Design and Correction of optical Systems

Size: px
Start display at page:

Download "Design and Correction of optical Systems"

Transcription

1 Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross

2 Overview 2 1. Basics Materials Components Paraxial optics Properties of optical sstems Photometr Geometrical aberrations Wave optical aberrations Fourier optical image formation Performance criteria Performance criteria Measurement of sstem qualit Correction of aberrations Optical sstem classification

3 Contents Part Pupil - basic notations - special ras - ra sets - pupil - vignetting 5.2 Canonical coordinates - normalized properties - pupil sphere - aplanatic imaging sstems 5.3 Special imaging setups - telecentricit - anamorphotic imaging - Scheimpflug condition - measurement basic sstem parameters 5.4 Delano diagram - basic idea -examples

4 Definition Field of View and Aperture 4 Imaging on axis: circular / rotational smmetr onl spherical aberration and chromatical aberrations Finite field size, object point off-axis: - chief ra as reference - skew ra bundles: coma and distortion - Vignetting, cone of ra bundle not circular smmetric - to distinguish: tangential and sagittal plane

5 Special Ras 5 Marginal ra : connects the center of the object field and the rim of the pupil Chief ra : connects the outer point of the field of view and the center of the pupil Coma ras: connects the rim of the object field and the rim of the pupil

6 Size of Aperture 6 Quantitative measures of relative opening / size of accepted light cone Numerical aperture NA n F-number sin u' exit pupil image plane F # f ' D EX chief ra Approximation for small apertures: D EX W' U' 1 F # 2 NA marginal ra f'

7 Special Ras in 3D 7 Meridional ras: in main cross section plane Sagittal ras: perpendicular to main cross section plane sagittal coma ra upper meridional coma ra p axis Coma ras: Going through field point and edge of pupil Oblique ras: without smmetr meridional marginal ra field point axis point chief ra axis sagittal ra pupil plane lower meridional coma ra skew ra x p x object plane

8 Tangential- and Sagittal Plane 8 Off-axis object point: 1. Meridional plane / tangential plane / main cross section plane contains object point and optical axis 2. Sagittal plane: perpendicular to meridional plane through object point ' x object plane x' image plane sagittal plane z lens meridional plane

9 Ra-Fan Selection for Transverse Aberration Plots 9 Transverse aberrations: Ra deviation form ideal image point in meridional and sagittal plane respectivel The sampling of the pupil is onl filled in two perpendicular directions along the axes No information on the performance of ras in the quadrants of the pupil x tangential ra fan object point sagittal ra fan pupil

10 Ra Fan and Ra Cone 10 Ra fan: 2-dimensional plane set of ras Ra cone: 3-dimensional filled ra cone object point pupil grid

11 Pupil Sampling 11 Pupil sampling in 3D for spot diagram: all ras from one object point through all pupil points in 2D Light cone completl filled with ras

12 Pupil Sampling 12 Pupil sampling for calculation of tranverse aberrations: all ras from one object point to all pupil points on x- and -axis Two planes with 1-dimensional ra fans No complete information: no skew ras

13 Pupil Sampling 13

14 Pupil Sampling Spot Artefacts 14 Artefacts due to regular gridding of the pupil of the spot in the image plane In realit a smooth densit of the spot is true The line structures are discretization effects of the sampling

15 Diaphragm in Optical Sstems 15 Pupil stop defines: 1. chief ra angle w 2. aperture cone angle u The chief ra gives the center line of the oblique ra cone of an off-axis object point The coma ras limit the off-axis ra cone The marginal ras limit the axial ra cone stop pupil object coma ra u aperture angle w field angle marginal ra image ' chief ra

16 Diaphragm in Optical Sstems 16 The phsical stop defines the aperture cone angle u The real sstem ma be complex The entrance pupil fixes the acceptance cone in the object space The exit pupil fixes the acceptance cone in the image space Ref: Julie Bentle

