Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Size: px
Start display at page:

Download "Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term"

Transcription

1 Microscopy Lecture 2: Optical System of the Microscopy II Herbert Gross Winter term 212

2 Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer Optical system of a microscope I overview, general setup, binoculars, objective lenses, performance and types of lenses, tube optics Gross Optical system of a microscope II Physical optics of widefield microscopes Performance assessment Fourier optical description Etendue, pupil, telecentricity, confocal systems, illumination setups, Köhler principle, fluorescence systems and TIRF, adjustment of objective lenses Point spread function, high-na-effects, apodization, defocussing, index mismatch, coherence, partial coherent imaging Wave aberrations and Zernikes, Strehl ratio, point resolution, sine condition, optical transfer function, conoscopic observation, isoplantism, straylight and ghost images, thermal degradation, measuring of system quality basic concepts, 2-point-resolution (Rayleigh, Sparrow), Frequency-based resolution (Abbe), CTF and Born Approximation Gross Gross Gross Heintzmann Methods, DIC Rytov approximation, a comment on holography, Ptychography, DIC Heintzmann Multibeam illumination, Cofocal coherent, Incoherent processes (Fluorescence, Raman), Imaging of scatter OTF for incoherent light, Missing cone problem, imaging of a fluorescent plane, incoherent confocal OTF/PSF Heintzmann Incoherent emission to improve resolution Fluorescence, Structured illumination, Image based identification of experimental parameters, image reconstruction Heintzmann The quantum world in microscopy Photons, Poisson distribution, squeezed light, antibunching, Ghost imaging Wicker Deconvolution Building a forward model and inverting it based on statistics Wicker Nonlinear sample response STED, NLSIM, Rabi the information view Wicker Nonlinear microscopy two-photon cross sections, pulsed excitation, propagation of ultrashort pulses, (image formation in 3D), nonlinear scattering, SHG/THG - symmetry properties Heisterkamp Raman-CARS microscopy Tissue optics and imaging principle, origin of CARS signale, four wave mixing, phase matching conditions, epi/forward CARS, SRS. Tissue optics, scattering&aberrations, optical clearing,optical tomography, lightsheet/ultramicroscopy Heisterkamp Heisterkamp Optical coherence tomography principle, interferometry, time-domain, frequency domain. Heisterkamp

3 Contents of 2nd Lecture 3 1. Etendue 2. Pupil 3. Telecentricity 4. Confocal systems 5. Illumination setups 6. Köhler principle 7. Fluorescence systems and TIRF 8. Objective adjustment

4 Microscope Objective Lens No rigid relationship between magnification and aperture Product of field size and NA fixes the overall capacity NA immersion m 2 4 obj Variation of image-sided numerical aperture.3 NA' m obj

5 Etendue of Microscope Objective Lenses Information capacity, etendue, space-bandwidth product, number of PSF s resolved in the field Non-rigid correlation between magnification and etendue G [mm 2 ] 1 G 4 D NA 2 field Largest etendue for medium magnifications Immersion systems have larger etendue air oil water D field in [mm] m

6 Properties of the Pupil Relevance of the system pupil : Brightness of the image Transfer of energy Resolution of details, Information transfer, location of Fourier spectrum Image quality Aberrations due to aperture Image perspective Perception of depth Compound systems: matching of pupils is necessary, location and size

7 Entrance and Exit Pupil object point on axis lower marginal ray upper coma ray upper marginal ray U chief ray W U' field point of image on axis point of image outer field point of object exit pupil lower coma ray stop entrance pupil

8 Microscope Objective Lens: Pupil Object space telecentric Real rear stop is not object plane objective lens rear stop exit pupil defining the pupil marginal ray Collimated outgoing beam Exit pupil usually telecentric, entrance pupil infinity u y' p chief ray not accessible f' f' object plane pupil exit pupil rear stop chief ray

9 Microscope Objective Lens: Pupil Diameter of pupil only weak correlated with magnification Pupil distorsion: D distexp y' p 1 f ' sin u D ExP D dist ExP a) Lister D dist ExP b) 1x.93 oil y p y p 6 5 D dist ExP 5 x 1-3 c) Laikin D x 1-3 dist ExP 1 d) Schwarzschild m Pupil distortion small (sine condition corrected) y p y p

