Modern Optics. Analytical Potential. 3 rd Generation of MIRA FE SEMs. High brightness Schottky emitter for high-resolution/highcurrent/

Size: px
Start display at page:

Download "Modern Optics. Analytical Potential. 3 rd Generation of MIRA FE SEMs. High brightness Schottky emitter for high-resolution/highcurrent/"

Transcription

1

2 Modern Optics High brightness Schottky emitter for high-resolution/highcurrent/ low-noise imaging Unique three-lens Wide Field Optics TM design offering a variety of working and displaying modes Proprietary Intermediate Lens (IML), which works as an aperture changer, changing the effective final aperture electromagnetically. Real time In-Flight Beam Tracing TM for performance and beam optimization, integrated with the well-established software Electron Optical Design. It also includes direct and continuous control of the beam and beam current. Extraordinary resolution with powerful optional In-Beam Detector Fully automated electron optics set-up and alignment Fast imaging rate Unique live stereoscopic imaging using advanced 3D Beam Technology opens up the micro and nano-world for an amazing 3D experience and 3D navigation. Analytical Potential 3 rd Generation of MIRA FE SEMs This new generation of MIRA field emission scanning electron microscopes provides users with the advantages of the latest technology, such as new improved high-performance electronics for faster image acquisition, an ultra-fast scanning system with compensation for static and dynamic image aberrations or built-in scripting for user-defined applications, all the while maintaining the best price to performance ratio. The MIRA series was designed with respect to a wide range of SEM applications and needs in today s research and industry. Its excellent resolution at high beam currents has proved to be advantageous for analytical applications such as EBSD, WDX, etc. MIRA3 field emission scanning electron microscopes are manufactured in configurations with LM, XM and GM chambers. All MIRA chambers (LM, XM and GM) provide superior specimen handling using a full 5-axis motorized compucentric stage and ideal geometry for EDX and EBSD. Option of extra-large chambers (XM, GM) with robust stage able to accommodate large samples Numerous interface ports with optimized analytical geometry for EDX, WDX and EBSD as well as for attaching many other detectors First-class YAG scintillator-based detectors Selection of optional detectors and accessories Full operating vacuum can be obtained quickly and easily with powerful turbomolecular and dry fore vacuum pumps, electron gun pumping with an ion pump Investigation of non-conductive samples in variable pressure mode versions, excelent results in the investigation of magnetic samples Several options for chamber suspension type ensure effective reduction of ambient vibrations in the laboratory. PERFORMANCE IN NANOSPACE

3 Rapid Maintenance Keeping the microscope in peak condition is now easy and requires a minimum of microscope downtime. Every detail has been carefully designed to maximize microscope performance and minimize operator effort. Automated Procedures Automatic set-up of the microscope and many other automated operations are characteristic features of the equipment. There are many other automated procedures which reduce the operator s tune-up time significantly, enable automated manipulator navigation and automated analyses. Built-in scripting language (Python) enables remote access to most software features, including complete microscope remote control, stage control, image acquisition, processing and analysis. Scripting enables users to define their own automatic procedures. User-Friendly Software Multi-user environment is localized in many languages. Four levels of user expertise/rights, including an EasySEM mode for quick routine investigations Image management and report creation Built-in self-diagnostics for system readiness checks Network operations and remote access/diagnostics Software Tools Modular software architecture enables several extensions to be attached. Basic set of plug-ins, such as Measurement, Image Processing, Object Area available as standard Several optional modules or dedicated applications optimized for automatic sample examination procedures, such as Particles Basic/Advanced Analysis or 3D surface reconstruction, etc. Software Tools Image Processing and Operations Measurement Object Area Hardness Tolerance Multi-Image Calibrator Switch-Off Timer 3D Scanning Positioner EasySEM Scriptor Live Video Particles Basic Particles Advanced Image Snapper DrawBeam Basic DrawBeam Advanced Sample Observer TESCAN TRACE GSR EasyEDX Integration Software 3D Metrology (MeX) * Fig. Pollen grain measurement standard, option, * third-party dedicated software by Alicona Imaging GmbH Fig. Measurement tool

4 MIRA3 Configurations MIRA3 LMH WDX TOA EDX TOA 35 This large-chamber model with an extended motorized manipulator operates at high vacuum for the investigation of conductive samples with extraordinary imaging quality. EDX TOA WD 15 EBSD WDX TOA 30 MIRA3 LMU This variable-pressure FE SEM supplements all the advantages of the high vacuum model with extended facilities for low vacuum operation, enabling the investigation of non-conductive specimens in their natural uncoated state. WD 10 LM Chamber WDX TOA 30 EDX TOA top view - full configuration Internal size Door width Number of ports mm 148 mm BSE / CL Chamber suspension pneumatic or optional active vibration isolation WD 10 Specimen In-Beam SE Stage in LM Chamber Type compucentric top view - full configuration Movements 5-axis fully motorized X = 80 mm, Y = 60 mm, Z = 47 mm iguration BSE / CL In-Beam SE Specimen height Rotation = 360 continuous LVSTD Tilt = -80 to +80 maximum 81 mm (without rotation stage) In-Beam SE WDX TOA 35 /30 LVSTD IR Camera EBSD EDX TOA 35 WDX TOA 35 /30 SE position #1 LVSTD EDX TOA 35 /30 EBSD EDX TOA 35 SE position #2 SE position #1 EBSD EDX TOA EDX 35 /30 TOA 35 IR Camera 148 Door SE position #2 IR Camera 148 Door SE position #2 Fig. Filamentous blue-green alage (family Oscillatoriaceae) May cause water bloom in fresh water, SE detector, SEM HV 8kV

