Advanced Lens Design

Size: px
Start display at page:

Download "Advanced Lens Design"

Transcription

1 Advanced Lens Design Lecture 4: Optimization III Herbert Gross Winter term

2 2 Preliminary Schedule Introduction Paraxial optics, ideal lenses, optical systems, raytrace, Zemax handling Optimization I Basic principles, paraxial layout, thin lenses, transition to thick lenses, scaling, Delano diagram, bending Optimization II merit function requirements, effectiveness of variables Optimization III complex formulations, solves, hard and soft constraints Structural modifications zero operands, lens splitting, aspherization, cementing, lens addition, lens removal Aberrations and performance Geometrical aberrations, wave aberrations, PSF, OTF, sine condition, aplanatism, isoplanatism Aspheres and freeforms spherical correction with aspheres, Forbes approach, distortion correction, freeform surfaces, optimal location of aspheres, several aspheres Field flattening thick meniscus, plus-minus pairs, field lenses Chromatical correction Achromatization, apochromatic correction, dialyt, Schupman principle, axial versus transversal, glass selection rules, burried surfaces Special topics symmetry, sensitivity, anamorphotic lenses Higher order aberrations high NA systems, broken achromates, Merte surfaces, AC meniscus lenses Advanced optimization local optimization, control of iteration, global approaches, strategies growing requirements, AC-approach of Shafer Mirror systems special aspects, bending of ray paths, catadioptric systems Diffractive elements color correction, straylight suppression, third order aberrations Tolerancing and adjustment tolerances, procedure, adjustment, compensators

3 3 Contents 1. Strategy of correction 2. Glass selection 3. Solves 4. Constraints in optimization

4 4 Strategy of Correction and Optimization Usefull options for accelerating a stagnated optimization: split a lens increase refractive index of positive lenses lower refractive index of negative lenses make surface with large spherical surface contribution aspherical break cemented components use glasses with anomalous partial dispersion kick, if the optimization is captured in a local minimum In general: it is preferred to preserve the achieved (good) result and perform small changes to let the optimization run again, change the weightings if the potential of the setup seems to by not improvable, enlarge the number of degrees of freedom

5 5 Zero-Operations Operationen with zero changes in first approximation: 1. Bending a lens. 2. Flipping a lens into reverse orientation. 3. Flipping a lens group into reverse order. 4. Adding a field lens near the image plane. 5. Inserting a powerless thin or thick meniscus lens. 6. Introducing a thin aspheric plate. 7. Making a surface aspheric with negligible expansion constants. 8. Moving the stop position. 9. Inserting a buried surface for color correction, which does not affect the main wavelength. 10. Removing a lens without refractive power. 11. Splitting an element into two lenses which are very close together but with the same total refractive power. 12. Replacing a thick lens by two thin lenses, which have the same power as the two refracting surfaces. 13. Cementing two lenses a very small distance apart and with nearly equal radii.

6 6 Optimization: Discrete Materials Special problem in glass optimization: finite area of definition with discrete parameters n, n n Restricted permitted area as one possible contraint Model glass with continuous values of n, n in a pre-phase of glass selection, freezing to the next adjacend glass area of permitted glasses in optimization area of available glasses n

7 Basic Principles of Glass Selection Positive lenses with anomalous partial dispersion and high n: PK51, FK51, FK52, FK54 For monochromatic correction disadvantageous Negative lenses with anomalous partial dispersion andf low n: KzFS-glasses High indices for monochromatic correction: LaK, LaSF, LaF expensive, hard to manufacture, disadvantageous for color correction Low refracting glasses for field flattening in negative lenses: TiF, TiSAF expensive, hard to manufacture, disadvantageous for color correction

8 Buried Surface 8 Cemented surface with perfect refrcative index match No impact on monochromatic aberrations Only influence on chromatical aberrations Especially 3-fold cemented components are advantages Can serve as a starting setup for chromatical correction with fulfilled monochromatic correction Special glass combinations with nearly perfect parameters Nr Glas n d n d n d n d 1 SK F SK LF SSK F SK BaF d 1 d 2 d 3

9 9 Principles of Glass Selection in Optimization Design rules for glass selection Different design goals: 1. Color correction: index n large dispersion difference desired positive lens field flattening Petzval curvature 2. Field flattening: large index difference + + desired negative lens color correction + - availability of glasses - - dispersion n Ref : H. Zügge

10 10 Glasses in Zemax Selection of glass catalogs in GENERAL / GLASS CATALOGS Viewing of dispersion curves ANALYSIS / GLASS AND GRADIENT Viewing of glass map

11 Glasses in Zemax Selection of glass catalogs in GENERAL / GLASS CATALOGS use your own catalog Viewing of glass properties in ANALYSIS / GLASS AND GRADIENT glass map (zoom in) Ref.: B. Böhme 11