17 Properties of the Pupil 17 Relevance of the sstem pupil : Brightness of the image Transfer of energ Resolution of details Information transfer Image qualit Aberrations due to aperture Image perspective Perception of depth Compound sstems: matching of pupils is necessar, location and size

18 Entrance and Exit Pupil 18 object point on axis lower marginal ra upper marginal ra U chief ra W U' field point of image on axis point of image upper coma ra outer field point of object exit pupil lower coma ra stop entrance pupil

19 Nested Ra Path 19 Optical Image formation: Sequence of pupil and image planes Matching of location and size of image planes necessar (trivial) Matching of location and size of pupils necessar for invariance of energ densit In microscop known as Köhler illumination

20 20 Pupil Mismatch Telescopic observation with different f-numbers Bad match of pupil location: ke hole effect

21 Vignetting 21 field Artificial vignetting: Truncation of the free area of the aperture light cone stop truncation D 0.8 D axis truncation Natural Vignetting: Decrease of brightness according to cos w 4 due to oblique projection of areas and changed photometric distances imaging with vignetting A Exp imaging without vignetting imaging with vignetting field angle w complete field of view

22 Vignetting 22 3D-effects due to vignetting Truncation of the at different surfaces for the upper and the lower part of the cone object lens 1 aperture lens 2 image stop upper truncation chief ra lower truncation sagittal trauncation coma ras

23 Vignetting 23 Truncation of the light cone with asmmetric ra path for off-axis field points Intensit decrease towards the edge of the image Definition of the chief ra: ra through energetic centroid free area of the aperture chief ra projection of the rim of the 1st lens meridional coma ras sagittal coma ras Vignetting can be used to avoid uncorrectable coma aberrations in the outer field Projektion der Aperturblende Effective free area with extrem aspect ratio: anamorphic resolution projection of the rim of the 2nd lens

24 Centroid Ra 24 Ideal chief ra concept: - breaks down in case of complicated beam truncation - there is no longer a clear and simple unique pupil plane Possible criteria: 1. midpoint of ras in meridional section 2. location of largest sagittal section 3. centroid of area of the free pupil Phsical relevant is the energ centroid This is a general definition and still works in 3D limiting apertures meridional plane center of gravit tangential aperture sagittal aperture

25 25 Vignetting Photographic lens 100mm f/2 1. with strong vignetting ras aimed to boundaries 2. Without vignetting no reall transmitted ras shown Ref: V. Paruchuru

26 Vignetting 26 Illumination fall off in the image due to vignetting at the field boundar

27 Pupil Sphere 27 Generalization of paraxial picture: Principal surface works as effective location of ra bending Paraxial approximation: plane Real sstems with corrected sine-condition (aplanatic): principal sphere

28 Pupil Sphere 28 Pupil sphere: equidistant sinesampling

29 Canonical Coordinates 29 Aplanatic sstem: Sine condition fulfilled Pupil has spherical shape Normalized canonical coordinates for pupil and field x p x h p EP n sin u x x x' p x' x' h' p EP n' sin u' x'

30 30 Canonical Coordinates Definition of canonical coordinates of an oblique ra bundle p upper tangential coma ra upper tangential coma ra ' p ' O' h TCU Q chief ra h' TCU Q' R EX U' CR U' TCL R EN h TCL chief ra h' TCL O U TCU U CR U TCL EN lower tangential coma ra lower tangential coma ra EX

31 Canonical Coordinates 31 Normalized pupil coordinates x p x h p EP x' p x' h' p EP Aplanatic imaging x' p x p Normalized field coordinates x n sin x x' n' sin' x' Paraxial imaging Reference on chied ra Reduced image side coordinates x' x NA nsin u n x nsin sag x sin sin TKO n sin HS sin tan HS