5 The XM and GM configurations extend its analytical capabilities, providing the ability to perform fine sample surface observations even with extra-large specimens. In today s microscopy there are many applications where breaking off a small piece of the sample is impossible or highly inconvenient, particularly in situations where further analysis of the object is needed or in e.g. forensic applications so as not to affect the evidence. In all these cases, accommodation of the whole object into the chamber is extremely desirable. MIRA3 XMH This extra-large chamber model with compucentric motorized manipulator operates at high vacuum for the investigation of conductive samples with extraordinary imaging quality. MIRA3 XMU This variable-pressure FE SEM supplements all the advantages of the high vacuum model with an extended facility for low vacuum operations, enabling the investigation of non-conductive specimens in their natural uncoated state. XM Chamber Internal size Door width Number of ports 12+ Chamber suspension 285 mm (width) x 340 mm (depth) 285 mm (width) x 320 mm (height) pneumatic or optional active vibration isolation Specimen Stage in XM Chamber Type Movements compucentric 5-axis fully motorized X = 130 mm, Y = 130 mm, Z = 100 mm Rotation = 360 continuous Tilt = -30 to +90 Specimen height maximum 145 mm

6 55 WDX TOA 35 Besides the ability to investigate the sample surface with extra-large specimens, the GM chamber extends the features of MIRA3 FE SEMs with the option of attaching many other detectors and accessories to the chamber from the outside (additional SE, BSE, LVSTD, EDX, EBSD) and also with the capability of accommodating various additional instruments, inside the chamber. EBSD EDX TOA 35 WD MIRA3 GMH This analytical giant-chamber model with compucentric motorized manipulator operates at high vacuum for the investigation of conductive samples with the possibility of supplementing scanning electron microscopy investigations with microanalyses and/or other methods. MIRA3 GMU 340 This variable pressure FE SEM supplements all the advantages of the high-vacuum model with an extended facility for low-vacuum operations, enabling the investigation of non-conductive specimens in their natural uncoated state. The giant analytical chamber enables scanning electron microscopy investigations to be supplemented with microanalyses and/or other methods. GM Chamber Internal size 340 mm (width) x 310 mm (depth) Door width 340 mm (width) x 320 mm (height) Number of ports 20+ Chamber suspension Integrated active vibration isolation system Specimen Stage in GM Chamber Type compucentric Movements 5-axis fully motorized X = 130 mm, Y = 130 mm, Z = 100 mm Rotation = 360 continuous Tilt = -30 to +90 Specimen height maximum 145 mm

7 MIRA3 Resolution In high-vacuum mode SE In high-vacuum mode In-Beam SE In low-vacuum mode LVSTD In high/low vacuum mode BSE Working vacuum Chamber High vacuum mode Chamber Low vacuum mode Gun vacuum Electron optics working modes High-vacuum mode Low-vacuum mode Magnification Maximum field of view Accelerating voltage Electron Gun Probe current LMH/XMH/GMH 1.2 nm at 30 kv 2.5 nm at 3 kv 1 nm at 30 kv 2 nm at 3 kv 2 nm at 30 kv (BSE) < 9 x 10-3 Pa* < 3 x 10-7 Pa Resolution, Depth, Field, Wide Field, Channelling Continuous from 3.5x to 1,000,000x in LM chamber 2x to 1,000,000x in XM chamber 2x to 1,000,000x in GM chamber High vacuum: 72/91/91 mm in basic configuration 57/78/78 mm with In-Beam SE 200 V to 30 kv High Brightness Schottky Emitter 1pA to 100 na 1.2 nm at 30 kv 2.5 nm at 3 kv 1 nm at 30 kv 2 nm at 3 kv 1.5 nm at 30 kv 3 nm at 3 kv 2 nm at 30 kv < 9 x 10-3 Pa* Pa < 3 x 10-7 Pa LMU/XMU/GMU * pressure < 5x10-4 Pa reachable Resolution, Depth, Field, Wide Field, Channelling Resolution, Depth Continuous from 3.5x to 1,000,000x in LM chamber 2x to 1,000,000x in XM chamber 2x to 1,000,000x in GM chamber High vacuum: 72/91/91 mm in basic configuration 57/78/78 mm with In-Beam SE Low vacuum: 15/20/20 mm in basic configuration 8.2/10.9/10.9 mm with In-Beam SE Scanning speed Focus window Scanning features Image size Microscope control Automatic procedures Remote control From 20 ns to 10 ms per pixel adjustable in steps or continuously Shape, size and position continuously adjustable Dynamic focus, Point & Line scan, Tilt correction, 3D Beam, Other shapes accessible using optional DrawBeam Software tool Up to 8,192 x 8,192 pixels in 16-bit quality, size is adjustable separately for live images (in 3 steps) and for saved images (in 10 steps), for square and rectangular 4:3 or 2:1 aspect ratios. All microscope functions are PC-controlled using trackball, mouse and keyboard via the program VegaTC using Windows TM platforms. Control panel and touchscreen optionally available. In-Flight Beam Tracing TM beam optimization, Spot Size and Beam Current Continual, WD (focus) & Stigmator, Contrast & Brightness, Scanning Speed (according to Signal- Noise Ratio), Gun On, Gun Off, Gun Centering, Column Centering, Vacuum Control, Compensation for kv, Look-Up Table, Auto-diagnostics Via TCP/ IP

