Geometrical Optics Optical systems

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems

2 Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image should be magnified Rays entering eye should not be converging Use positive lens and s o < f

3 Magnifying glass Magnifying power MP, or angular magnification - the ratio of the size of the retinal image as seen through the instrument to that as seen by bare eye at a normal viewing distance: MP a u a - aided, u - unaided Largest image without aid: Standard observer: d o =0.25 m Near point, d o : closest point at which image can be brought into focus

4 Magnifying glass MP a u a y i / u o L y / d o unaided view aided view Using paraxial approximation and lens equation (page 211): do MP 1 D L l L MP D L d o D Most common case: s o =f, L= Standard observer: d o =0.25 m 1 f If D=10, MP=2.5, notation 2.5X Typically limited to 2.5X - 3X

5 Eyepiece (ocular) Eyepiece is essentially a magnifying glass that is designed to magnify image created by the previous optical system. Virtual object! Virtual image at Center of exit pupil - at eye plane The Huygens eyepiece More complex:

6 Microscopes Objective Image plane #1 Eyepiece Image plane #2 M 1 M 2 Microscopes goal: to magnify objects that are really close. When two lenses are used, it s called a compound microscope.

7 Compound microscope ~1595, Zacharias Janssen: compound microscope ~1660, Robert Hooke s microscope, ~30X magnification ~1700, Anton Van Leeuwenhoek microscope (single lens) 270X magnification Father of microscope

8 Total magnification: MP = M To M Ae Compound microscope angular magnification of eyepiece Transverse magnification of objective Standard design: L = 160 mm Tube length Assuming standard tube length and standard viewing distance 25 cm: 160mm 250mm MP fo fe Respective powers are marked as 10X, 20X etc.

9 Compound microscope Amount of light (brightness of image) depends on numerical aperture of the objective: NA = n i sin max Power = 40X NA=0.65 Maximum NA in air is 1 Can be as large as in oil

10 Microscope summary

11 If all light rays are directed through a pinhole, it forms an image with an infinite depth of field. The pinhole camera Object Pinhole Image The concept of the focal length is inappropriate for a pinhole lens. The magnification is still d i /d o. The first person to mention this idea was Aristotle. With their low cost, small size and huge depth of field, they re useful in security applications.

12 Camera obscura Latin: dark room pinhole camera 1769 Portable tent version 1620 Inside camera obscura Central Park, :Vermeer The Girl with the Red Hat Probably used camera obscura

13 Camera 1826: First photograph by Joseph Nicephore Niepce Exposure time: 8 hours!

14 Photography lenses Photography lenses are complex! Especially zoom lenses. Double Gauss Petzval These are older designs.

15 Photography lenses Modern lenses can have up to 20 elements! Canon 17-85mm f/ zoom Canon EF 600mm f/4l IS USM Super Telephoto Lens 17 elements in 13 groups \$12,000

16 Modern SLR Camera single lens reflex For sharp image lens is moved back and forth - changing s i changes s o Film size is fixed (field stop) - changing f can change angular field of view. f=6-40 mm - wide-angle f~50 mm - normal angle f= telephoto lens Diaphragm=variable aperture stop controls f-number, or amount of light

17 Telescopes Keplerian telescope A telescope should image an object, but, because the object will have a very small solid angle, it should also increase its solid angle significantly, so it looks bigger. Image plane #1 Image plane #2 M 1 M 2

18 The telescope tele-skopos (Greek) - seeing at a distance 1608, Hans Lippershey tried to patent kijker looker (Dutch) 1609: Galileo, two lenses and an organ pipe

19 Telescope Terminology

20 Refracting telescope Notes: image is inverted object is typically at infinity Angular magnification: MP a u f f o e

21 Terrestrial (non-inverting) telescope

22 Binoculars

23 Telescope aperture Telescope aperture: * determines amount of light collected more light - more low-brightness distant stars could be seen * determines the angular resolution diffraction limited angle is 1.22 /D radians (chapter 10) - wavelength of light D - diameter of lens (or mirror)

24 Exercise A friend tells you that the government is using Hubble telescope to read car license plates. Is it possible? Orbit height 600 km, aperture 2.4 m Hubble Assume best case scenario: the car s license plate faces up Solution: To resolve license plate number need ~2 cm resolution cm 600,000 m nm must have D 20 m D 2.4 m telescope could resolve ~15 cm Note: atmospheric turbulence will most probably lower the resolving power below theoretical limit

25 Refracting telescope aperture Largest refracting telescope (~1900): 40 doublet, 500 pounds. Net weight: 20 tons Yerkes, Williams Bay, WI Lens versus mirror: - harder to make (need large diameter to collect more light) - focal length depends on wavelength: n=n( )

26 Reflecting telescopes Keck 10 m telescope Hawaii, 1993 Arecibo Observatory 305 m radio telescope

27 Reflecting telescope prime focus 1661: Invented by Scottsman James Gregory 1668: Constructed successfully by Newton Newtonian telescope

28 The Cassegrain Telescope Telescopes must collect as much light as possible from the generally very dim objects many light-years away. It s easier to create large mirrors than large lenses (only the surface needs to be very precise). Object It may seem like the image will have a hole in it, but only if it s out of focus.