12 Glasses in Zemax For optimization Definition of a glass as a variable point in the glass map model glass Establish own glass catalogs with additional glasses preferred choices as an individual library Ref.: B. Böhme 12

13 Variable Glass in Zemax Modell glass: characterized by index, Abbe number and relative dispersion Individual choice of variables Glass moves in Glass map Restriction of useful area in glass map is desirable (RGLA = regular glass area) Re-substitution of real glass: next neighbor in n-n-diagram Choice of allowed glass catalogs can be controlled in General-menu Other possibility to reset real glasses: direct substitution 13

14 Solves Value of the parameter dependents on other requirement Pickup of radius/thickness: linear dependence on other system parameter Determined to have fixed: - marginal ray height - chief ray angle - marginal ray normal - chief ray normal - aplanatic surface - element power - concentric surface - concentric radius - F number - marginal ray height - chief ray height - edge thickness - optical path difference - position - compensator - center of curvature - pupil position

15 Solves Examples for solves: 1. last radius forces given image aperture 2. get symmetry of system parts 3. multiple used system parts 4. moving lenses with constant system length 5. bending of a lens with constant focal length 6. non-negative edge thickness of a lens 7. bending angle of a mirror (i'=i) 8. decenter/tilt of a component with return

16 Solves Open different menus with a right-mouse-click in the corresponding editor cell Solves can be chosen individually Individual data for every surface in this menu

17 17 Constraints in Optical Systems Constraints in the optimization of optical systems: 1. Discrete standardized radii (tools, metrology) 2. Total track 3. Discrete choice of glasses 4. Edge thickness of lenses (handling) 5. Center thickness of lenses(stability) 6. Coupling of distances (zoom systems, forced symmetry,...) 7. Focal length, magnification, workling distance 8. Image location, pupil location 9. Avoiding ghost images (no concentric surfaces) 10. Use of given components (vendor catalog, availability, costs)

18 18 Effect of Constraints on Optimization Effect of constraints x 1 path without constraint 0 local minimum path with constraint constraint x 1 < 0 global minimum initial point x 2

19 Optimization: Constraints x 2 Forbidden solution areas, Restricted range of data Special care at boundaries Selection of solutions F ( x ) h ( x) P j boundary curve h(x) search directions contour of merit function F(x) F ( x) region of constraint g(x) < 0 forbidden area optimum h ( x) x 1 constraint function g(x) feasible range merit function F(x) local minimum solution solution without g(x)- constraint x global minimum x min region of constraint x > 0 x max

20 20 Boundary Conditions and Constraints Types of constraints 1. Equation, rigid coupling, pick up 2. One-sided limitation, inequality 3. Double-sided limitation, interval Numerical realizations : 1. Lagrange multiplier 2. Penalty function 3. Barriere function 4. Regular variable, soft-constraint F(x) F(x) penalty function P(x) p large barrier function B(x) p large F 0 (x) p small F 0 (x) p small x x x min permitted domain x max permitted domain

21 Penalty Function Analytical function with existing derivative 2 e 2 y y y y 2e y y max max e e Formulation for left- and righthanded case Typical parameter for transition region: e = Advantage: nearly linear in the penalty region gives good convergence P(x) upper limit x max boundary with tolerance intervals lower limit x min e e x-x max/min x max/min

22 22 Lack of Constraints in Optimization Illustration of not usefull results due to non-sufficient constraints negative edge thickness negative air distance lens thickness to large lens stability to small air space to small

23 23 Constraints Constraints on thickness values and distances maximum center thickness of air MXCA minimum center thickness of air MNCA minimum edge thickness of air MNCA maximum center thickness of glass MXCG minimum center thickness of glass MNCG minimum edge thickness of glass MNCG

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction I 203-0-22 Herbert Gross Summer term 202 www.iap.uni-jena.de Preliminary time schedule 2 6.0. Introduction Introduction, Zemax interface, menues, file handling,

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

More information

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term Lens Design II Lecture 8: Special correction topics 2018-12-12 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2018 1 17.10. Aberrations and optimization Repetition

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 6-- Herbert Gross Winter term 6 www.iap.uni-jena.de Preliminar Schedule 9.. Aberrations and optimiation Repetition 6.. Structural modifications Zero operands, lens splitting,

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2017-12-04 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2017 1 16.10. Aberrations and optimization Repetition

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 7--3 Herbert Gross Winter term 7 www.iap.uni-jena.de Preliminar Schedule Lens Design II 7 6.. Aberrations and optimiation Repetition 3.. Structural modifications Zero

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 8.1

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Solution of Exercises Lecture Optical design with Zemax Part 6

Solution of Exercises Lecture Optical design with Zemax Part 6 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax Part 6 6 Illumination