8 Detectors LMH/XMH/GMH LMU/XMU/GMU SE ET type detector Retractable BSE detector Motorized R-BSE detector In-Beam SE detector LVSTD TE detector CL detector EBIC EDX * WDX * EBSD * * third-party products Accessories Probe current measurement Touch alarm Chamber view camera Active vibration isolation Peltier cooling stage Beam blanker Control panel Load Lock Water vapor inlet De-contaminator/plasma cleaner* standard, option, not available, * third-party products / / / / Requirements Installation requirements Environmental requirements Power 230 V/50 Hz or 120 V/60 Hz, 2200 VA No water cooling Compressed dry nitrogen for venting: kpa Compressed air: kpa Environment temperature: C Relative humidity: < 80 % Acoustic: < 60 dbc Vibration: For pneumatic suspension: < 5 µm/s below 30 Hz < 10 µm/s above 30 Hz For active isolation (option): < 10 µm/s below 30 Hz < 20 µm/s above 30 Hz Background magnetic field: synchronous < 3 x 10-7 T asynchronous < 1 x 10-7 T System dimensions: 2160 mm x 1185 mm GM mm x LM/XM mm x Room for installation: min. 3 m x 3 m minimum door width 0.9 m Wide Field Optics, In-Flight Beam Tracing and EasySEM are trademarks of TESCAN, a.s. Windows is a trademark of the Microsoft Corporation. We are constantly improving the performance of our products, so all specifications and external designs of instruments are subject to change without notice.

9 Footprint of the microscope (all dimensions in mm): MIRA LM/XM MIRA GM

10 Common Applications Materials Science Materials characterization of metals, ceramics, polymers, composites, coatings, metallurgy, metallography, fracture analysis, degradation processes, morphological analysis, steel cleanliness analysis, microanalysis, texture analysis, ferromagnetic materials, etc. Electro-technical Engineering Solar cell inspection, microelectronics inspection, PN junction visualization, lithography, etc. Forensic Investigations Gunshot residue analysis, bullet and cartridge investigation, tool mark comparison, analysis of hairs, fibers, textiles and papers, paints, ink and print characterization, line crossings, examination of counterfeit documents, etc. Fig. Semiconductor structure, SEM Mag. 5.0 kx, InBeam SE detector, SEM HV 10kV Fig. The same Semiconductor structure, SEM Mag kx, SE detector, SEM HV 10kV Fig. The same Semiconductor structure, SEM Mag x, InBeam SE detector, SEM HV 10kv

11 Common Applications Research Mineralogy, geology, paleontology, archeology, chemistry, environmental studies, particle analysis, applied physics, nanotechnolo gy, nanoprototyping, etc. Life Sciences Botany, parasitology, pharmaceutics, STEM histology, dental implants, etc. Fig. Observation of the growth of Mouse Embryonic Fibroblast (MEF; also called feeder cells) are required to support the growth of undifferentiated embryonic stem cells, SE detector, SEM HV 20kV Fig. Cross section of Filamentous blue-green alage (family Oscillatoriaceae), STEM detector, SEM HV 30kV Fig. Carbon nanotubes (CNTs), In-Beam detector, DEPTH mode, SEM HV 15kV, observation of the morphology and orientation of nanowires Fig. Etched structure of oriented precipitates in Ni based superalloy, SE detector, SEM HV 5kV Fig. An individual coccospheare of the unicellular algea Reticulofenestra haqii Backman (DNV locality Badenian, cca 14. Ma.), SE detector, SEM HV 15kV

12 PERFORMANCE IN NANOSPACE TESCAN, a.s. Libušina třída 21, Brno Czech Republic, EU tel fax Distributor TESCAN

MIRA FE-SEMs. 3 rd Generation of

MIRA FE-SEMs. 3 rd Generation of MIRA3 3 rd Generation of MIRA FE-SEMs The new generation of MIRA field emission scanning electron microscopes (SEMs) provides users with the advantages of the latest technology, such as new improved high-performance

More information

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW TESCAN Brno, s.r.o. was established as subsidiary of a multi-national company TESCAN ORSAY HOLDING after the merger (August 2013) of Czech company TESCAN, a global

More information

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW

PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW PERFORMANCE IN NANOSPACE PRODUCT OVERVIEW TESCAN, a.s. is a Czech joint-stock company focused on research, development and manufacture of scientific instruments and laboratory equipment such as: scanning

