j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f

Size: px
Start display at page:

Download "j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f"

Transcription

1 749 a Abbe number 41, 222, 269, 490, 502 aberrations 2, 216 astigmatism 13, 28 axial chromatic aberration 13, 269 axial color 13, 269 chromatic aberrations 2, 13, 187, 268, 280 chromatic difference in magnification 13, 187, 280 coma 13, 24 compensating aberrations 216 distortion 13, 46, 182 ff, 562 fifth-order aberration 50 field curvature 13, 28 high-order aberration 50, 53 ff, 265 lateral chromatic aberration 13, 188, 280 lateral color 13, 188, 280 longitudinal aberration 20 monochromatic aberrations 2, 20, 226 ff preventing aberrations 216 primary aberration 13, 16 ff, 29 primary chromatic aberration 13 ff primary monochromatic aberration 13 ff pupil aberration 10, 45 secondary aberration 50 secondary spectrum 269, 272 f Seidel aberration 13 spherical aberration 13, 21, 64 spherochromatism 13, 283, 508, 515 statistical aberrations 199 thin lens aberration 41 third-order aberration 13 transverse aberration 2 vector theory 555 ff wave aberration 5, 14 ff, 80 ff zonal 216, 231 achromat 231, 248, 260, 269 ff, 339 acutance 168 adaptive method 368 adjustment 652 f bonding tolerances 639 clocking 654, 664 compensator 652, 663 image rotation 703 on-axis astigmatism 654 on-axis coma 656 Aldis theorem 61 anamorphism 549 ff, 562 anamorphotic factor 567 anamorphotic system 141, 544, 566 anastigmatic telescope 572 aplanatic 61, 67 f, 233 condition 61 imaging 59, 67 f, 440 lens 67 f, 234, 402 point 67 f surface 67 ff, 217, 223, 233, 249 aplanatism 61 apochromat 273 apodization 82, 101 area criterion 155 Argand diagram 146 aspherical surface 223 f, 238 ff, 433 ff best location 444 carrier surface for diffractive element 517 centering 636 conic sections 434, 238 constants 440 correction 217 free-form 456 polynomial expansion 436 Seidel coefficients 443, 447 tolerance 613 asphericity 608 assembling 641, 647 astigmatism 13, 28 adjustment 654 binodal astigmatism 560 Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems. Edited by Herbert Gross Copyright 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:

2 750 clocking 654 Coddington equations 552 correction 250 on-axis astigmatism 654 prism tolerances 712 vectorial 559 athermalization 528 atmospheric perturbations 205 autocorrelation function 199, 620 axial chromatic aberration 13 axial color 13, 269 axial gradient 465, 472 axial run-out 645 axis ray 546 b bananicity 184 barrel distortion 184, 265, 562 barrier function 315 f basal ray 546 beam quality 106 bending a lens 217 f, 226 f, 243, 250, 262 bending parameter 41 bi-blaze structure 524 binodal astigmatism 560 blazed diffractive element 500 Bociort s method 362 ff bonding tolerances 639 Bossung plots 171 Brent s method 304 broken contact 266, 285 bubbles 601, 615 c cemented surface 217, 223 centering tolerance 598, 630 ff asphere tolerances 613, 636 bonding tolerances 639 corner cube 710 lens wedge 638 mounting tolerances 640 play mounting error 642 prism angles 690 ff pyramidal error 698 ff rolling angle 644 roof-angle 706 tilt angle 631 centroid 78, 102, 135 chromatic aberrations 2, 13, 187 ff, 268 ff, 489 Abbe number 490 achromat 231, 248, 260,, 269 ff, 339 apochromat 273 axial chromatic aberration 13 axial color 13, 269 chromatic aberrations of grin media 489 chromatic difference in magnification 13, 187, 280 correction 268 ff diffractive hybrid lens 505 lateral chromatic aberration 13, 188, 280 lateral color 13, 188, 280 partial dispersion 217, 222, 274, 491 partial dispersion of a diffractive element 502 primary chromatic aberration 13 ff relative partial dispersion 217, 222, 274 secondary spectrum 269, 272 f spherochromatism 13, 283, 508, 515 superachromat 273 chromatic difference in magnification 13, 187, 280 clocking 654, 664 Coddington equations 552 coherent transfer function 156 coma 13, 24, 558 correction 242 ff elliptical coma 52 inner coma 25 linear coma 51 longitudinal coma 26 on-axis coma 656 outer coma 25 pupil coma aberration 49 sagittal coma 24, 59 f tangential coma 24, 60 vectorial 558 compensator 652, 663 concentric surface 65 conic sections 434 conjugate gradient method 323 conjugate parameter 41 constraints 296, 309 ff, 347 ff contrast 127, 133, 147, 162 control function 300 f convergence 318 corner cube 710 correction 13 aspherical surface 217 astigmatism 250 chromatic 268 ff coma 242 ff curvature 252 ff diffractive element 217, 242 distortion 261 ff field flattener 226, 254 field lens 217, 226, 253