10 Microscope Objective Lens: Pupil Imaging of the pupil is important Residual aberrations: sharp edge of aperture is desired Real systems : smoothed illumination profile lens v pupil stop 1 I(r) ideal edge r [mm]

11 Microscope Objective Lens: Pupil Example of larger residual aberrations of pupil image : 1. axial shift of pupil with field size 2. no sharp imaging of aperture stop 3. coloured edge of stop boundary nm 546 nm 644 nm 3 D spot [m] diffraction limit 11.6 axis z [mm] 23.1

12 Microscope Objective Lens: Pupil Vignetting of the pupil : 1. truncation of the bundle for finite field sizes 2. chief ray not identical with centroid 3. perturbation of telecentricity 4. in microscopic systems mostly at the front lens centre of gravity shifted full aperture vignetted aperture chief ray telecentric chief ray not telecentric

13 Vignetting Truncation at front lens Pupil vignetting: cover glass front lens oil truncating edge pupil shape crescent shape of light cone Illumination fall-off towards field boundary axis zone field I(r)/I o 1.5 y/y.5 1 max

14 Vignetting D S Truncation of regions with large aberrations as correction method Improved performance Psf elliptical, anisotropiuc resolution Energy reduced diffraction limit axis field zone field edge solid line : vignetted dashed line : without vignetting 48 nm 546 nm 644 nm.5 1 y'/y max x x y x y

15 Telecentricity Special stop positions: 1. stop in back focal plane: object sided telecentricity 2. stop in front focal plane: image sided telecentricity 3. stop in intermediate focal plane: both-sided telecentricity Telecentricity: 1. pupil in infinity 2. chief ray parallel to the optical axis a) image sided telecentric b) object sided telecentric object telecentric stop image object telecentric stop image f chief rays parallel to axis in image space chief rays parallel to axis in object space f'

16 Telecentricity Design problems with telecentricity: Usual telecentricity only fulfilled for one wavelength w tele [ ] Telecentricity is related to the centroid ray. Therefore the telecentricity is disturbed by vignetting effects nm 587 nm 656 nm w tele [ ] y'/y' max 1.8 centre ray with vignetting chief ray centre ray with coma y'/y' max

17 Confocal Microscope Laser scan microscope Depth resolution (sectioning) with confocal pinhole Transverse scan on field of view Digital image Only light comming out of the conjugate plane is detected Perfect system: scan mirrors conjugate to pupil location System needs a good correction of the objective lens, symmetric 3D distribution of intensity laser illumination objective lens in focus out of focus pinhole lens pinhole CCD '

18 Confocal Images Depth resolved images Ref.: M. Kempe

19 Confocal Laser Scan Microscope Complete setup: objective / tube lens / scan lens / pinhole lens Scanning of illumination / descanning of signal Scan mirror conjugate to system pupil plane Digital image processing necessary object plane objective lens pupil plane tube lens intermediate image scan lens scan mirror pinhole lens field point axis point pupil imaging beam forming laser source

20 Confocal Laser Scan Microscope Scan lens Diffraction limited Change in pupil location of objective lenses is critical perturbation of telecentricity scan mirror intermediate image w [ ] pupil location: + 3 mm paraxial exact.2.1 W rms 48 nm 546 nm 644 nm diffraction limit mm y/y max 5 1 in

21 Confocal Laser Scan Microscope Pinhole lens Only axial colour is essential Usage on axis only due to descanning Variable pinhole size not too small: small aperture, retrofocus lens y p nm 546 nm 644 nm z in [mm] pinhole

22 Confocal Microscopy: PSF and Lateral Resolution Normalized transverse coordinate v Usual PSF: Airy Confocal imaging: Identical PSF for illumination and observation assumed 2 v x' sin 2J1 ( v) I( v) v I(v) 2 2J1 ( v) I( v) v Resolution improvement be factor 1.4 for FWhM 4 1,9,8,7,6,5,4 incoherent coherent,3,2,