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

Optical Design with Zemax for PhD - Basics

Optical Design with Zemax for PhD - Basics Optical Design with Zemax for PhD - Basics Lecture 3: Properties of optical sstems II 2013-05-30 Herbert Gross Summer term 2013 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

Optimisation. Lecture 3

Optimisation. Lecture 3 Optimisation Lecture 3 Objectives: Lecture 3 At the end of this lecture you should: 1. Understand the use of Petzval curvature to balance lens components 2. Know how different aberrations depend on field

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON Lens Design Fundamentals Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Edited by Herbert Gross Volume 3: Aberration Theory and Correction of Optical Systems Herbert Cross, Hannfried Zügge, Martin Peschka, Fritz Blechinger BICENTENNIAL BICENTENNIA

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

OSLO Doublet Optimization Tutorial

OSLO Doublet Optimization Tutorial OSLO Doublet Optimization Tutorial This tutorial helps optical designers with the most basic process for setting up a lens and optimizing in OSLO. The example intentionally goes through basics as well

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner Introduction to Optical Modeling Friedrich-Schiller-University Jena Institute of Applied Physics Lecturer: Prof. U.D. Zeitner The Nature of Light Fundamental Question: What is Light? Newton Huygens / Maxwell

More information

Introductions to aberrations OPTI 517

Introductions to aberrations OPTI 517 Introductions to aberrations OPTI 517 Lecture 11 Spherical aberration Meridional and sagittal ray fans Spherical aberration 0.25 wave f/10; f=100 mm; wave=0.0005 mm Spherical aberration 0.5 wave f/10;

More information

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131, About the Author The author studied Technical Physics at the Technical University of Delft, The Netherlands. He obtained a master s degree in 1965 with a thesis on the fabrication of lasers. After military

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 2: Basic Zemax handling 2015-12-02 Herbert Gross Winter term 2015 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content 1 11.11. Introduction

More information

Tutorial Zemax 3 Aberrations

Tutorial Zemax 3 Aberrations Tutorial Zemax 3 Aberrations 2012-08-14 3 Aberrations 1 3.1 Exercise 3-1: Strehl ratio and geometrical vs Psf spot size... 1 3.2 Exercise 3-2: Performance of an achromate... 3 3.3 Exercise 3-3: Anamorphotic

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

附录 В 手工计算参考答案 附录 В 手工计算参考答案 336

附录 В 手工计算参考答案 附录 В 手工计算参考答案 336 附录 A 参考文献 透镜设计 Kingslake,Rudolph,Lens Design Fundamentals. New York:Academic press,1978. Kingslake,Rudolph. A History of the Photographic Lens. Boston:Academic Press 1989. Malacara,Daniels and Malacara,Zacarias,Handbook

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

Optical Zoom System Design for Compact Digital Camera Using Lens Modules

Optical Zoom System Design for Compact Digital Camera Using Lens Modules Journal of the Korean Physical Society, Vol. 50, No. 5, May 2007, pp. 1243 1251 Optical Zoom System Design for Compact Digital Camera Using Lens Modules Sung-Chan Park, Yong-Joo Jo, Byoung-Taek You and

More information

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax Chapter 3 Introduction to Zemax 3.1 Introduction Ray tracing is practical only for paraxial analysis. Computing aberrations and diffraction effects are time consuming. Optical Designers need some popular

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

ME 297 L4-2 Optical design flow Analysis

ME 297 L4-2 Optical design flow Analysis ME 297 L4-2 Optical design flow Analysis Nayer Eradat Fall 2011 SJSU 1 Are we meeting the specs? First order requirements (after scaling the lens) Distortion Sharpness (diffraction MTF-will establish depth

More information

Course Syllabus OSE 4240 OPTICS AND PHOTNICS DESIGN, 3 CREDIT HOURS

Course Syllabus OSE 4240 OPTICS AND PHOTNICS DESIGN, 3 CREDIT HOURS Regardless of course type; e.g., traditional, media-enhanced, or Web, syllabi at UCF are required to include: Course title and number Credit hours Name(s) of instructor(s) Office location Office or Web

More information

Lithography Smash Sensor Objective Product Requirements Document

Lithography Smash Sensor Objective Product Requirements Document Lithography Smash Sensor Objective Product Requirements Document Zhaoyu Nie (Project Manager) Zichan Wang (Customer Liaison) Yunqi Li (Document) Customer: Hong Ye (ASML) Faculty Advisor: Julie Bentley

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Computer exercise 2 geometrical optics and the telescope

Computer exercise 2 geometrical optics and the telescope Computer exercise 2 geometrical optics and the telescope In this exercise, you will learn more of the tools included in Synopsys, including how to find system specifications such as focal length and F-number.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

Study on Imaging Quality of Water Ball Lens

Study on Imaging Quality of Water Ball Lens 2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017) Study on Imaging Quality of Water Ball Lens Haiyan Yang1,a,*, Xiaopan Li 1,b, 1,c Hao Kong, 1,d Guangyang Xu and1,eyan

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

Tolerancing in Zemax. Lecture 4

Tolerancing in Zemax. Lecture 4 Tolerancing in Zemax Lecture 4 Objectives: Lecture 4 At the end of this lecture you should: 1. Understand the reason for tolerancing and its relation to typical manufacturing errors 2. Be able to perform

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes 330 Chapter 12 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes Similar to the JWST, the next-generation large-aperture space telescope for optical and UV astronomy has a segmented

More information

OPAC 202 Optical Design and Inst.