3 751 flattening lens 226, 254 flattening mirror 258 gradient media 217, 242 lens bending 217 f, 226 f, 243, 250, 262 spherical aberration 226 ff strategy 401 symmetry principle 18, 217, 225 f, 249, 262, 280 correlation 181 correlation length 207 cost of tolerances 650 covariance matrix 304 crown glass 231 cylindrical irregularity 608 d damped least squares 320 damping 318, 320 f Davidon-Fletcher-Powell method 324 defocussing 89, 124 ff, 135, 155 depth of focus 124 diameter 111 beam diameter 111 energy diameter 112 entropy diameter 113 Gaussian diameter 112 Petermann diameter 112 threshold diameter 111 diffraction efficiency 519 diffraction orders 498 diffractive elements 224, 495 ff Abbe number 502 aspherical carrier surface 517 athermalization 528 bi-blaze structure 524 blazed diffractive element 500 correction 217, 242 diffraction efficiency 519 diffraction orders 498 equivalent refractive lens 500 Fresnel zone plate 499, 503 f hybrid lens 505 kinoform lens 500 multi-material 524 f multi-order 509, 523 f nearly index match 526 f partial dispersion 502 quantization 535 Seidel coefficients 511 f stray light 521, 542 Sweatt model 501 tolerances 533 ff diopter 5 discretization 207 dispersion ratio 506 displaced energy 178 distortion 13, 46, 182 ff, 562 barrel distortion 184, 265, 562 correction 261 ff keystone distortion 185, 550, 562 line bowing 562 pincushion distortion 184 tv distortion 182 distributions 667 double plane symmetric system 544 Duffieux integral 133, 142 e edge 163 ff edge defect 168 edge steepness 167 edge width 163 Thomas criterion 164 efficiency of diffraction 519 efficiency of variables 305 f elliptical coma 52 encircled energy 175 energy 175 ff displaced energy 178 encircled energy 175 ensquared energy 177 power in the bucket 175 ensquared energy 177 equivalent passband 180 equivalent refractive lens 500 escape function 365 expert system 359 f fidelity 180 field curvature 13, 28, 252 ff correction 252 ff field flattener 226, 254 flattening lens 226, 254 flattening mirror 258 meniscus lens 253 Petzval curvature 30, 221, 252 ff primary image surface curvatures 40 thick meniscus 253 field flattener 226, 254 field lens 217, 226, 253 fifth-order aberration 50 figure tolerance 598 finish error 611 Fisher criterion 130 flattening lens 226, 254