More information

and in PERFORMANCE IN NANOSPACE

and in PERFORMANCE IN NANOSPACE and in PERFORMANCE IN NANOSPACE PERFORMANCE IN NANOSPACE Tescan, s.r.o. is a Czech private company focused on research, development and manufacturing of scientific instruments and laboratory equipment

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

LVEM 25. Low Voltage Electron Microscope Fast Compact Powerful.... your way to electron microscopy

LVEM 25. Low Voltage Electron Microscope Fast Compact Powerful.... your way to electron microscopy LVEM 25 Low Voltage Electron Microscope Fast Compact Powerful... your way to electron microscopy INTRODUCING THE LVEM 25 High Contrast & High Resolution Unmatched contrast of biologic and light material

More information

Scanning Electron Microscope. Instructions for Use

Scanning Electron Microscope. Instructions for Use Scanning Electron Microscope Instructions for Use The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders are liable for damages.

More information

Schottky Emission VP FE-SEM

Schottky Emission VP FE-SEM Schottky Emission VP FE-SEM Variable Pressure The Scanning Electron Microscope (SEM) has played an important role for many years for research and development of advanced materials in the leading edge of

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM 25 Low Voltage Electron Microscope fast compact powerful Delong America FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

More information

Leading in Desktop SEM Imaging and Analysis

Leading in Desktop SEM Imaging and Analysis Leading in Desktop SEM Imaging and Analysis Fast. Outstanding. Reliable SEM imaging and analysis. The Phenom: World s Fastest Scanning Electron Microscope With its market-leading Phenom desktop Scanning

More information

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful LVEM 25 Low Voltage Electron Mictoscope fast compact powerful FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions. All the benefits

More information

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation The FlexSEM 1000: A Scanning Electron Microscope Specializing

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

2014 HTD-E with options

2014 HTD-E with options with options The HT7700 : a user-friendly, ergonomic digital TEM with options User-Friendly r end Design Ambient light operation. Multiple automated functions for alignment, focus and stigmation as standard

More information

Magellan XHR SEM. Discover the world of extreme high resolution scanning electron microscopy

Magellan XHR SEM. Discover the world of extreme high resolution scanning electron microscopy Magellan XHR SEM Discover the world of extreme high resolution scanning electron microscopy Gold particles on carbon test sample imaged at 200 V and a horizontal field width (HFW) of 500 nm. Unprecedented

More information

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual Scanning Electron Microscope FEI INSPECT F50 Step by step operation manual Scanning Electron Microscope, FEI Inspect F50 FE-SEM-F Observation Flow Saving Data And Analysis Specimen preparation Error check

More information

Quick and simple installation and no maintenance needed. 3 Times More affordable Than a normal SEM. Obtaining results in less than 4 minutes

Quick and simple installation and no maintenance needed. 3 Times More affordable Than a normal SEM. Obtaining results in less than 4 minutes INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM series of SEM. In short space of time, our device

More information

SEM Training Notebook

SEM Training Notebook SEM Training Notebook Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside December 21, 2017 (rev. 3.4) 1 Before you begin Complete

More information

INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM

INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM series of SEM. In short space of time, our device

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 6 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Chamber and

More information

University of Washington Molecular Analysis Facility

University of Washington Molecular Analysis Facility University of Washington Molecular Analysis Facility Apreo-S (Variable Pressure) is a Schottky Field Emission Scanning Electron Microscope (FESEM) that combines high- and low-voltage ultra-high resolution

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 5 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Detectors

More information

SEM Training Notebook

SEM Training Notebook SEM Training Notebook Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside March 8, 2018 (rev. 3.5) 1 Before you begin Complete

More information

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality Add CLUE to your SEM Designed for your SEM and application The CLUE family offers dedicated CL systems for imaging and spectroscopic analysis suitable for most SEMs. In addition, when combined with other

More information

Scanning Electron MICROSCOPES. SEM-20/30, TableTop SEM-20. The Wise SEM for Your Application

Scanning Electron MICROSCOPES. SEM-20/30, TableTop SEM-20. The Wise SEM for Your Application SEM-20/30, TableTop SEM-20 The Wise SEM for Your Application Navigation to Nanoworld With SEM How do you keep the forefront from competition in researching nanometer small world. MRC provides convenient

More information

nanovea.com PROFILOMETERS 3D Non Contact Metrology

nanovea.com PROFILOMETERS 3D Non Contact Metrology PROFILOMETERS 3D Non Contact Metrology nanovea.com PROFILOMETER INTRO Nanovea 3D Non-Contact Profilometers are designed with leading edge optical pens using superior white light axial chromatism. Nano

More information

Functions of the SEM subsystems

Functions of the SEM subsystems Functions of the SEM subsystems Electronic column It consists of an electron gun and two or more electron lenses, which influence the path of electrons traveling down an evacuated tube. The base of the

More information

Using the Hitachi 3400-N VP-SEM

Using the Hitachi 3400-N VP-SEM Using the Hitachi 3400-N VP-SEM Opening the Chamber to Load Specimens (This may also be done later using the software) 1. Click the AIR button on the front of the machine: 2. Wait a few minutes until you

More information

Introduction to Scanning Electron Microscopy

Introduction to Scanning Electron Microscopy Introduction to Scanning Electron Microscopy By: Brandon Cheney Ant s Leg Integrated Circuit Nano-composite This document was created as part of a Senior Project in the Materials Engineering Department

More information

ZEISS EVO SOP. May 2017 ELECTRON OPTICS

ZEISS EVO SOP. May 2017 ELECTRON OPTICS ZEISS EVO SOP May 2017 ELECTRON OPTICS The patented EVO column is the area of the SEM, where electrons are emitted, accelerated, deflected, focused, and scanned. Main characteristics of the EVO optics

More information

Operating Checklist for using the Scanning Electron. Microscope, JEOL JSM 6400.