23 Confocal Microscopy: Axial Sectioning Normalized axial coordinate Conventional wide field imaging: Intensity on axis Axial resolution Confocal imaging: Intensity on axis sin( u / 2) I( u) u / 2 ( ) z approx wide sin( u / 2) I( u) / 2 u Axial resolution improved by factor 1.41 for FWhM z confo 2.45 n' 1 cos.319 n' 1 cos 4 8 u z sin 2 ( / 2) 1,,9,8,7,6,5,4,3,2,1 I(u) incoherent coherent, u

24 Size of Pinhole and Cnfocality Large pinhole: geometrical optic Small pinhole: - Diffraction dominates - Scaling by Airy diameter a = D/D Airy - diffraction relevant for pinholes D < D airy Confocal signal: Integral over pinhole size x / D Airy a 2 S( u) U( u, v) 2 v dv NA =.3 NA =.6 NA =.75 NA = S(u) a = 3 a = 2 a = 1 a = u geometrical D PH / D Airy

25 Confocal Signal with Spherical Aberration Spherical aberration: - PSF broadened - PSF no longer symmetrical around image plane during defocus Confocal signal: - loss in contrast - decreased resolution S(u) spherical aberration relative pinhole size: a = 3 a = 2 a = 1 a = u

26 Confocal Laser Scan Microscope Depth signal as a function of wavelength Disturbance by axial colour aberration 3 z/r u z estim image plane -2 D ph = D airy

27 Illumination Optics: Overview Four possibilities for practical needs axis Epi vs. trans-illumination observation Bright vs. dark field illumination epi-bright field Comparison of light cones for imaging and illumination parts epi-dark field object plane trans-dark field trans-bright field

28 Illumination Optics: Overview Instrumental realizations a) incident illumination bright field b) incident illumination dark field c) transmitted illumination bright field d) transmitted illumination dark field observation observation ring mirror observation observation illumination illumination objective lens object plane object plane ring mirror object plane condenser object plane ring condenser illumination illumination

29 Illumination Optics: Overview Typical images for different illuminations epi trans bright dark

30 Köhler Illumination Principle Principle of Köhler illumination: collector condenser objective lens Alternating beam paths of field and pupil No source structure in image Light source conjugated to system pupil source field stop aperture stop object plane back focal plane - pupil image plane Differences between ideal and real ray paths field stop filter aperture stop condenser collector source object plane

31 Illumination Optics: Overview Types of settings : 1. Köhler : source into pupil, mostly used 2. Critical : source into field of view, source structure disturbs image 3. Projection : source into condenser 4. Arbitrary condenser a) Köhler = 1 f con fcon source b) =.5 collector c) Projection = d) = -.5 auxiliary lens object plane e) Critical = -1

32 Illumination Optics: Collector Requirements and aspects: 1. Large collecting solid angle 2. Correction not critical 3. Thermal loading large 4. Mostly shell-structure for high NA a) axis W(y p ) b) field 2 48 nm 546 nm 644 nm y p W(y p ) 2 y p a) axis W(y p ) b) field 2 W(y p ) 2 y p y p 48 nm 546 nm 644 nm

33 Illumination Optics: Condenser 2. Abbe type, achromatic, NA =.9, aplanatic, residual spherical a) axis b) field y' 1m tangential y' 1m sagittal x' 1m y p y p x p 48 nm 546 nm 644 nm 3. Aplanatic achromatic, NA =.85 a) axis b) field y' 1m tangential y' 1m sagittal x' 1m y p y p x p 48 nm 546 nm 644 nm

34 Illumination Optics: Condenser Dark-field illumination systems 1. Trans-illumination Cardioid-mirror cardiode object plane R/2 C P R R/2 circle 2R cardioide illumination cone cover slide object carrier immersion Realizations: approximation of Cardioid curve condenser

35 Illumination Optics: Condenser 2. Epi-illumination Complicated ring-shaped components around objective lens observation illumination ring lens circle 1 observation illumination object ring lens object circle 2