4 752 flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f g Gaussian aberration 189 Gaussian image height 2 Gaussian image plane 2 Gaussian image point 2 genetic optimization 335 ff geometrical spot 77 geometrical transfer function 142 Glatzel s method 368 global explorer 365 ff global optimization methods 330 ff golden section 303 gradient index media 463 ff Abbe number 490 axial gradient 465, 472 chromatic aberrations 489 correction 217, 242 GRADIUM media 222, 482 ff parabolic profile 469 partial dispersion 491 radial gradient 465 Seidel coefficients 475 ff selfoc lens 222, 467 Wood lens 470 gradient of the merit function 296 GRADIUM media 222, 482 ff h head-up display 584 Hektor lens 541 Herschel condition 60 Hessian matrix 296 high frequency range 611 high-order aberration 50, 53 ff, 265 Hopkins factor 153 human eye 152 hybrid lens 505, 515 f i illumination 49, 191 image quality 20 image rotation 703 image tilt 549 immersion 386 imperfection tolerances 615 inclusions 601 inhomogeneity 602 inner coma 25 inner scale 206 inverse tolerancing 685 irregularity 605, 608 ff ISO standard 600 ff isoplanatism 61 Isshiki s method 365 ff j Jacobi matrix 295 k Karman scale 206 keystone distortion 185, 550 kinoform lens 500 Kolmogorov range scale 206 Kuhn-Tucker conditions 312 Kurtosis parameter 104 l lateral chromatic aberration 13, 188, 280 lateral color 13, 188, 280 lens bending 217 f, 226 f, 243, 250, 262 lens wedge 638 Levenberg-Marquardt method 325 f line 170 Bossung plots 171 line resolution 168 line spread function 170 Struve criterion 170 line bowing distortion 562 line resolution 168 linear coma 51 local grating of a diffractive element 496 local minimum 294 longitudinal aberration 20 longitudinal coma 26 longitudinal magnification 60 low Fresnel number 96 lsf 170 m M-square 104 Marechal approximation 91 Marechal criterion 96 Marquardt method 325 f material tolerance 598, 604 meniscus lens 253 merit function 295, 349 f Merte surface 221, 267 f micro-objective lens 382 ff, 542 microroughness 611 mid-frequency range 87, 611

5 753 mirror 224, 258 mirror symmetry 18 ff modulation transfer function 20, 132, 196 moments 78, 102, 107 monochromatic aberrations 2, 20 Monte Carlo simulation 677 Morse index 363 motion blur 208 mounting play error 642 mounting tolerances 640 multi-material diffractive element 524 f multi-order diffractive element 509, 523 ff n nearly index match diffractive element new achromat 260 Newton method 302, 319 nodal points 557 ff non-axisymmetric system 543 ff normal matrix f o object shift 45 objective function 295 oblique spherical sagittal aberration 51 obscuration 46 offense against the sine condition 51, 57 ff on-axis astigmatism 654 on-axis coma 656 OpTaliX 718 ff command line 719, 732 export of data 739 global surface references 737 import of data 739 lens database 720 macro language 719 menu entry 731 surface apertures 728 surface data 724 system data 722 user interface 718 optical path 6 optical path difference 7 optical sine theorem 57 optical transfer function 89 optimization 293 ff adaptive method 368 barrier function 315 f Bociort s method 362 ff Brent s method 304 conjugate gradient method 323 constraints 296, 309 ff, 347 ff control function 300 f damped least squares 320 damping 318, 320 f Davidon-Fletcher-Powell method 324 efficiency of variables 305 f escape function 365 expert system 359 genetic optimization 335 ff Glatzel s method 368 global explorer 365 ff global methods 330 ff Isshiki s method 365 ff Kuhn-Tucker conditions 312 Levenberg-Marquardt method 325 f local minimum 294 merit function 295, 349 f Newton method 302, 319 normal matrix 320 objective function 295 orthogonalization method 326 f over-determined 297 penalty function 313 f rate of convergence 318 saddle point method 362 ff simplex method 327 ff simulated annealing 332 ff, 365 starting solution 353 ff steepest descent method 317 f under-determined 297 weighting factors 295, 305 orthogonalization method 326 f outer coma 25 outer scale 206 over-correction 21, 42 p parasitic light 209 partial dispersion 217, 222, 274 grin media 491 diffractive element 502 peak to valley 81 penalty function 313 f periodicity 18 Petzval curvature 30, 221, 252 ff phase transfer function 144 pincushion distortion 184 ping-pong distribution 669 piston 56 pitch length 467 plane symmetric system 544 play mounting error 642 point resolution 113 point spread function 88, 99, 196 polar coordinates 10