32 Telecentricit 32 Special stop positions: 1. stop in back focal plane: object sided telecentricit 2. stop in front focal plane: image sided telecentricit 3. stop in intermediate focal plane: both-sided telecentricit Telecentricit: 1. pupil in infinit 2. chief ra parallel to the optical axis object object sides chief ras parallel to the optical axis telecentric stop image

33 Telecentricit 33 Double telecentric sstem: stop in intermediate focus Realization in lithographic projection sstems

34 Anamorphotic Imaging Setup 34 Anamorphotic imaging: different magnifications in x- and -cross section, tangential and sagittal magnification Identical image location in both sections Anamorphotic factor clindrical lens 1 clindrical lens 2 n1 u t nk u n1 u s n u k F anamoph t,1 t, k s,1 s, k s t u t u s

35 Anamorphotic Imaging Setup 35 Realization of an anamorphotic imaging with clindrical lenses x f f x ' x'

36 Curved Object Surface 36 Object surface is spherical bended with radius R: image is bended b R Paraxial approximation: 2 depth transfer magnification gives 2R Notice: R and R are bended with the same orientation, This behavior is opposite to the curved image in the Petzval picture z z' m z 2 R' R m z image surface R' R ' object surface z'

37 37 Scheimpflug Imaging Imaging with tilted object plane If principal plane, object and image plane meet in a common point: Scheimpflug condition, sharp imaging possible Scheimpflug equation s s' tantan tan' tan

38 Scheimpflug Imaging 38 Derivation of Scheimpflug imaging condition with depth magnification z' m z 2 2 ' o 2 ' d P P' z o F' ' o ' s s' z'

39 Scheimpflug Imaging 39 General propert: - Magnification depends on location in the object plane - anamorphotic magnification - corresponds to macroscopic kestone distortion V sin cos ' f ' ' s x ' s s ' 1 ' sin sin ' s ' 1 ' sin 2 sin Imaging Relation h h' tan' tan ' s' s d ' s s' Objekt Bild

40 40 Scheimpflug Imaging Example for oblique imaging with Scheimpflug condition Sharp image Strong distortion

41 Scheimpflug Imaging 41 Kestone distortion real ideal

42 Measurement of Focal Length with Collimator 42 Collimated incident light Calibrated collimator with focal length f c and test chart with size Selection of sharp image plane Analsis of image size f ' f ' c ' f' c f' ' test chart collimator test optic image

43 43 Measurement of Focal Length According to Gauss Setup with distance object-image L > 4f Known location of the principal plane P of the sstem distance d P between principal planes Selection of two sstem locations with sharp image Relative axial shift D between the two setups f L d 4 H 4 2 D L d H d P P P' F F' position 1 s' s f f' D F F' position 2 L P P'

44 Measurement of Focal Length with Focometer 44 Telecentric movable measurement microscope with offset : Abbe focometer Focusing of two different test charts with sizes 1 and 2 Determination of the focal length b tan f e 2 1 u

45 Measurement of Focal Length b Confocal Setup 45 Setup with fiber and plane mirror for autocollimation Change of distance between test lens and fiber Analsis of the recoupled power into the fiber (confocal) gives the focal point

46 Delano Diagram 46 Special representation of ra bundles in optical sstems: marginal ra height MR vs. chief ra height CR Delano digram gives useful insight into sstem laout Ever z-position in the sstem corresponds to a point on the line of the diagram Interpretation needs experience lens at pupil position field lens in the focal plane collimator lens marginal ra lens field lens collimator chief ra

47 Delano Diagram 47 Pupil locations: intersection points with -axis exit pupil Field planes/object/image: intersectioin points with -bar axis Pupillenlagen stop and entrance pupil lens object plane image plane Construction of focal points b parallel lines to initial and final line through origin front focal point F image space object space rear focal point F'

48 Delano Diagram 48 Influence of lenses: diagram line bended weak negative refractive power weak positive refractive power strong positive refractive power Location of principal planes principal plane P object space image space P

