Optical Signal Processing


 Garry Allison
 1 years ago
 Views:
Transcription
1 Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A WileyInterscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto / Singapore
2 Contents Chapter 1. Basic Signal Parameters Introduction Characterization of a General Signal By Bandwidth By Time By Sample Interval By Number of Samples By Number of Amplitude Levels or Signal Features By Degrees of Freedom The Sample Function Examples of Signals Spatial Signals 8 Chapter 2. Geometrical Optics Introduction 2.2 Refractive Index and Optical Path 2.3 Basic Laws of Geometrical Optics Law of Reflection Law of Refraction Fermat's Principle The Critical Angle 2.4 Refraction by Prisms Minimum Deviation Angle Dispersion by a Prism Beam Magnification by a Prism CounterRotating Prisms The Wobble Plate 2.5 The Lens Formulas The Sign Convention Refraction at a Curved Surface
3 xiv CONTENTS The Refraction Equation for Combined Surfaces The Condenser Lens Configuration The Collimating Lens Configuration Principal Planes ThinLens Systems Afocal or Telescopic Configurations The General Imaging Condition Ray Tracing Lateral Magnification The Principal Pupil Ray The Optical Invariant Magnification Revisited Spatial Resolution Space Bandwidth Product Matching the Information Capacity of System Components Classification of Lenses and Systems The Coddington Shape Factor The Coddington Position Factor Aberrations Spherical Aberration Coma Astigmatism Curvature of Field Distortion Splitting the Lens 65 Chapter 3. Physical Optics Introduction The Fresnel Transform Convolution and Impulse Response Diffraction by Two Sources Fresnel Zones, Chirp Functions, and Holography The Fresnel Transform of a Slit The Fourier Transform The Fourier Transform of a Periodic Function The Fourier Transform for Nonperiodic Signals The Fourier Transform in Optics Examples of Fourier Transforms Fourier Transforms of Aperture Functions A Partitioned Aperture Function A Periodic Signal 103
4 XV 3.5 The Inverse Fourier Transform Bandlimited Signals RayleighResolution Criterion Abbe's Resolution Criterion The Sample Function, Sampling Theorem, and Decomposition Extended FourierTransform Analysis The Basic Elements of an Optical System Operational Notation A Basic Optical System Cascaded Optical Systems The Scale of the Fourier Transform Maximum Information Capacity and Optimum Packing Density Maximum Information Capacity Optimum Packing Density Convergent Illumination The ChirpZ Transform System Coherence Spatial Coherence Temporal Coherence Spatial and Temporal Coherence 140 er 4. Spectrum Analysis Introduction Light Sources Spatial Light Modulators Light Valve Spatial Light Modulators Optically Addressed ElectroOptic Spatial Light Modulators LiquidCrystal Spatial Light Modulators MagnetoOptic Spatial Light Modulators The Detection Process in the Fourier Domain A Special Photodetector Array Spectral Responsivity and Typical Power Levels The Number of Photodetector Elements Array Geometry Readout Rate Blooming and Electrical Crosstalk Linearity and Uniformity of Response System Performance Parameters Total Spatial Frequency Bandwidth Sidelobe Control and Crosstalk 160
5 XVI CONTENTS Frequency Resolution/Photodetector Spacing Array Spacing and Number of Photodetector Elements Dynamic Range Intermodulation Products SignaltoNoise Ratio and the Minimum Signal Level Integration Time/Bandwidth Example Quantum Noise Limit RasterFormat Spectrum Analyzer The Recording Format The TwoDimensional Spectrum Analyzer Illustration of RasterFormat Spectra Summary of the Main Design Concepts 194 Chapter 5. Spatial Filtering Introduction Some Fundamentals of Signal Processing Linear, SpaceInvariant Systems Parseval's Theorem Correlation Input/Output Spectral Densities Matched Filtering Inverse Filtering Spatial Filters Binary Spatial Filters Binary Filters for Signal Detection or Excision Other Applications of Binary Filters Magnitude Spatial Filters Phase Spatial Filters RealValued Spatial Filters Experimental Examples The Spatial Carrier Frequency Filter Interferometric Methods for Constructing Filters Limitations of the MachZehnder Interferometer The Rayleigh Interferometer The MinimumAperture Interferometer Information Processing Arbitrary Reference Function Bandwidth Considerations 237