6 754 polarization 209 polychromatic transfer function 141 polynomial aspheres 436 polynomial expansion 80 power combination 217 ff, 231 f, 262 power in the bucket 175 power series expansion 7, 46 power spectral density 86, 200, 619 power splitting 217 ff, 229 f, 246 primary aberration coefficient 13, 16 ff, 29 primary angular aberration 39 primary chromatic aberration 13 ff primary fractional aberration 40 primary image surface curvatures 40 primary longitudinal aberration 40 primary monochromatic aberration 13 ff primary transverse aberration 39 prism tolerances 690 ff production yield 678 pseudo inverse 297 psf 88, 99, 196 pupil 3 meridional pupil section 4 pupil aberration 10, 45 pupil coma aberration 49 pupil grid 3 sagittal pupil section 4 tangential pupil section 4 pyramidal error 698 ff q quantization of a diffractive element 535 quasi symmetry 225, 262 r radial gradient media 465 radius tolerance 606 rank of matrix 298 ray aiming 48 Rayleigh criterion 90, 96, 114, 119 Rayleigh limit 6 reference sphere 6, 82 relative ceiling 179 relative partial dispersion 217, 222, 274 resolution 113 ff, 147 lateral resolution 114 line resolution 168 point resolution 113 resolution chart 157 total resolution 121 retrofocus lens 262 reversed telephoto lens 262 ripples 611 rms value 82 rod lens 465 rolling angle 644 roof-angle 706 rotational symmetry 18 ff Räntsch superposition 674 s saddle point method 362 ff sagittal coma 24, 59 f sagittal field 31 sagittal structures 141 Scheimpflug condition 549 ff Schiefspiegler telescope 544, 571 ff Schmidt mirror 239 Schupmann lens 278 Schwarzschild telescope 440 scratches 615 secondary aberration 50 secondary spectrum 269, 272 Seidel 13 Seidel aberration 13 Seidel coefficient 13, 31, 84, 218, 392 Seidel coefficients of aspheres 443, 447 Seidel coefficients of diffractive elements 511 f Seidel coefficients of gradient media 475 ff Seidel eccentricity 37 Seidel sum 29 ff, 38 selfoc lens 222, 467 sensitivity analysis 671 Shafer approach 355 f Siemens star 159 simplex method 327 ff simulated annealing 332 ff, 365 sine condition 51, 57 ff, 441 singular value decomposition 298 slope tolerance 613 small angle scatter 630 Sparrow criterion 115, 120 spatial frequency 85, 132, 200, 610 spatial moments 102 spherical aberration 13, 21, 64 f, 226 correction 226 ff oblique spherical sagittal aberration 51 spherochromatism 13, 283, 508, 515 spherochromatism 13, 283, 508, 515 spot diagram 3, 77 standard radii 379 standard tolerances 600 starting solution 353 ff statistical aberrations 199 statistical distributions 667