49 Delano Diagram 49 Conjugated point are located on a straight line through the origin conjugate line conjugate line with m = 1 Distance of a sstem point from origin gives the sstems half diameter conjugate points principal point object space image space curve of the sstem lens 1 lens 2 maximum height of the coma ra at lens 2 lens 3 D/2

50 Delano Diagram Examples 50 Afocal Kepler-tpe telecope lens 1 objective intermediate focal point lens 2 eepiece Effect of a field lens lens 1 objective intermediate focal point field lens lens 2 eepiece

51 Delano Diagram Example 51 Microscopic sstem microscope objective aperture stop tube lens telecentric object intermediate image image at infinit exit pupil eepiece

52 Summar of Important Topics 52 Chief ra and marginal ra define the field size and the aperture size of a sstem Special ra sets are defined to exhaust the light cone The aperture gives the light cone angle The pupil gives the light flux through a sstem In a real sstem the phsical stop, the object space and the image space pupil must be distinguished Vignetting is a partial blocking of outer ras for off-axis field points and obliques cones Apalantic corrected sstems have a spherical shaped pupil Canonical coordinate help to describe sstems in a normalized wa Telecentric sstem have a stop in a focal plane and a axis-parallel chief ra The Scheimpflug-condition allows a sharp imaging for tilted object planes Scheimpflug setups suffer from large distortion The measurement of basic sstem parameters is mainl based on the imaging equation The Delano diagram is defined b a chief-ra vs marginal ra height The Delano diagram helps in understanding complicated combined sstems

53 Outlook 53 Next lecture: Part 6 Photometr Date: Wednesda, Contents: 6.1 Basic notations 6.2 Lambertian radiator 6.3 Flux calculation 6.4 Light transport in optical sstems 6.5 Further modeling

Optical Design with Zemax for PhD - Basics

Optical Design with Zemax for PhD - Basics Optical Design with Zemax for PhD - Basics Lecture 3: Properties of optical sstems II 2013-05-30 Herbert Gross Summer term 2013 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 2: Basic Zemax handling 2015-12-02 Herbert Gross Winter term 2015 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content 1 11.11. Introduction

More information

CHAPTER 1 Optical Aberrations

CHAPTER 1 Optical Aberrations CHAPTER 1 Optical Aberrations 1.1 INTRODUCTION This chapter starts with the concepts of aperture stop and entrance and exit pupils of an optical imaging system. Certain special rays, such as the chief

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 7--3 Herbert Gross Winter term 7 www.iap.uni-jena.de Preliminar Schedule Lens Design II 7 6.. Aberrations and optimiation Repetition 3.. Structural modifications Zero

More information

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term Lens Design II Lecture 3: Aspheres 6-- Herbert Gross Winter term 6 www.iap.uni-jena.de Preliminar Schedule 9.. Aberrations and optimiation Repetition 6.. Structural modifications Zero operands, lens splitting,

More information

Section 11. Vignetting

Section 11. Vignetting Copright 2018 John E. Greivenkamp 11-1 Section 11 Vignetting Vignetting The stop determines the sie of the bundle of ras that propagates through the sstem for an on-axis object. As the object height increases,

More information

OPTICAL IMAGING AND ABERRATIONS

OPTICAL IMAGING AND ABERRATIONS OPTICAL IMAGING AND ABERRATIONS PARTI RAY GEOMETRICAL OPTICS VIRENDRA N. MAHAJAN THE AEROSPACE CORPORATION AND THE UNIVERSITY OF SOUTHERN CALIFORNIA SPIE O P T I C A L E N G I N E E R I N G P R E S S A

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN CHAPTER 33 ABERRATION CURVES IN LENS DESIGN Donald C. O Shea Georgia Institute of Technology Center for Optical Science and Engineering and School of Physics Atlanta, Georgia Michael E. Harrigan Eastman

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Introductions to aberrations OPTI 517