OPAC 202 Optical Design and Inst. OPAC 202 Optical Design and Inst. Topic 9 Aberrations Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Apr 2018 Sayfa 1 Introduction The influences

More information

Course Syllabus OSE 3200 Geometric Optics

Course Syllabus OSE 3200 Geometric Optics Course Syllabus OSE 3200 Geometric Optics Instructor: Dr. Kyu Young Han Term: Spring 2018 Email: kyhan@creol.ucf.edu Class Meeting Days: Monday/Wednesday Phone: 407-823-6922 Class Meeting Time: 09:00-10:15AM

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Course Syllabus OSE 3200 Geometric Optics

Course Syllabus OSE 3200 Geometric Optics Course Syllabus OSE 3200 Geometric Optics Instructor: Dr. Kyle Renshaw Term: Fall 2016 Email: krenshaw@creol.ucf.edu Class Meeting Days: Monday/Wednesday Phone: 407-823-2807 Class Meeting Time: 10:30-11:45AM

More information

CATALOG LENS USE IN OSLO

CATALOG LENS USE IN OSLO CATALOG LENS USE IN OSLO Tutorial: A Catalog Galilean Telescope Richard N. Youngworth, Ph.D. - Presenter Tutorial example: creating a Galilean telescope from catalog lenses Start a new lens, pick a name

More information

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term Microscopy Lecture 2: Optical System of the Microscopy II 212-1-22 Herbert Gross Winter term 212 www.iap.uni-jena.de Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer 1 15.1. Optical

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Solutions: Lens Design I Part 2. Exercise 2-1: Apertures, stops and vignetting

Solutions: Lens Design I Part 2. Exercise 2-1: Apertures, stops and vignetting 2016-04-25 Prof. Herbert Gross Mateusz Oleszko, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solutions: Lens Design I Part 2 Exercise

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f

j Jacobi matrix 295 Index flattening mirror 258 flint glass 231 form tolerance 598, 605 ff free-form aspheres 456 Fresnel zone plate 499, 503 f 749 a Abbe number 41, 222, 269, 490, 502 aberrations 2, 216 astigmatism 13, 28 axial chromatic aberration 13, 269 axial color 13, 269 chromatic aberrations 2, 13, 187, 268, 280 chromatic difference in

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Beam expansion standard concepts re-interpreted

Beam expansion standard concepts re-interpreted Beam expansion standard concepts re-interpreted Ulrike Fuchs (Ph.D.), Sven R. Kiontke asphericon GmbH Stockholmer Str. 9 07743 Jena, Germany Tel: +49-3641-3100500 Introduction Everyday work in an optics

More information

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He

More information

Reflection! Reflection and Virtual Image!

Reflection! Reflection and Virtual Image! 1/30/14 Reflection - wave hits non-absorptive surface surface of a smooth water pool - incident vs. reflected wave law of reflection - concept for all electromagnetic waves - wave theory: reflected back

More information

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Modern Optical Engineering The Design of Optical Systems Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Fourth Edition Me Graw Hill New York Chicago San Francisco

More information

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy. Introduction Optics Application Lenses Design Basics a) Convex lenses Convex lenses are optical imaging components with positive focus length. After going through the convex lens, parallel beam of light

More information

Optical design of a high resolution vision lens

Optical design of a high resolution vision lens Optical design of a high resolution vision lens Paul Claassen, optical designer, paul.claassen@sioux.eu Marnix Tas, optical specialist, marnix.tas@sioux.eu Prof L.Beckmann, l.beckmann@hccnet.nl Summary:

More information

Long Wave Infrared Scan Lens Design And Distortion Correction

Long Wave Infrared Scan Lens Design And Distortion Correction Long Wave Infrared Scan Lens Design And Distortion Correction Item Type text; Electronic Thesis Authors McCarron, Andrew Publisher The University of Arizona. Rights Copyright is held by the author. Digital

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f Phys 531 Lecture 9 30 September 2004 Ray Optics II Last time, developed idea of ray optics approximation to wave theory Introduced paraxial approximation: rays with θ 1 Will continue to use Started disussing

More information