7 755 statistical transfer function 204 steepest descent method 317 f stop position 217 ff, 245, 250, 250, 261 stop shift 36, 217 stray light 162 stray light of a diffractive element 521, 542 Strehl ratio 85, 87 ff, 134, 195 stress birefringence 601 striae 602 structural changes 377, 358 structural content 180 structure function 620 Struve criterion 170 super gaussian profile 104, 108 superachromat 273 surface contribution 34 surface texture 618 surface tolerance 598, 605 ff Sweatt model 501 symmetry parameter 373 symmetry principle 18, 217, 225 f, 249, 262, 280 t tangent condition 46 tangential coma 24, 60 tangential field 31 tangential structures 141 Tatarski scale 206 telephoto lens 262 telescope 572 anastigmatic 572 Schiefspiegler 544, 571 ff Schmidt 239 Schwarzschild 440 Yolo 579 Tessar 260 test charts 157 ff, 187 test-plate radii 379 thermo-optical coefficient 528 thick meniscus 253 thin lens aberration 41, 218 thin lens starting system 354 f third-order aberration 13 threshold modulation 151 through focus spot diagram 3 tilt angle 631 tolerances 597 ff adjustment 652 asphere tolerances 613, 636 asphericity 608 astigmatism of prisms 712 axial run-out 645 bonding tolerances 639 bubbles 601, 615 centering tolerance 598, 630 ff compensator 652 corner cube 710 cost 650 cylindrical irregularity 608 distributions 667 figure tolerance 598 finish error 611 form tolerance 598, 605 ff high frequency range 611 lens wedge 638 microroughness 611 mid frequency range 611 Monte Carlo simulation 677 mounting tolerances 640 spatial frequency 610 image rotation 703 imperfections 615 inclusions 601 inhomogeneity 602 inverse tolerancing 685 irregularity 605, 608 ff low frequency range 610 material tolerance 598, 604 play mounting error 642 prism tolerances 690 ff production yield 678 pyramidal error 698 ff radius tolerance 606 Räntsch superposition 674 ripples 611 rolling angle 644 roof-angle 706 scratches 615 sensitivity analysis 671 slope tolerance 613 standard tolerances 600 statistical distributions 667 striae 602 surface texture 618 surface tolerance 598, 605 ff tilt angle 631 total indicator runout 632 waviness 611 top hat profile 104 total indicator runout 632 total integrated scatterer 626 total resolution 121 transfer function 89 area criterion 155 coherent transfer function 156

8 756 geometrical transfer function 142 optical transfer function 89, 110, 132 ff modulation transfer function 20, 132, 196 phase transfer function 144 polychromatic transfer function 141 statistical transfer function 204 system contribution 154 transverse ray aberration 2, 4, 76, 127 tv distortion 182 u undercorrection 21, 42 w wave aberration 5, 14 ff, 80 ff wavefront 6 waviness 611 wedge of a lens 638 weighting factor 295, 305 wide angle scatter 630 Wood lens 470 working distance 390 y yield of production 678 v vector aberration theory vignetting 122 visibility 133 visual detection ff z Zernike coefficients 54, 83 zero power operations 378 zonal 216, 231, 265

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Edited by Herbert Gross Volume 3: Aberration Theory and Correction of Optical Systems Herbert Cross, Hannfried Zügge, Martin Peschka, Fritz Blechinger BICENTENNIAL BICENTENNIA

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131, About the Author The author studied Technical Physics at the Technical University of Delft, The Netherlands. He obtained a master s degree in 1965 with a thesis on the fabrication of lasers. After military

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Introductions to aberrations OPTI 517

Introductions to aberrations OPTI 517 Introductions to aberrations OPTI 517 Lecture 11 Spherical aberration Meridional and sagittal ray fans Spherical aberration 0.25 wave f/10; f=100 mm; wave=0.0005 mm Spherical aberration 0.5 wave f/10;

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 4: Optimization III 2013-11-04 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 6-- Herbert Gross Winter term 6 www.iap.uni-jena.de Preliminar Schedule 9.. Aberrations and optimiation Repetition 6.. Structural modifications Zero operands, lens splitting,

More information

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON Lens Design Fundamentals Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Supplemental Materials. Section 25. Aberrations

Supplemental Materials. Section 25. Aberrations OTI-201/202 Geometrical and Instrumental Optics 25-1 Supplemental Materials Section 25 Aberrations Aberrations of the Rotationally Symmetric Optical System First-order or paraxial systems are ideal optical

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Modern Optical Engineering The Design of Optical Systems Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Fourth Edition Me Graw Hill New York Chicago San Francisco

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner Introduction to Optical Modeling Friedrich-Schiller-University Jena Institute of Applied Physics Lecturer: Prof. U.D. Zeitner The Nature of Light Fundamental Question: What is Light? Newton Huygens / Maxwell

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term Lens Design II Lecture 8: Special correction topics 2018-12-12 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2018 1 17.10. Aberrations and optimization Repetition