Introductions to aberrations OPTI 517 Introductions to aberrations OPTI 517 Lecture 11 Spherical aberration Meridional and sagittal ray fans Spherical aberration 0.25 wave f/10; f=100 mm; wave=0.0005 mm Spherical aberration 0.5 wave f/10;

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term Microscopy Lecture 2: Optical System of the Microscopy II 212-1-22 Herbert Gross Winter term 212 www.iap.uni-jena.de Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer 1 15.1. Optical

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction topics Herbert Gross. Winter term Lens Design II Lecture 8: Special correction topics 2018-12-12 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2018 1 17.10. Aberrations and optimization Repetition

More information

Lens Design I Seminar 1

Lens Design I Seminar 1 Xiang Lu, Ralf Hambach Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 1 Warm-Up (20min) Setup a single, symmetric, biconvex lens

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type) Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

More information

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term Lens Design II Lecture 8: Special correction features I 2017-12-04 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule Lens Design II 2017 1 16.10. Aberrations and optimization Repetition

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Tangents. The f-stops here. Shedding some light on the f-number. by Marcus R. Hatch and David E. Stoltzmann

Tangents. The f-stops here. Shedding some light on the f-number. by Marcus R. Hatch and David E. Stoltzmann Tangents Shedding some light on the f-number The f-stops here by Marcus R. Hatch and David E. Stoltzmann The f-number has peen around for nearly a century now, and it is certainly one of the fundamental

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner Introduction to Optical Modeling Friedrich-Schiller-University Jena Institute of Applied Physics Lecturer: Prof. U.D. Zeitner The Nature of Light Fundamental Question: What is Light? Newton Huygens / Maxwell

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

ME 297 L4-2 Optical design flow Analysis

ME 297 L4-2 Optical design flow Analysis ME 297 L4-2 Optical design flow Analysis Nayer Eradat Fall 2011 SJSU 1 Are we meeting the specs? First order requirements (after scaling the lens) Distortion Sharpness (diffraction MTF-will establish depth

More information

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131, About the Author The author studied Technical Physics at the Technical University of Delft, The Netherlands. He obtained a master s degree in 1965 with a thesis on the fabrication of lasers. After military

More information

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 8.1

More information

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f Phys 531 Lecture 9 30 September 2004 Ray Optics II Last time, developed idea of ray optics approximation to wave theory Introduced paraxial approximation: rays with θ 1 Will continue to use Started disussing

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Supplemental Materials. Section 25. Aberrations

Supplemental Materials. Section 25. Aberrations OTI-201/202 Geometrical and Instrumental Optics 25-1 Supplemental Materials Section 25 Aberrations Aberrations of the Rotationally Symmetric Optical System First-order or paraxial systems are ideal optical

More information

Long Wave Infrared Scan Lens Design And Distortion Correction

Long Wave Infrared Scan Lens Design And Distortion Correction Long Wave Infrared Scan Lens Design And Distortion Correction Item Type text; Electronic Thesis Authors McCarron, Andrew Publisher The University of Arizona. Rights Copyright is held by the author. Digital

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Lens Design II Seminar 6 (Solutions)

Lens Design II Seminar 6 (Solutions) 2017-01-04 Prof. Herbert Gross Yi Zhong, Norman G. Worku Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design II Seminar 6 (Solutions) 6.1. Correction

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 4: Optimization III 2013-11-04 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Solution of Exercises Lecture Optical design with Zemax Part 6

Solution of Exercises Lecture Optical design with Zemax Part 6 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax Part 6 6 Illumination

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Opto Engineering S.r.l.

Opto Engineering S.r.l. TUTORIAL #1 Telecentric Lenses: basic information and working principles On line dimensional control is one of the most challenging and difficult applications of vision systems. On the other hand, besides

More information

Magnification, stops, mirrors More geometric optics

Magnification, stops, mirrors More geometric optics Magnification, stops, mirrors More geometric optics D. Craig 2005-02-25 Transverse magnification Refer to figure 5.22. By convention, distances above the optical axis are taken positive, those below, negative.