36 Illumination Optics: TIRF-Illumination Epi- and trans illumination for TIRF substrate illumination prism cover glass total internal reflexion carrier illumination probe cover glass objective lens observation signal

37 Fluorescence Microscopy Fluorescence microscopy is the most frequently employed mode of light microscopy used in biomedical reserach today Setup: dicroitic beam splitter UV bloc filter fluorescence red or infrared object objective lens excitation filter image plane illumination at 365 nm 1 Fluorescein Iso Thio Cyanate UV source absorption.5 emission Necessary components: Dicroitic beam splitter, excitation filter with sharp edge [nm]

38 TIRF Microscopy Total internal reflection microscopy: Excitation with evanescent field Advantages: 1. better axial resolution 2. better SNR, no fluorescence background Problem in optical design: Extremly small illumination ring-shaped channel around the observation light cone illumination ring channel observation cover glass probe total internal reflexion Epi-Fluorescence TIRF Objective lens TIRF 1x1.45

39 Adjustment of Objective Lenses Adjustment of air gaps to t 2 t 4 t 6 t 8 optimize spherical aberration Reduced optimization setup c j c jo k1,4 c j c t k j, j 2,4,6,8 Compensates residual aberrations due to tolerances (radii, thicknesses, refractive indices) d 2 d 4 d 6 d 8 c 2 c 4 c 6 c 8 W rms nominal d 2 varied d 4 varied d 6 varied d 8 varied optimized

40 Adjustment of Objective Lenses Significant improvement for one wavelength on axis Possible decreased performance in the field W rms in.3 48 nm 546 nm 644 nm solid lines : nominal dashed lines : adjusted.15 improvement.5 1 y/y max

41 Object plane Defocus compensator On compensator axis astigmatism Nr. 1 2 Optical System of the Microscope II Adjustment and Compensation Example microscopic lens Adjusting: 1. Axial shifting lens : focus 2. Clocking: astigmatism 3. Lateral shifting lens: coma Onaxiscoma compensator Spherical aberrati compensator Ideal : Strehl D S = % With tolerances : D S =.1 % After adjusting : D S = 99.3 % PSF (energynormalized) Systemwithtolerances Strehl:,2% Onaxisastig compensator N Ref.: M. Peschka

42 Strehl ratio [%] 2 Optical System of the Microscope II Adjustment and Compensation Sucessive steps of improvements PSF (intensity PSF normalized) (energy normalized) % Not adjusted 21.77% 25.48% 97.2% Step 1 Step 2 Step 3 Z, 4 Z 9 Z, 7 Z 8 Z, 5 Z 6 WithTolerances Step1(Z, Z) 4 9 Ref.: M. Peschka Step2(Z, Z) 7 8

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

Optical Design with Zemax for PhD - Basics

Optical Design with Zemax for PhD - Basics Optical Design with Zemax for PhD - Basics Lecture 3: Properties of optical sstems II 2013-05-30 Herbert Gross Summer term 2013 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term Lens Design II Lecture 8: Special correction topics 2018-12-12 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2018 1 17.10. Aberrations and optimization Repetition

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type) Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

Microscopy Training & Overview

Microscopy Training & Overview Microscopy Training & Overview Product Marketing October 2011 Stephan Briggs - PLE OVERVIEW AND PRESENTATION FLOW Glossary and Important Terms Introduction Timeline Innovation and Advancement Primary Components

More information

Imaging Introduction. September 24, 2010

Imaging Introduction. September 24, 2010 Imaging Introduction September 24, 2010 What is a microscope? Merriam-Webster: an optical instrument consisting of a lens or combination of lenses for making enlarged images of minute objects; especially:

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2017-12-04 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2017 1 16.10. Aberrations and optimization Repetition

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 15: Confocal sensors 018-0-08 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

Practical Flatness Tech Note

Practical Flatness Tech Note Practical Flatness Tech Note Understanding Laser Dichroic Performance BrightLine laser dichroic beamsplitters set a new standard for super-resolution microscopy with λ/10 flatness per inch, P-V. We ll