More information

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation J. C. Wyant Fall, 2012 Optics 513 - Optical Testing and Testing Instrumentation Introduction 1. Measurement of Paraxial Properties of Optical Systems 1.1 Thin Lenses 1.1.1 Measurements Based on Image Equation

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2017-12-04 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2017 1 16.10. Aberrations and optimization Repetition

More information

Long Wave Infrared Scan Lens Design And Distortion Correction

Long Wave Infrared Scan Lens Design And Distortion Correction Long Wave Infrared Scan Lens Design And Distortion Correction Item Type text; Electronic Thesis Authors McCarron, Andrew Publisher The University of Arizona. Rights Copyright is held by the author. Digital

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Volume 5: Metrology of Optical Components and Systems von Herbert Gross, Bernd Dörband, Henriette Müller 1. Auflage Handbook of Optical Systems Gross / Dörband / Müller schnell

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 7--3 Herbert Gross Winter term 7 www.iap.uni-jena.de Preliminar Schedule Lens Design II 7 6.. Aberrations and optimiation Repetition 3.. Structural modifications Zero

More information

Tolerancing in Zemax. Lecture 4

Tolerancing in Zemax. Lecture 4 Tolerancing in Zemax Lecture 4 Objectives: Lecture 4 At the end of this lecture you should: 1. Understand the reason for tolerancing and its relation to typical manufacturing errors 2. Be able to perform

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN CHAPTER 33 ABERRATION CURVES IN LENS DESIGN Donald C. O Shea Georgia Institute of Technology Center for Optical Science and Engineering and School of Physics Atlanta, Georgia Michael E. Harrigan Eastman

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction I 203-0-22 Herbert Gross Summer term 202 www.iap.uni-jena.de Preliminary time schedule 2 6.0. Introduction Introduction, Zemax interface, menues, file handling,

More information

OPTI 517 Image Quality. Richard Juergens

OPTI 517 Image Quality. Richard Juergens OPTI 517 Image Quality Richard Juergens 520-577-6918 rcjuergens@msn.com Why is Image Quality Important? Resolution of detail Smaller blur sizes allow better reproduction of image details Addition of noise

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

Basic Wavefront Aberration Theory for Optical Metrology

Basic Wavefront Aberration Theory for Optical Metrology APPLIED OPTICS AND OPTICAL ENGINEERING, VOL. Xl CHAPTER 1 Basic Wavefront Aberration Theory for Optical Metrology JAMES C. WYANT Optical Sciences Center, University of Arizona and WYKO Corporation, Tucson,

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Understanding Optical Specifications

Understanding Optical Specifications Understanding Optical Specifications Optics can be found virtually everywhere, from fiber optic couplings to machine vision imaging devices to cutting-edge biometric iris identification systems. Despite

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

OPAC 202 Optical Design and Inst.

OPAC 202 Optical Design and Inst. OPAC 202 Optical Design and Inst. Topic 9 Aberrations Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Apr 2018 Sayfa 1 Introduction The influences

More information

Practical Guide to Specifying Optical Components

Practical Guide to Specifying Optical Components Practical Guide to Specifying Optical Components OPTI 521 Introduction to Opto-Mechanical Engineering Fall 2012 December 10, 2012 Brian Parris Introduction This paper is intended to serve as a practical

More information

ME 297 L4-2 Optical design flow Analysis

ME 297 L4-2 Optical design flow Analysis ME 297 L4-2 Optical design flow Analysis Nayer Eradat Fall 2011 SJSU 1 Are we meeting the specs? First order requirements (after scaling the lens) Distortion Sharpness (diffraction MTF-will establish depth

More information

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics 1011CE Restricts rays: acts as a single lens: inverts

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

Optical Engineering 421/521 Sample Questions for Midterm 1

Optical Engineering 421/521 Sample Questions for Midterm 1 Optical Engineering 421/521 Sample Questions for Midterm 1 Short answer 1.) Sketch a pechan prism. Name a possible application of this prism., write the mirror matrix for this prism (or any other common

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Double-curvature surfaces in mirror system design