6 CONTENTS xvii 5.14 Multiplexed Filters Computer Generated Filters Reference Function Optical Processors 240 Chapter 6. Spatial Filtering Systems Introduction Optical Signal Processor and Filter Generator The Light Source The Spatial Light Modulator The Fourier Transform Lens The Filter Plane The Imaging Lens The Readout Module The Thresholding Operation The Importance of Nonoverlapping Signals OnChip Processing Constant FalseAlarm Rate The ReferencetoSignalBeam Ratio Orientation and ScaleSearching Operations The Orientation Search The Scale Search Methods for Handling Nonuniform Noise Spectral Densities Dual FrequencyPlane Processing Transposed Processing for Adaptive Filtering Other Applications for Optical Spatial Filtering Target Recognition Motion Analysis Frame Alignment and Stereo Compilation The Effects of Small Displacements of Spatial Filters Lateral Displacement Longitudinal Displacements Random Motion of the Filter 284 Chapter 7. AcoustoOptic Devices Introduction AcoustoOptic Cell Spatial Light Modulators RamanNath Mode The Bragg Mode Diffraction Angles, Spatial Frequencies, and Temporal Frequencies The Time Bandwidth Product 296
7 xviii CONTENTS 7.3 Dynamic Transfer Relationships Diffraction Efficiency Input/Output Relationships Time Delays and Notation PhaseModulation Notation Sign Notation Conjugate Relationships Visualization of the AcoustoOptic Interaction Applications of AcoustoOptic Devices AcoustoOptic Modulation AcoustoOptic Beam Deflectors 309 Chapter 8. AcoustoOptic Power Spectrum Analyzers Introduction A Basic Spectrum Analyzer The Illumination Subsystem A RamanNathMode Spectrum Analyzer A BraggMode Spectrum Analyzer The Generalization to Arbitrary Signals Aperture Weighting for Sidelobe Control Resolution Dynamic Range and SignaltoNoise Ratio SpurFree Dynamic Range Intermodulation Products Due to AcoustoOptic Cells Signal Compression Scattered Light Photodetector Geometric Considerations Example The SignaltoNoise Ratio Radiometers Summary of the Main Design Concepts 365 Chapter 9. Heterodyne Systems Introduction The Interference Between Two Waves Spatial Interference Temporal and Spatial Interference Overlapping Waves and Photodetector Size Optimum Photodetector Size for PlaneWave Interference 375
8 CONTENTS xix Optimum Photodetector Size for a TwoDimensional Chirp Optimum Photodetector Size for a OneDimensional Chirp Optimum Photodetector Size for a General Signal The Optical Radio Direct Detection Heterodyne Detection A Generalized Heterodyne System 393 Chapter 10. Heterodyne Spectrum Analysis Introduction Basic Theory Spatial and Temporal Frequencies: The Mixed Transform The cw Signal A Short Pulse The Evolving Pulse The Distributed Local Oscillator The Ideal Reference Signal The Mixed Transform of the Reference Signal Photodetector Geometry and Bandwidth The Bandpass Filter Shape Crosstalk Resolution, Accuracy, and Photodetector Size Temporal Frequencies of the Reference Bias Term Dynamic Range Comparison of the Heterodyne and Power Spectrum Analyzer Performance Both Systems ThermalNoise Limited Both Systems ShotNoise Limited Power Spectrum Analyzer ThermalNoise Limited; Heterodyne Spectrum Analyzer ShotNoise Limited Power Spectrum Analyzer Using a CCD Array Hybrid Heterodyne Spectrum Analyzer 430 Chapter 11. Decimated Arrays and CrossSpectrum Analysis Introduction Background for the Heterodyne Spectrum Analyzer 433
9 XX CONTENTS 11.3 Photodetector Geometry and Detection Scheme The Reference and Scanning Functions SignaltoNoise Ratio and Dynamic Range Improved Reference Waveform The CrossSpectrum Analyzer CrossSpectrum Analysis with Spatial Heterodyning CrossSpectrum Analysis with Temporal Heterodyning 448 Chapter 12. The Heterodyne Transform and Signal Excision Introduction The Heterodyne Transform The Temporal Frequency Range of the Baseband Terms Probing Arbitrary ThreeDimensional Fields Signal Excision Arbitrary Filter Function 472 Chapter 13. SpaceIntegrating Correlators Introduction ReferenceFunction Correlators RealValued Impulse Responses ComplexValued Impulse Responses A Wavefront View of Matched Filtering The Photodetector Bandwidth Correlation in the Presence of Doppler Frequency Shifts Programmable Matched Filter Multichannel Operation Heterodyne/Homodyne Detection Homodyne Detection in the Fourier Domain Heterodyne Detection Carrier Frequency Requirements Illumination Requirements Integrate and Dump Some More Configurations 500 Chapter 14. TimeIntegrating Systems Introduction Spectrum Analysis Requirements on the Reference Signals 506