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Confocal sensors 08-0-08 Herbert Gross Winter term 07 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 9.0. Introduction Introduction, optical

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131, About the Author The author studied Technical Physics at the Technical University of Delft, The Netherlands. He obtained a master s degree in 1965 with a thesis on the fabrication of lasers. After military

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Confocal sensors 07-0-3 Herbert Gross Winter term 06 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 8.0. Introduction Introduction, optical measurements,

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

ME 297 L4-2 Optical design flow Analysis

ME 297 L4-2 Optical design flow Analysis ME 297 L4-2 Optical design flow Analysis Nayer Eradat Fall 2011 SJSU 1 Are we meeting the specs? First order requirements (after scaling the lens) Distortion Sharpness (diffraction MTF-will establish depth

More information

BASICS OF CONFOCAL IMAGING (PART I)

BASICS OF CONFOCAL IMAGING (PART I) BASICS OF CONFOCAL IMAGING (PART I) INTERNAL COURSE 2012 LIGHT MICROSCOPY Lateral resolution Transmission Fluorescence d min 1.22 NA obj NA cond 0 0 rairy 0.61 NAobj Ernst Abbe Lord Rayleigh Depth of field

More information

BASICS IN BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LIGHT MICROSCOPY

BASICS IN BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LIGHT MICROSCOPY BASICS IN LIGHT MICROSCOPY OVERVIEW 1. Motivation 2. Basic in optics 3. How microscope works 4. Illumination and resolution 5. Microscope optics 6. Contrasting methods -2- MOTIVATION Why do we need microscopy?

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 4: Optimization III 2013-11-04 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

CCAM s Selection of. Zeiss Microscope Objectives

CCAM s Selection of. Zeiss Microscope Objectives CCAM s Selection of Zeiss Microscope Objectives 1. Magnification Image scale 2. Resolution The minimum separation distance between two points that are clearly resolved. The resolution of an objective is

More information

OPTICAL PRINCIPLES OF MICROSCOPY. Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University

OPTICAL PRINCIPLES OF MICROSCOPY. Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University OPTICAL PRINCIPLES OF MICROSCOPY Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University FOREWORD This slide set was originally presented at the ISM Workshop on Theoretical and Experimental

More information

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude. Deriving the Lens Transmittance Function Thin lens transmission is given by a phase with unit magnitude. t(x, y) = exp[ jk o ]exp[ jk(n 1) (x, y) ] Find the thickness function for left half of the lens

More information

Basics of confocal imaging (part I)

Basics of confocal imaging (part I) Basics of confocal imaging (part I) Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Lateral resolution BioImaging &Optics Platform Light

More information

Tutorial Zemax Introduction 1

Tutorial Zemax Introduction 1 Tutorial Zemax Introduction 1 2012-07-17 1 Introduction 1 1.1 Exercise 1-1: Stair-mirror-setup... 1 1.2 Exercise 1-2: Symmetrical 4f-system... 5 1 Introduction 1.1 Exercise 1-1: Stair-mirror-setup Setup

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 7: Wavefront sensors 2016-11-29 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,

More information

Rates of excitation, emission, ISC

Rates of excitation, emission, ISC Bi177 Lecture 4 Fluorescence Microscopy Phenomenon of Fluorescence Energy Diagram Rates of excitation, emission, ISC Practical Issues Lighting, Filters More on diffraction Point Spread Functions Thus Far,

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Reflection! Reflection and Virtual Image!

Reflection! Reflection and Virtual Image! 1/30/14 Reflection - wave hits non-absorptive surface surface of a smooth water pool - incident vs. reflected wave law of reflection - concept for all electromagnetic waves - wave theory: reflected back

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

Dynamic beam shaping with programmable diffractive optics

Dynamic beam shaping with programmable diffractive optics Dynamic beam shaping with programmable diffractive optics Bosanta R. Boruah Dept. of Physics, GU Page 1 Outline of the talk Introduction Holography Programmable diffractive optics Laser scanning confocal