Double-curvature surfaces in mirror system design Double-curvature surfaces in mirror system design Jose M. Sasian, MEMBER SPIE University of Arizona Optical Sciences Center Tucson, Arizona 85721 E-mail: sasian@ccit.arizona.edu Abstract. The use in mirror

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

Typical requirements of passive mm-wave imaging systems, and consequences for antenna design

Typical requirements of passive mm-wave imaging systems, and consequences for antenna design Typical requirements of passive mm-wave imaging systems, and consequences for antenna design Rupert Anderton A presentation to: 6th Millimetre-wave Users Group NPL, Teddington 5 October 2009 1 1 Characteristics

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

Tutorial Zemax 3 Aberrations

Tutorial Zemax 3 Aberrations Tutorial Zemax 3 Aberrations 2012-08-14 3 Aberrations 1 3.1 Exercise 3-1: Strehl ratio and geometrical vs Psf spot size... 1 3.2 Exercise 3-2: Performance of an achromate... 3 3.3 Exercise 3-3: Anamorphotic

More information

Optimisation. Lecture 3

Optimisation. Lecture 3 Optimisation Lecture 3 Objectives: Lecture 3 At the end of this lecture you should: 1. Understand the use of Petzval curvature to balance lens components 2. Know how different aberrations depend on field

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens George Curatu a, Brent Binkley a, David Tinch a, and Costin Curatu b a LightPath Technologies, 2603

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter:

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter: October 7, 1997 Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA 02138 Dear Peter: This is the report on all of the HIREX analysis done to date, with corrections

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES COURSE TITLE: BED (SCIENCE) UNIT TITLE: WAVES AND OPTICS UNIT CODE: SPH 103 UNIT AUTHOR: PROF. R.O. GENGA DEPARTMENT OF PHYSICS UNIVERSITY

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes

Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes Fabrication of 6.5 m f/1.25 Mirrors for the MMT and Magellan Telescopes H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, W. C. Kittrell, S. M. Miller and S. C. West Steward Observatory,

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Solution of Exercises Lecture Optical design with Zemax Part 6

Solution of Exercises Lecture Optical design with Zemax Part 6 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax Part 6 6 Illumination

More information

Lithography Smash Sensor Objective Product Requirements Document

Lithography Smash Sensor Objective Product Requirements Document Lithography Smash Sensor Objective Product Requirements Document Zhaoyu Nie (Project Manager) Zichan Wang (Customer Liaison) Yunqi Li (Document) Customer: Hong Ye (ASML) Faculty Advisor: Julie Bentley

More information

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch>

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch> Optical Information Processing Adolf W. Lohmann Edited by Stefan Sinzinger Ch> Universitätsverlag Ilmenau 2006 Contents Preface to the 2006 edition 13 Preface to the third edition 15 Preface volume 1 17

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term Microscopy Lecture 2: Optical System of the Microscopy II 212-1-22 Herbert Gross Winter term 212 www.iap.uni-jena.de Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer 1 15.1. Optical

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Average: Standard Deviation: Max: 99 Min: 40

Average: Standard Deviation: Max: 99 Min: 40 1 st Midterm Exam Average: 83.1 Standard Deviation: 12.0 Max: 99 Min: 40 Please contact me to fix an appointment, if you took less than 65. Chapter 33 Lenses and Op/cal Instruments Units of Chapter 33

More information

OSLO Doublet Optimization Tutorial

OSLO Doublet Optimization Tutorial OSLO Doublet Optimization Tutorial This tutorial helps optical designers with the most basic process for setting up a lens and optimizing in OSLO. The example intentionally goes through basics as well

More information

Design of Large Working Area F-Theta Lens. Gong Chen

Design of Large Working Area F-Theta Lens. Gong Chen 1 Design of Large Working Area F-Theta Lens by Gong Chen 2 ABSTRACT F-Theta lenses are different from normal camera lenses. It is one of the most important parts of laser scanning system. Besides, F-Theta

More information

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA Gerhard K. Ackermann and Jurgen Eichler Holography A Practical Approach BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XVII Part 1 Fundamentals of Holography 1 1 Introduction

More information