29 Liquid mercury telescope z Liquid mercury mirror 3m NASA s Debris Observatory Spinning liquid in equilibrium: parabolic surface 2 2 r z 2g One turn in ~10 seconds must be maintained at 10-6 level ~30 L of Hg for 6 m mirror Surface smoothness ~10-7 (.3mm bump on Earth) Points only up Costs \$1M instead of \$100M r

30 6 m liquid mercury telescope f/1.5 Zenith telescope 70 km East of Vancouver f/1.5, f=10 m mirror support

31 Correcting aberrations Spherical mirrors do not work: spherical aberrations and coma Aplanatic reflectors: Both primary and secondary mirrors are hyperbolic Example: Hubble telescope Catadioptric systems: Correct spherical aberrations using specially profiled lens

32 Wavefront shaping Lenses, mirrors - reshape wavefronts, designed to work with spherical or plane waves More complex elements - more complex wavefronts Phys 322 Lecture 16 Wavefront distortions Light from star passes turbulent air - wavefront is not plane anymore, it has few m distortions (> ~0.5 m) In a good night, the planar area of the wave from distant star is ~20 cm - no matter how large the telescope is resolution is the same as that of 20 cm telescope! Need techniques that could constantly adapt optical elements to restore plane wave: Adaptive optics

34 Phase conjugation If we could at the same instant turn the wave direction backwards we can restore the initial (plane) wave shape The light propagation is reversible. 1972: Zeldovich et al. Use Stimulated Brillouin Scattering Intense electric field increases n at minima and maxima (sound wave) - constructive backward scattering (simplified view) /2

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

Lecture 15 Chap. 6 Optical Instruments. Single lens instruments Eyeglasses Magnifying glass. Two lens Telescope & binoculars Microscope

Lecture 15 Chap. 6 Optical Instruments Single lens instruments Eyeglasses Magnifying glass Two lens Telescope & binoculars Microscope The projector Projection lens Field lens October 12, 2010 all these

Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

Two Fundamental Properties of a Telescope

Two Fundamental Properties of a Telescope 1. Angular Resolution smallest angle which can be seen = 1.22 / D 2. Light-Collecting Area The telescope is a photon bucket A = (D/2)2 D A Parts of the Human Eye

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

The Optics of Mirrors

Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

Reflectors vs. Refractors

1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

Binocular and Scope Performance 57. Diffraction Effects

Binocular and Scope Performance 57 Diffraction Effects The resolving power of a perfect optical system is determined by diffraction that results from the wave nature of light. An infinitely distant point

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

In our discussion of the behavior of light in the two previous Chapters, we

Of the many optical devices we discuss in this Chapter, the magnifying glass is the simplest. Here it is magnifying part of page 722 of this Chapter, which describes how the magnifying glass works according

Chapter 3 Optical Systems

Chapter 3 Optical Systems The Human Eye [Reading Assignment, Hecht 5.7.1-5.7.3; see also Smith Chapter 5] retina aqueous vitreous fovea-macula cornea lens blind spot optic nerve iris cornea f b aqueous

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

OPTICS LENSES AND TELESCOPES

ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

Geometric optics & aberrations

Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

Physics 1230 Homework 8 Due Friday June 24, 2016

At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

Basic principles of photography. David Capel 346B IST

Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

Lab 10: Lenses & Telescopes

Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

!"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Early Telescopes & Geometrical Optics C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. 1 1.2. Image Formation Fig. 1. Snell s law indicates the bending of light at the interface of two

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

Refraction, Lenses, and Prisms

CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

Image Formation by Lenses

Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

13. Optical Instruments*

13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

Astronomical Cameras

Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET.

Optics B Science Olympiad North Regional Tournament at the University of Florida 1 DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Part I: General Body Knowledge Questions 2 1) (3 PTS) For much of the

Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

CHAPTER 3 OPTICAL INSTRUMENTS

1 CHAPTER 3 OPTICAL INSTRUMENTS 3.1 Introduction The title of this chapter is to some extent false advertising, because the instruments described are the instruments of first-year optics courses, not optical

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

a) (6) How much time in milliseconds does the signal require to travel from the satellite to the dish antenna?