Operating Checklist for using the Scanning Electron. Microscope, JEOL JSM 6400. Smith College August 2009 Operating Checklist for using the Scanning Electron Microscope, JEOL JSM 6400. CONTENT, page no. Pre-Check 1 Startup 1 Specimen Insertion 2 Filament Saturation 2 Beam Alignment

More information

This procedure assumes the user is already familiar with basic operation of the SEM and the MiraTC interface.

This procedure assumes the user is already familiar with basic operation of the SEM and the MiraTC interface. Tescan MIRA3 SEM: EDS using EDAX TEAM Nicholas G. Rudawski ngr@ufl.edu Cell: (805) 252-4916 Office: (352) 392-3077 Last updated: 12/04/17 This procedure assumes the user is already familiar with basic

More information

Transmission Electron Microscopy 9. The Instrument. Outline

Transmission Electron Microscopy 9. The Instrument. Outline Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation

More information

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS Robert Edward Lee Electron Microscopy Center Department of Anatomy and Neurobiology Colorado State University P T R Prentice Hall, Englewood Cliffs,

More information

PicoMaster 100. Unprecedented finesse in creating 3D micro structures. UV direct laser writer for maskless lithography

PicoMaster 100. Unprecedented finesse in creating 3D micro structures. UV direct laser writer for maskless lithography UV direct laser writer for maskless lithography Unprecedented finesse in creating 3D micro structures Highest resolution in the market utilizing a 405 nm diode laser Structures as small as 300 nm 375 nm

More information

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014

Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 Standard Operating Procedure for the Amray 1810 Scanning Electron Microscope Version: 29 NOVEMBER 2014 1. Utility Requirements a. System power is supplied by two 120 VAC/20 A circuits. When doing maintenance

More information

2. Raise HT to 200kVby following the procedure explained in 1.6.

2. Raise HT to 200kVby following the procedure explained in 1.6. JEOL 2100 MANUAL Quick check list 1. If needed, fill the reservoir with LN2 2. Raise HT to 200kVby following the procedure explained in 1.6. 3. Insert specimen holder into TEM (Insert holder in airlock,

More information

SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only

SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only SOP for Hitachi S-2150 Scanning Electron Microscope For review purposes only Version 1.0 Prepared by D. Turnbull February 21, 2007. Please submit any omissions to the Author Note: This SEM is a recent

More information

Scanning Electron Microscopy Basics and Applications

Scanning Electron Microscopy Basics and Applications Scanning Electron Microscopy Basics and Applications Dr. Julia Deuschle Stuttgart Center for Electron Microscopy MPI for Solid State Research Room: 1E15, phone: 0711/ 689-1193 email: j.deuschle@fkf.mpg.de

More information

Full-screen mode Popup controls. Overview of the microscope user interface, TEM User Interface and TIA on the left and EDS on the right

Full-screen mode Popup controls. Overview of the microscope user interface, TEM User Interface and TIA on the left and EDS on the right Quick Guide to Operating FEI Titan Themis G2 200 (S)TEM: TEM mode Susheng Tan Nanoscale Fabrication and Characterization Facility, University of Pittsburgh Office: M104/B01 Benedum Hall, 412-383-5978,

More information

Scanning Electron Microscopy. EMSE-515 F. Ernst

Scanning Electron Microscopy. EMSE-515 F. Ernst Scanning Electron Microscopy EMSE-515 F. Ernst 1 2 Scanning Electron Microscopy Max Knoll Manfred von Ardenne Manfred von Ardenne Principle of Scanning Electron Microscopy 3 Principle of Scanning Electron

More information

Operating Checklist for using the Scanning Electron Microscope, JEOL JSM 6400.

Operating Checklist for using the Scanning Electron Microscope, JEOL JSM 6400. Smith College August 2005 Operating Checklist for using the Scanning Electron Microscope, JEOL JSM 6400. CONTENT, page no. Pre-Check, 1 Specimen Insertion, 1 Startup, 2 Filament Saturation, 2 Beam Alignment,

More information

NeoScope. Simple Operation to 40,000. Table Top SEM. Serving Advanced Technology

NeoScope. Simple Operation to 40,000. Table Top SEM. Serving Advanced Technology Table Top SEM Simple Operation to 40,000 Serving Advanced Technology From 10 to 40,000 Table Top SEM Notebook PC version Just plug it to a wall outlet after placing it on a table Desktop PC version Option

More information

MODULE I SCANNING ELECTRON MICROSCOPE (SEM)