10 CONTENTS The Basic Operation of the Spectrum Analyzer The Key Features of the TimeIntegrating Spectrum Analyzer TimeIntegrating Correlation TimeIntegrating Correlator Due to Montgomery TimeIntegrating Correlator Due to Sprague and Koliopoulos Electronic Reference Correlator Comparison of Features Integrated Optical Systems 530 Chapter 15. TwoDimensional Processing Introduction TripleProduct Processing Crossed AcoustoOptic Cell Geometry The Bispectrum Spectrum Analysis RealTime RasterFormat Spectrum Analysis Frequency Resolution Experimental Results Ambiguity Function Generation Ambiguity Function for a cw Signal Ambiguity Function for a ShortPulse Signal Ambiguity Function for an Infinite Time Duration Chirp Signal WignerVille Distributions Range and Doppler Signal Processing Optical Transversal Processor for Notch Filtering Sampled Time Analysis ContinuousTime Analysis A Frequency Plane Implementation Phased Array Processing 566 Appendix I 570 Appendix II 571 References 574 Bibliography 582 Index 587
GEOMETRICAL OPTICS AND OPTICAL DESIGN
GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of
More informationGerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEYVCH Verlag GmbH & Co. KGaA
Gerhard K. Ackermann and Jurgen Eichler Holography A Practical Approach BICENTENNIAL BICENTENNIAL WILEYVCH Verlag GmbH & Co. KGaA Contents Preface XVII Part 1 Fundamentals of Holography 1 1 Introduction
More information( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.
Deriving the Lens Transmittance Function Thin lens transmission is given by a phase with unit magnitude. t(x, y) = exp[ jk o ]exp[ jk(n 1) (x, y) ] Find the thickness function for left half of the lens
More informationIntroduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong
Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:
More informationHandbook of Optical Systems
Handbook of Optical Systems Volume 5: Metrology of Optical Components and Systems von Herbert Gross, Bernd Dörband, Henriette Müller 1. Auflage Handbook of Optical Systems Gross / Dörband / Müller schnell
More informationInterference [Hecht Ch. 9]
Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave
More informationLEOK3 Optics Experiment kit
LEOK3 Optics Experiment kit Physical optics, geometrical optics and fourier optics Covering 26 experiments Comprehensive documents Include experiment setups, principles and procedures Cost effective solution
More informationWaves & Oscillations
Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction
More informationLecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline
Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical
More informationThe Mobile Radio Propagation Channel Second Edition
The Mobile Radio Propagation Channel Second Edition J. D. Parsons, DSc (Engl FREng, FlEE Emeritus Professor of Electrical Engineering University of Liverpool, UK JOHN WILEY & SONS LTD Chichester New York
More informationMaster program "Optical Design"
University ITMO, Russia WUT, Poland Department of Applied and Computer Optics Photonics Engineering Division http://zif.mchtr.pw.edu.pl Master program "Optical Design" (ACO Department), St. Petersburg
More informationCharacterization of Chirped volume bragg grating (CVBG)
Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds
More informationCollimation Tester Instructions
Description Use shearplate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of largeradius optical
More informationOptical transfer function shaping and depth of focus by using a phase only filter
Optical transfer function shaping and depth of focus by using a phase only filter Dina Elkind, Zeev Zalevsky, Uriel Levy, and David Mendlovic The design of a desired optical transfer function OTF is a
More informationEE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:
EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental
More informationReflectors vs. Refractors
1 Telescope Types  Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc).  In the end it is the collecting area that counts.  There are two primary telescope
More informationPRINCIPLES OF COMMUNICATIONS
PRINCIPLES OF COMMUNICATIONS Systems, Modulation, and Noise SIXTH EDITION INTERNATIONAL STUDENT VERSION RODGER E. ZIEMER University of Colorado at Colorado Springs WILLIAM H. TRANTER Virginia Polytechnic
More informationIntroductions to aberrations OPTI 517
Introductions to aberrations OPTI 517 Lecture 11 Spherical aberration Meridional and sagittal ray fans Spherical aberration 0.25 wave f/10; f=100 mm; wave=0.0005 mm Spherical aberration 0.5 wave f/10;