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

OPAC 202 Optical Design and Inst.

OPAC 202 Optical Design and Inst. OPAC 202 Optical Design and Inst. Topic 9 Aberrations Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Apr 2018 Sayfa 1 Introduction The influences

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

Properties of optical instruments. Projection optical systems

Properties of optical instruments. Projection optical systems Properties of optical instruments Projection optical systems Instruments : optical systems designed for a specific function Projection systems: : real image (object real or at infinity) Examples: videoprojector,,

More information

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Modern Optical Engineering The Design of Optical Systems Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California Fourth Edition Me Graw Hill New York Chicago San Francisco

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Speed and Image Brightness uniformity of telecentric lenses

Speed and Image Brightness uniformity of telecentric lenses Specialist Article Published by: elektronikpraxis.de Issue: 11 / 2013 Speed and Image Brightness uniformity of telecentric lenses Author: Dr.-Ing. Claudia Brückner, Optics Developer, Vision & Control GmbH

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

Actually, you only need to design one monocular of the binocular.

Actually, you only need to design one monocular of the binocular. orro rism Binoculars Design a pair of 8X40 binoculars: Actually, you only need to design one monocular of the binocular. Specifications: Objective ocal Length = 200 mm Eye Relief = 15 mm The system stop

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

The optical analysis of the proposed Schmidt camera design.

The optical analysis of the proposed Schmidt camera design. The optical analysis of the proposed Schmidt camera design. M. Hrabovsky, M. Palatka, P. Schovanek Joint Laboratory of Optics of Palacky University and Institute of Physics of the Academy of Sciences of

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens 3-1 Section 3 Imaging With A Thin Lens Object at Infinity An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the

More information

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Study on Imaging Quality of Water Ball Lens

Study on Imaging Quality of Water Ball Lens 2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017) Study on Imaging Quality of Water Ball Lens Haiyan Yang1,a,*, Xiaopan Li 1,b, 1,c Hao Kong, 1,d Guangyang Xu and1,eyan

More information

Geometrical Optics Optical systems

Geometrical Optics Optical systems Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

More information

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

More information

Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems

Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical Imaging Systems Use of the Abbe Sine Condition to Quantify Alignment Aberrations in Optical maging Systems James H. Burge *, Chunyu Zhao, Sheng Huei Lu College of Optical Sciences University of Arizona Tucson, AZ USA

More information

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics 1011CE Restricts rays: acts as a single lens: inverts

More information

Optical Engineering 421/521 Sample Questions for Midterm 1

Optical Engineering 421/521 Sample Questions for Midterm 1 Optical Engineering 421/521 Sample Questions for Midterm 1 Short answer 1.) Sketch a pechan prism. Name a possible application of this prism., write the mirror matrix for this prism (or any other common

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

Galilean. Keplerian. EYEPIECE DESIGN by Dick Suiter

Galilean. Keplerian. EYEPIECE DESIGN by Dick Suiter EYEPIECE DESIGN by Dick Suiter This article is about the design of eyepieces. By this, I don't mean intricate discussions about advantages of Nagler Types 3 vs. 4 or other such matters of interest only

More information

Light: Reflection and Refraction Light Reflection of Light by Plane Mirror Reflection of Light by Spherical Mirror Formation of Image by Mirror Sign Convention & Mirror Formula Refraction of light Through

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

LEICA Summarit-S 70 mm ASPH. f/2.5 / CS

LEICA Summarit-S 70 mm ASPH. f/2.5 / CS Technical Data. Illustration 1:2 Technical Data Order no. 1155 (CS: 1151) Image angle (diagonal, horizontal, vertical) approx. 42 / 35 / 24, corresponds to approx. 56 focal length in 35 format Optical

More information

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information