MODULE I SCANNING ELECTRON MICROSCOPE (SEM) MODULE I SCANNING ELECTRON MICROSCOPE (SEM) Scanning Electron Microscope (SEM) Initially, the plan of SEM was offered by H. Stintzing in 1927 (a German patent application). His suggested procedure was

More information

Electron Sources, Optics and Detectors

Electron Sources, Optics and Detectors Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors TEM Doctoral Course MS-637 April 16 th -18 th, 2018 Summary Electron propagation is only possible

More information

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

JEOL 6500 User Manual

JEOL 6500 User Manual LOG IN to your session on the computer to the left of the microscope. Starting Conditions 1. Press Ctrl-Alt-Del and log on to the microscope computer. Click on JEOL PC SEM 6500 icon. Click yes if message

More information

Model SU3500 Scanning Electron Microscope

Model SU3500 Scanning Electron Microscope Model SU3500 Scanning Electron Microscope Modified and Parts taken from Hitachi Easy Operation Guide. Before using the Model SU3500 SEM, be sure to read the [GENERAL SAFETY GUIDELINES] in the instruction

More information

NANO MODIFICATION OF THE W(100)/ZrO ELECTRON EMITTER TIP USING REACTIVE ION ETCHING

NANO MODIFICATION OF THE W(100)/ZrO ELECTRON EMITTER TIP USING REACTIVE ION ETCHING NANO MODIFICATION OF THE W(100)/ZrO ELECTRON EMITTER TIP USING REACTIVE ION ETCHING Miroslav HORÁČEK, František MATĚJKA, Vladimír KOLAŘÍK, Milan MATĚJKA, Michal URBÁNEK Ústav přístrojové techniky AV ČR,

More information

contents TABLE OF The SECOM platform Applications - sections Applications - whole cells Features Integrated workflow Automated overlay

contents TABLE OF The SECOM platform Applications - sections Applications - whole cells Features Integrated workflow Automated overlay S E C O M TABLE OF contents The SECOM platform 4 Applications - sections 5 Applications - whole cells 8 Features 9 Integrated workflow 12 Automated overlay ODEMIS - integrated software Specifications 13

More information

RAITH e-line OPERATING INSTRUCTIONS

RAITH e-line OPERATING INSTRUCTIONS RAITH e-line OPERATING INSTRUCTIONS 1) LOADING A SAMPLE a. Start the system i. On the Column PC (Right side monitor [R]), select the SmartSEM icon to on the desktop to begin the column software. ii. On

More information

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering Scanning Electron Microscopy SEM Warren Straszheim, PhD MARL, 23 Town Engineering wesaia@iastate.edu 515-294-8187 How it works Create a focused electron beam Accelerate it Scan it across the sample Map

More information

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge

OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE. by Doug Bray Department of Biological Sciences University of Lethbridge OPERATION OF THE HITACHI S-450 SCANNING ELECTRON MICROSCOPE by Doug Bray Department of Biological Sciences University of Lethbridge Revised September, 2000 Note: The terms in bold in this document represent

More information

Huvitz Digital Microscope HDS-5800

Huvitz Digital Microscope HDS-5800 Huvitz Digital Microscope HDS-5800 Dimensions unit : mm Huvitz Digital Microscope HDS-5800 HDS-MC HDS-SS50 The world s first, convert the magnification from 50x to 5,800x with a zoom lens HDS-TS50 Huvitz

More information

Operation Guide. Hitachi S-3400N. Variable Pressure Scanning Electron Microscope. with. Deben Peltier Coolstage

Operation Guide. Hitachi S-3400N. Variable Pressure Scanning Electron Microscope. with. Deben Peltier Coolstage Operation Guide Hitachi S-3400N Variable Pressure Scanning Electron Microscope with Deben Peltier Coolstage www.deben.co.uk www.taltos.stanford.edu www.hitachi-hta.com Index Main Unit 3 Electron Optical

More information

Check that the pneumatic hose is disconnected!!!! (unless your using the BSE detector, of course)

Check that the pneumatic hose is disconnected!!!! (unless your using the BSE detector, of course) JEOL 7000F BASIC OPERATING INSTRUCTIONS-Ver.-2.0 Note: This is minimal operation checklist and does not replace the other reference manuals. Read the manual for Specimen Exchange (JEOL 7000 Specimen Exchange

More information

Ion Beam Lithography next generation nanofabrication

Ion Beam Lithography next generation nanofabrication Ion Beam Lithography next generation nanofabrication EFUG Bordeaux 2011 ion beams develop Lloyd Peto IBL sales manager Copyright 2011 by Raith GmbH ionline new capabilities You can now Apply an ion beam

More information

PICO MASTER 200. UV direct laser writer for maskless lithography

PICO MASTER 200. UV direct laser writer for maskless lithography PICO MASTER 200 UV direct laser writer for maskless lithography 4PICO B.V. Jan Tinbergenstraat 4b 5491 DC Sint-Oedenrode The Netherlands Tel: +31 413 490708 WWW.4PICO.NL 1. Introduction The PicoMaster

More information

Title: Amray 1830 SEM#2 Semiconductor & Microsystems Fabrication Laboratory Revision: D Rev Date: 03/18/2016

Title: Amray 1830 SEM#2 Semiconductor & Microsystems Fabrication Laboratory Revision: D Rev Date: 03/18/2016 Approved by: Process Engineer / / / / Equipment Engineer 1 SCOPE The purpose of this document is to detail the use of the Amray 1830 SEM. All users are expected to have read and understood this document.