More informationParticle Image Velocimetry
Markus Raffel Christian E. Willert Steve T. Wereley Jiirgen Kompenhans Particle Image Velocimetry A Practical Guide Second Edition With 288 Figures and 42 Tables < J Springer Contents Preface V 1 Introduction
More informationLASER DIODE MODULATION AND NOISE
> 5' O ft I o Vi LASER DIODE MODULATION AND NOISE K. Petermann lnstitutfiir Hochfrequenztechnik, Technische Universitdt Berlin Kluwer Academic Publishers i Dordrecht / Boston / London KTK Scientific Publishers
More informationPrinciples of Optics for Engineers
Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers
More informationImage Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36
Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns
More informationSilicon Light Machines Patents
820 Kifer Road, Sunnyvale, CA 94086 Tel. 4082404700 Fax 4084560708 www.siliconlight.com Silicon Light Machines Patents USPTO No. US 5,808,797 US 5,841,579 US 5,798,743 US 5,661,592 US 5,629,801 US
More informationSPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON
Lens Design Fundamentals Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint
More informationPHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.
Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may
More informationB.Sc. Electronics SemesterV Microprocessors and Microcontroller Paper code: BSE21
Microprocessors and Microcontroller Paper code: BSE21 Unit 1: 10hr Introduction to 8bit Microprocessor History of Microprocessor, 8085 Microprocessor architecture, buses, register, flags, 8085 pin configuration
More informationPrinciples of PulseDoppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.
Preface p. xv Principles of PulseDoppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds
More informationDiffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam
Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative
More informationPHY 431 Homework Set #5 Due Nov. 20 at the start of class
PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a planoconvex lens is 30 cm. The lens is placed with its convex side down
More informationOptical Wireless Communications
Optical Wireless Communications System and Channel Modelling with MATLAB Z. Ghassemlooy W. Popoola S. Rajbhandari W CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of
More informationTesting Aspherics Using TwoWavelength Holography
Reprinted from APPLIED OPTICS. Vol. 10, page 2113, September 1971 Copyright 1971 by the Optical Society of America and reprinted by permission of the copyright owner Testing Aspherics Using TwoWavelength
More informationDiffraction, Fourier Optics and Imaging
1 Diffraction, Fourier Optics and Imaging 1.1 INTRODUCTION When wave fields pass through obstacles, their behavior cannot be simply described in terms of rays. For example, when a plane wave passes through
More informationRadarVerfahren und Signalverarbeitung
RadarVerfahren und Signalverarbeitung  Lesson 2: RADAR FUNDAMENTALS I Hon.Prof. Dr.Ing. Joachim Ender Head of Fraunhoferinstitut für Hochfrequenzphysik and Radartechnik FHR Neuenahrer Str. 20, 53343
More informationLab Report 3: Speckle Interferometry LIN PEIYING, BAIG JOVERIA
Lab Report 3: Speckle Interferometry LIN PEIYING, BAIG JOVERIA Abstract: Speckle interferometry (SI) has become a complete technique over the past couple of years and is widely used in many branches of
More informationModule 16 : Integrated Optics I
Module 16 : Integrated Optics I Lecture : Integrated Optics I Objectives In this lecture you will learn the following Introduction ElectroOptic Effect Optical Phase Modulator Optical Amplitude Modulator
More informationName: Laser and Optical Technology/Technician
Name: Laser and Optical Technology/Technician Directions: Evaluate the student by entering the appropriate number to indicate the degree of competency achieved. Rating Scale (06): 0 No Exposure no experience/knowledge
More informationSection A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)
INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet  6 (20172018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more
More informationStereoscopic Hologram
Stereoscopic Hologram Joonku Hahn Kyungpook National University Outline: 1. Introduction  Basic structure of holographic display  Wigner distribution function 2. Design of Stereoscopic Hologram  Optical
More informationPhysics 3340 Spring Fourier Optics
Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.