General Physics II Exam 3 - Chs. 22 25 - EM Waves & Optics April, 203 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results with correct units

The Microscope. Packet #2. 10/17/2016 9:12:02 PM Ryan Barrow 2012

1 The Microscope Packet #2 10/17/2016 9:12:02 PM Ryan Barrow 2012 2 Historical Timeline 1609 Galileo Galilei develops a compound microscope with a convex and a concave les. 1665 Robert Hooke publishes

Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

CHAPTER 34. Optical Images

CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus

2.710 Optics Spring 09 Problem Set #3 Posted Feb. 23, 2009 Due Wednesday, March 4, 2009

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Problem Set # Posted Feb. 2, 2009 Due Wednesday, March 4, 2009 1. Wanda s world Your goldfish Wanda happens to be situated at the center of

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

Optics and Telescopes

Optics and Telescopes Properties of Light Law of Reflection - reflection Angle of Incidence = Angle of Law of Refraction - Light beam is bent towards the normal when passing into a medium of higher Index

Waves & Oscillations

Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

Reflection and Refraction of Light

Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

INSIDE LAB 6: The Properties of Lenses and Telescopes

INSIDE LAB 6: The Properties of Lenses and Telescopes OBJECTIVE: To construct a simple refracting telescope and to measure some of its properties. DISCUSSION: In tonight s lab we will build a simple telescope

Master program "Optical Design"

University ITMO, Russia WUT, Poland Department of Applied and Computer Optics Photonics Engineering Division http://zif.mchtr.pw.edu.pl Master program "Optical Design" (ACO Department), St. Petersburg

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures! Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on!

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

Microscope. Dr. Leena Barhate Department of Microbiology M.J.College, Jalgaon

Microscope Dr. Leena Barhate Department of Microbiology M.J.College, Jalgaon Acknowledgement http://www.cerebromente.org.br/n17/histor y/neurons1_i.htm Google Images http://science.howstuffworks.com/lightmicroscope1.htm

CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

Chapter 28. Reflection and Refraction

Chapter 28 Reflection and Refraction Light takes the path from one point to another that is a. quickest. b. shortest. c. closest to a straight line. d. None of these. Light takes the path from one point

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

Useful Optics Information

Massachusetts Institute of Technology Department of Earth, Atmospheric, and Planetary Sciences 12.409 Observing Stars and Planets, Spring 2002 Handout 7 week of February 25, 2002 Copyright 1999 Created

Chapter 8. The Telescope. 8.1 Purpose. 8.2 Introduction A Brief History of the Early Telescope

Chapter 8 The Telescope 8.1 Purpose In this lab, you will measure the focal lengths of two lenses and use them to construct a simple telescope which inverts the image like the one developed by Johannes

Exam 4--PHYS 102--S15

Name: Class: Date: Exam 4--PHYS 102--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mirror produces an upright image. The object is 2 cm high; the

Introduction to Geometrical Optics This page is intentionally left blank Introduction to Geometrical Optics Milton Katz state university of New York US* World Scientific «New Jersey London Sim Singapore

Optical Design with Zemax

Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

Properties of optical instruments

Properties of optical instruments Visual optical systems part 1: afocal systems (telescope type) A basic optical description of the eye Power: 60 diopters (at rest) Equivalent to a single spherical surface,

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

Telescopes and their configurations. Quick review at the GO level

Telescopes and their configurations Quick review at the GO level Refraction & Reflection Light travels slower in denser material Speed depends on wavelength Image Formation real Focal Length (f) : Distance

Lecture 7: Camera Models

Lecture 7: Camera Models Professor Stanford Vision Lab 1 What we will learn toda? Pinhole cameras Cameras & lenses The geometr of pinhole cameras Reading: [FP]Chapters 1 3 [HZ] Chapter 6 2 What we will

Physics 3340 Spring Fourier Optics

Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

The New. Astronomy. 2 Practical Focusing

The New 2 Practical Focusing Astronomy CCD cameras represent some pretty fancy technology, but in some ways they are just like ordinary cameras. As with a traditional film camera, the difference between

Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

Image Formation Fundamentals

03/04/2017 Image Formation Fundamentals Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Imaging Conjugate Points Imaging Limitations

Phys214 Fall 2004 Midterm Form A

1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

THE TELESCOPE. PART 1: The Eye and Visual Acuity

THE TELESCOPE OBJECTIVE: As seen with the naked eye the heavens are a wonderfully fascinating place. With a little careful watching the brighter stars can be grouped into constellations and an order seen

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

O5: Lenses and the refractor telescope

O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

Lens Design II. Lecture 8: Special correction features I Herbert Gross. Winter term

Lens Design II Lecture 8: Special correction features I 2015-12-08 Herbert Gross Winter term 2015 www.iap.uni-jena.de Preliminary Schedule 2 1 20.10. Aberrations and optimization Repetition 2 27.10. Structural

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the