More information

Dickinson College Department of Geology

Dickinson College Department of Geology Dickinson College Department of Geology Title: Equipment: BASIC OPERATION OF THE SCANNING ELECTRON MICROSCOPE (SEM) JEOL JSM-5900 SCANNING ELECTRON MICROSCOPE Revision: 2.2 Effective Date: 1/29/2003 Author(s):

More information

Oct. 30th- Nov. 1st, 2017

Oct. 30th- Nov. 1st, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors SEM Doctoral Course MS-636 Oct. 30th- Nov. 1st, 2017 Summary Electron propagation is only possible

More information

S200 Course LECTURE 1 TEM

S200 Course LECTURE 1 TEM S200 Course LECTURE 1 TEM Development of Electron Microscopy 1897 Discovery of the electron (J.J. Thompson) 1924 Particle and wave theory (L. de Broglie) 1926 Electromagnetic Lens (H. Busch) 1932 Construction

More information

JEOL 6700 User Manual 05/18/2009

JEOL 6700 User Manual 05/18/2009 JEOL 6700 User Manual 05/18/2009 LOG IN to your session on the computer to the right of the microscope. Starting Conditions 1. Click the button and read the Penning Gauge to ensure that the microscope

More information

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope Scientific / Metrology Instruments Multi-purpose Electron Microscope JEM-F200 Multi-purpose Electron Microscope JEM-F200/F2 is a multi-purpose electron microscope of the new generation to meet today's

More information

Spotlight 150 and 200 FT-IR Microscopy Systems

Spotlight 150 and 200 FT-IR Microscopy Systems S P E C I F I C A T I O N S Spotlight 150 and 200 FT-IR Microscopy Systems FT-IR Microscopy Spotlight 200 with Frontier FT-IR Spectrometer Introduction PerkinElmer Spotlight FT-IR Microscopy Systems are

More information

Recent results from the JEOL JEM-3000F FEGTEM in Oxford

Recent results from the JEOL JEM-3000F FEGTEM in Oxford Recent results from the JEOL JEM-3000F FEGTEM in Oxford R.E. Dunin-Borkowski a, J. Sloan b, R.R. Meyer c, A.I. Kirkland c,d and J. L. Hutchison a a b c d Department of Materials, Parks Road, Oxford OX1

More information

Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM

Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM Warning Always adjust your specimen height before closing the chamber door to make sure your specimen will not hit the bottom of the lens;

More information

MPI TS300-SE 300 mm Manual Probe System with ShielDEnvironment TM For accurate and reliable DC/CV, RF and mmw measurements

MPI TS300-SE 300 mm Manual Probe System with ShielDEnvironment TM For accurate and reliable DC/CV, RF and mmw measurements MPI TS300-SE 300 mm Manual Probe System with ShielDEnvironment TM For accurate and reliable DC/CV, RF and mmw measurements FEATURES / BENEFITS Universal Use Designed for wide variety of applications such

More information

Oct. 30th- Nov. 1st, 2017

Oct. 30th- Nov. 1st, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors SEM Doctoral Course MS-636 Oct. 30th- Nov. 1st, 2017 Summary Electron propagation is only possible

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

Development of JEM-2800 High Throughput Electron Microscope

Development of JEM-2800 High Throughput Electron Microscope Development of JEM-2800 High Throughput Electron Microscope Mitsuhide Matsushita, Shuji Kawai, Takeshi Iwama, Katsuhiro Tanaka, Toshiko Kuba and Noriaki Endo EM Business Unit, JEOL Ltd. Electron Optics

More information

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations

attocube systems Probe Stations for Extreme Environments CRYOGENIC PROBE STATION fundamentals principles of cryogenic probe stations PAGE 88 & 2008 2007 PRODUCT CATALOG CRYOGENIC PROBE STATION fundamentals...................... 90 principles of cryogenic probe stations attocps I.......................... 92 ultra stable cryogenic probe

More information

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument.

General information. If you see the instrument turned off, notify MIC personnel. MIC personnel will help you insert your samples into the instrument. JEOL JSM-7400F Table of contents General information.. 3 The operation panel. 4 The different sample holders and inserting the samples.. 5 Turning on the beam... 6 Stage map control... 8 Correcting astigmatism...