More informationEE527: MicroFabrication
EE57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser xrays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write
More informationA. M. Weiner a) School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 71, NUMBER 5 MAY 2000 REVIEW ARTICLE Femtosecond pulse shaping using spatial light modulators A. M. Weiner a) School of Electrical and Computer Engineering, Purdue
More informationImage Formation: Camera Model
Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye
More informationEENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: SmallScale Path Loss
EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: SmallScale Path Loss Introduction Smallscale fading is used to describe the rapid fluctuation of the amplitude of a radio
More informationGeometric optics & aberrations
Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation
More informationASD and Speckle Interferometry. Dave Rowe, CTO, PlaneWave Instruments
ASD and Speckle Interferometry Dave Rowe, CTO, PlaneWave Instruments Part 1: Modeling the Astronomical Image Static Dynamic Stochastic Start with Object, add Diffraction and Telescope Aberrations add Atmospheric
More informationCREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305
CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 Alexander Laskin, Vadim Laskin AdlOptica Optical Systems GmbH, Rudower Chaussee 29, 12489 Berlin,
More informationAn Indian Journal FULL PAPER. Trade Science Inc. Parameters design of optical system in transmitive star simulator ABSTRACT KEYWORDS
[Type text] [Type text] [Type text] ISSN : 09747435 Volume 10 Issue 23 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(23), 2014 [1425714264] Parameters design of optical system in transmitive
More informationONE of the most common and robust beamforming algorithms
TECHNICAL NOTE 1 Beamforming algorithms  beamformers Jørgen Grythe, Norsonic AS, Oslo, Norway Abstract Beamforming is the name given to a wide variety of array processing algorithms that focus or steer
More informationWill contain image distance after raytrace Will contain image height after raytrace
Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the
More informationTHE GENERATION and characterization of ultrafast
20 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 1, JANUARY 2001 Aberrations in Temporal Imaging Corey V. Bennett, Student Member, IEEE, and Brian H. Kolner, Member, IEEE Abstract Recent advances in
More informationVolume 82 VERY LONG BASELINE INTERFEROMETRY AND THE VLBA. J. A. Zensus, P. J. Diamond, and P. J. Napier
ASTRONOMICAL SOCIETY OF THE PACIFIC CONFERENCE SERIES Volume 82 VERY LONG BASELINE INTERFEROMETRY AND THE VLBA Proceedings of a Summer School held in Socorro, New Mexico 2330 June 1993 NRAO Workshop No.
More informationExperiment 1: Fraunhofer Diffraction of Light by a Single Slit
Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure
More informationLargeArea Interference Lithography Exposure Tool Development
LargeArea Interference Lithography Exposure Tool Development John Burnett 1, Eric Benck 1 and James Jacob 2 1 Physical Measurements Laboratory, NIST, Gaithersburg, MD, USA 2 Actinix, Scotts Valley, CA
More informationWhite Paper: Modifying Laser Beams No Way Around It, So Here s How
White Paper: Modifying Laser Beams No Way Around It, So Here s How By John McCauley, Product Specialist, Ophir Photonics There are many applications for lasers in the world today with even more on the
More informationFourier Optics and Spatial Light Modulators
Sources: Fourier Optics and Spatial Light Modulators Physics 39a/169b, Brandeis University Holoeye OptiXplore Manual PHY 431 Fall 2011 Credits: Clayton DeVault devaultc@msu.edu, undergraduate research
More informationMirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.
Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object
More informationGRENOUILLE.
GRENOUILLE Measuring ultrashort laser pulses the shortest events ever created has always been a challenge. For many years, it was possible to create ultrashort pulses, but not to measure them. Techniques
More informationAnalysis of Hartmann testing techniques for largesized optics
Analysis of Hartmann testing techniques for largesized optics Nadezhda D. Tolstoba St.Petersburg State Institute of Fine Mechanics and Optics (Technical University) Sablinskaya ul.,14, St.Petersburg,
More information1.6 Beam Wander vs. Image Jitter
8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that
More informationSection 1: Sound. Sound and Light Section 1
Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound
More informationVery short introduction to light microscopy and digital imaging
Very short introduction to light microscopy and digital imaging Hernan G. Garcia August 1, 2005 1 Light Microscopy Basics In this section we will briefly describe the basic principles of operation and
More informationChapter 36: diffraction
Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating Xray diffraction Circular apertures
More informationSpectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation
Spectroscopy in the UV and Visible: Instrumentation Typical UVVIS instrument 1 Source  Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance
More informationDesign, calibration and assembly of an Offner imaging spectrometer
Journal of Physics: Conference Series Design, calibration and assembly of an Offner imaging spectrometer To cite this article: Héctor GonzálezNúñez et al 2011 J. Phys.: Conf. Ser. 274 012106 View the
More informationPulse stretching and compressing using grating pairs
Pulse stretching and compressing using grating pairs A White Paper Prof. Dr. Clara Saraceno Photonics and Ultrafast Laser Science Publication Version: 1.0, January, 20171  Table of Contents Dispersion
More informationOptical Waveguide Types
8 Refractive Micro Optics Optical Waveguide Types There are two main types of optical waveguide structures: the step index and the graded index. In a stepindex waveguide, the interface between the core
More informationRotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition
Rotation/ scale invariant hybrid digital/optical correlator system for automatic target recognition V. K. Beri, Amit Aran, Shilpi Goyal, and A. K. Gupta * Photonics Division Instruments Research and Development
More informationTransmission Electron Microscopy 9. The Instrument. Outline
Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation
More informationFiber Pigtailed Variable Frequency Shifters Acoustooptic products
Fiber Pigtailed Variable Frequency Shifters Acoustooptic products Introduction Frequency Shift LASER DOPPLER VIBROMETER (LDV) 3 PHYSICAL PRINCIPLES MAIN EQUATIONS An RF signal applied to a piezoelectric
More informationPerformance Comparison of Spectrometers Featuring OnAxis and OffAxis Grating Rotation
Performance Comparison of Spectrometers Featuring OnAxis and OffAxis Rotation By: Michael Case and Roy Grayzel, Acton Research Corporation Introduction The majority of modern spectrographs and scanning
More informationDepartment of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT
Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr, Jim Leighton, Ezekiel Burke, David Spergel
More informationMetrology and Sensing
Metrology and Sensing Lecture 7: Wavefront sensors 20161129 Herbert Gross Winter term 2016 www.iap.unijena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,
More informationExam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection
More informationDirectly Chirped Laser Source for Chirped Pulse Amplification
Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4
More informationUsing Stock Optics. ECE 5616 Curtis
Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and
More informationWaves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light
PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The EM spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference
More informationTesting Aspheric Lenses: New Approaches
Nasrin Ghanbari OPTI 521  Synopsis of a published Paper November 5, 2012 Testing Aspheric Lenses: New Approaches by W. Osten, B. D orband, E. Garbusi, Ch. Pruss, and L. Seifert Published in 2010 Introduction
More informationSUPPLEMENTARY INFORMATION DOI: /NPHOTON
Supplementary Methods and Data 1. Apparatus Design The timeofflight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbiumdoped femtosecond fibre oscillator (CFiber,