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 1: Phase retrieval 018-01-18 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis Center for Microscopy and Image Analysis Bio 407 Applied Introduction into light José María Mateos Fundamentals of light Compound microscope Microscope composed of an objective and an additional lens (eyepiece,

More information

Microscopy: Fundamental Principles and Practical Approaches

Microscopy: Fundamental Principles and Practical Approaches Microscopy: Fundamental Principles and Practical Approaches Simon Atkinson Online Resource: http://micro.magnet.fsu.edu/primer/index.html Book: Murphy, D.B. Fundamentals of Light Microscopy and Electronic

More information

CCAM Microscope Objectives

CCAM Microscope Objectives CCAM Microscope Objectives Things to consider when selecting an objective Magnification Numerical Aperture (NA) resolving power and light intensity of the objective Working Distance distance between the

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 6-- Herbert Gross Winter term 6 www.iap.uni-jena.de Preliminar Schedule 9.. Aberrations and optimiation Repetition 6.. Structural modifications Zero operands, lens splitting,

More information

Systems Biology. Optical Train, Köhler Illumination

Systems Biology. Optical Train, Köhler Illumination McGill University Life Sciences Complex Imaging Facility Systems Biology Microscopy Workshop Tuesday December 7 th, 2010 Simple Lenses, Transmitted Light Optical Train, Köhler Illumination What Does a

More information

microscopy A great online resource Molecular Expressions, a Microscope Primer Partha Roy

microscopy A great online resource Molecular Expressions, a Microscope Primer Partha Roy Fundamentals of optical microscopy A great online resource Molecular Expressions, a Microscope Primer http://micro.magnet.fsu.edu/primer/index.html Partha Roy 1 Why microscopy Topics Functions of a microscope

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 10: Holography 2017-12-21 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light microscopy Basic concepts of imaging with light Urs Ziegler ziegler@zmb.uzh.ch Light interacting with matter Absorbtion Refraction Diffraction

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Microscope anatomy, image formation and resolution

Microscope anatomy, image formation and resolution Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 0-471-25391-X Visit these websites:

More information

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Computer Aided Design Several CAD tools use Ray Tracing (see

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Edited by Herbert Gross Volume 3: Aberration Theory and Correction of Optical Systems Herbert Cross, Hannfried Zügge, Martin Peschka, Fritz Blechinger BICENTENNIAL BICENTENNIA

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D Microscopy Outline 1. Resolution and Simple Optical Microscope 2. Contrast enhancement: Dark field, Fluorescence (Chelsea & Peter), Phase Contrast, DIC 3. Newer Methods: Scanning Tunneling microscopy (STM),

More information

Medical Photonics Lecture 1.2 Optical Engineering

Medical Photonics Lecture 1.2 Optical Engineering Medical Photonics Lecture 1.2 Optical Engineering Lecture 10: Instruments III 2018-01-18 Michael Kempe Winter term 2017 www.iap.uni-jena.de 2 Contents No Subject Ref Detailed Content 1 Introduction Gross

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light Basic concepts of imaging with light Urs Ziegler ziegler@zmb.uzh.ch Microscopy with light 1 Light interacting with matter Absorbtion Refraction

More information

Very short introduction to light microscopy and digital imaging

Very short introduction to light microscopy and digital imaging Very short introduction to light microscopy and digital imaging Hernan G. Garcia August 1, 2005 1 Light Microscopy Basics In this section we will briefly describe the basic principles of operation and

More information

Reflecting optical system to increase signal intensity. in confocal microscopy

Reflecting optical system to increase signal intensity. in confocal microscopy Reflecting optical system to increase signal intensity in confocal microscopy DongKyun Kang *, JungWoo Seo, DaeGab Gweon Nano Opto Mechatronics Laboratory, Dept. of Mechanical Engineering, Korea Advanced

More information

Flatness of Dichroic Beamsplitters Affects Focus and Image Quality

Flatness of Dichroic Beamsplitters Affects Focus and Image Quality Flatness of Dichroic Beamsplitters Affects Focus and Image Quality Flatness of Dichroic Beamsplitters Affects Focus and Image Quality 1. Introduction Even though fluorescence microscopy has become a routine

More information