im 1 and Ilku Nam 2a)

More information