More informationMicroscope anatomy, image formation and resolution
Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 047125391X Visit these websites:
More informationDynamic beam shaping with programmable diffractive optics
Dynamic beam shaping with programmable diffractive optics Bosanta R. Boruah Dept. of Physics, GU Page 1 Outline of the talk Introduction Holography Programmable diffractive optics Laser scanning confocal
More informationMuhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station
Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111878787, Ext. 19 (Office), 186 (ARWiC
More informationLong Wave Infrared Scan Lens Design And Distortion Correction
Long Wave Infrared Scan Lens Design And Distortion Correction Item Type text; Electronic Thesis Authors McCarron, Andrew Publisher The University of Arizona. Rights Copyright is held by the author. Digital
More informationData Embedding Using Phase Dispersion. Chris Honsinger and Majid Rabbani Imaging Science Division Eastman Kodak Company Rochester, NY USA
Data Embedding Using Phase Dispersion Chris Honsinger and Majid Rabbani Imaging Science Division Eastman Kodak Company Rochester, NY USA Abstract A method of data embedding based on the convolution of
More information2 CYCLICAL SHEARING INTERFEROMETER
2 CYCLICAL SHEARING INTERFEROMETER Collimation Testing and Measurement of The Radius of Curvature of the Wavefront MODEL OEK100 PROJECT #1 18 2.1 Introduction In many applications, it is desired to measure
More informationFRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION
FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from twodimensional apertures
More informationAstronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson
Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80BLight 2 Topics for Today Optical illusion Reflections
More informationProjects in Optics. Applications Workbook
Projects in Optics Applications Workbook Created by the technical staff of Newport Corporation with the assistance of Dr. Donald C. O Shea of the School of Physics at the Georgia Institute of Technology.
More informationBasic spectrometer types
Spectroscopy Basic spectrometer types Differentialrefractionbased, in which the variation of refractive index with wavelength of an optical material is used to separate the wavelengths, as in a prism
More informationCHAPTER TWO METALLOGRAPHY & MICROSCOPY
CHAPTER TWO METALLOGRAPHY & MICROSCOPY 1. INTRODUCTION: Materials characterisation has two main aspects: Accurately measuring the physical, mechanical and chemical properties of materials Accurately measuring
More informationTolerancing in Zemax. Lecture 4
Tolerancing in Zemax Lecture 4 Objectives: Lecture 4 At the end of this lecture you should: 1. Understand the reason for tolerancing and its relation to typical manufacturing errors 2. Be able to perform
More informationBragg and fiber gratings. Mikko Saarinen
Bragg and fiber gratings Mikko Saarinen 27.10.2009 Bragg grating  Bragg gratings are periodic perturbations in the propagating medium, usually periodic variation of the refractive index  like diffraction
More informationWIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING
WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING Instructor: Dr. Narayan Mandayam Slides: SabarishVivek Sarathy A QUICK RECAP Why is there poor signal reception in urban clutters?
More informationIntroduction to Light Microscopy. (Image: T. Wittman, Scripps)
Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major
More informationCHAPTER 33 ABERRATION CURVES IN LENS DESIGN
CHAPTER 33 ABERRATION CURVES IN LENS DESIGN Donald C. O Shea Georgia Institute of Technology Center for Optical Science and Engineering and School of Physics Atlanta, Georgia Michael E. Harrigan Eastman
More informationIntroduction to Microwave Remote Sensing
Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis
More informationAssignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis
Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)
More informationWave Field Analysis Using Virtual Circular Microphone Arrays
**i Achim Kuntz таг] Ш 5 Wave Field Analysis Using Virtual Circular Microphone Arrays га [W] та Contents Abstract Zusammenfassung v vii 1 Introduction l 2 Multidimensional Signals and Wave Fields 9 2.1
More informationAberrations and adaptive optics for biomedical microscopes
Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and
More informationThe Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian
The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (18541932), was an ingenious man who contributed greatly to the field of photography. He
More information