More information

Company synopsis. MSU series

Company synopsis. MSU series MSU series 1 2 Company synopsis Majantys, part of Pleiades Group along with Pleiades Instruments, is an optoelectronic system maker, designing and manufacturing for specific systems such as photometric

More information

Operating the Hitachi 7100 Transmission Electron Microscope Electron Microscopy Core, University of Utah

Operating the Hitachi 7100 Transmission Electron Microscope Electron Microscopy Core, University of Utah Operating the Hitachi 7100 Transmission Electron Microscope Electron Microscopy Core, University of Utah Follow the procedures below when you use the Hitachi 7100 TEM. Starting Session 1. Turn on the cold

More information

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners)

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) Microscopy101 Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) V.M. Dusevich*, J.H. Purk, and J.D. Eick University of Missouri Kansas City, School of Dentistry, 650 E. 25

More information

2 How to operate the microscope/obtain an image

2 How to operate the microscope/obtain an image Morgagni Operating Instructions 50079 010912 2-1 2 ow to operate the microscope/obtain an image 2.1 Starting the microscope 2.1.1 Starting the microscope with several manually-operated steps 1. Turn on

More information

Scanning Electron Microscope in Our Facility

Scanning Electron Microscope in Our Facility SEM Training Scanning Electron Microscope in Our Facility Specifications Table SEM ESEM FE-SEM-F FE-SEM-J FE-SEM-H FE-SEM-CZ Device name TM3030 Inspect S50 Inspect F50 JSM-7600 S-4700 Marlin compact Company

More information

MSE 595T Transmission Electron Microscopy. Laboratory III TEM Imaging - I

MSE 595T Transmission Electron Microscopy. Laboratory III TEM Imaging - I MSE 595T Basic Transmission Electron Microscopy TEM Imaging - I Purpose The purpose of this lab is to: 1. Make fine adjustments to the microscope alignment 2. Obtain a diffraction pattern 3. Obtain an

More information

ELECTRON MICROSCOPY AN OVERVIEW

ELECTRON MICROSCOPY AN OVERVIEW ELECTRON MICROSCOPY AN OVERVIEW Anjali Priya 1, Abhishek Singh 2, Nikhil Anand Srivastava 3 1,2,3 Department of Electrical & Instrumentation, Sant Longowal Institute of Engg. & Technology, Sangrur, India.

More information

DUOLINE. Rotary vane pumps for all applications in the low and medium vacuum range

DUOLINE. Rotary vane pumps for all applications in the low and medium vacuum range DUOLINE Rotary vane pumps for all applications in the low and medium vacuum range DUOLINE Rotary vane pumps for all applications in the low and medium vacuum range The two-stage high-performance rotary

More information

Instructions for Tecnai a brief start up manual

Instructions for Tecnai a brief start up manual Instructions for Tecnai a brief start up manual Version 3.0, 8.12.2015 Manual of Tecnai 12 transmission electron microscope located at Aalto University's Nanomicroscopy Center. More information of Nanomicroscopy

More information

Innovative Technology for Innovative Science Hands-on in a Nanoscience Classroom

Innovative Technology for Innovative Science Hands-on in a Nanoscience Classroom Innovative Technology for Innovative Science Hands-on in a Nanoscience Classroom Presented by Jennifer F. Wall, Ph.D. Imaging Possibilities Optical 2 mm Electron 500 microns Atomic Force 10 microns Scanning

More information

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni 021/

2.Components of an electron microscope. a) vacuum systems, b) electron guns, c) electron optics, d) detectors. Marco Cantoni 021/ 2.Components of an electron microscope a) vacuum systems, b) electron guns, c) electron optics, d) detectors, 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME Summary Electron propagation

More information

1. Preliminary sample preparation

1. Preliminary sample preparation FEI Helios NanoLab 600 standard operating procedure Nicholas G. Rudawski ngr@ufl.edu (352) 392 3077 (office) (805) 252-4916 (cell) Last updated: 03/02/18 What this document provides: an overview of basic

More information

ASM Webinar Digital Microscopy for Materials Science

ASM Webinar Digital Microscopy for Materials Science Digital Microscopy Defined The term Digital Microscopy applies to any optical platform that integrates a digital camera and software to acquire images; macroscopes, stereomicroscopes, compound microscopes

More information

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays.

By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of X-Rays. XRD X-Ray Diffractometer Innovative, Integrated, Multifunctional By using patented polycapillary optics this diffractometer obviates the need for monochromators and collimators for linear projection of

More information

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G APPLICATION NOTE M01 attocfm I for Surface Quality Inspection Confocal microscopes work by scanning a tiny light spot on a sample and by measuring the scattered light in the illuminated volume. First,

More information

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu

ELECTRON MICROSCOPY. 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University. Tung Hsu ELECTRON MICROSCOPY 14:10 17:00, Apr. 3, 2007 Department of Physics, National Taiwan University Tung Hsu Department of Materials Science and Engineering National Tsinghua University Hsinchu 300, TAIWAN

More information

Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis.

Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis. Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis www.parkafm.com Park NX-Hivac High vacuum scanning for failure analysis applications 4 x 07 / Cm3 Current (µa)

More information

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF

M4 TORNADO PLUS. Innovation with Integrity. Super Light Element Micro-XRF Spectrometer. Micro-XRF M4 TORNADO PLUS Super Light Element Micro-XRF Spectrometer Innovation with Integrity Micro-XRF M4 TORNADO PLUS - A New Era in Micro-XRF M4 TORNADO PLUS is the world's first Micro-XRF spectrometer that

More information

Morphologi. Advanced image analysis for high sensitivity particle characterization. Particle size. Particle shape

Morphologi. Advanced image analysis for high sensitivity particle characterization. Particle size. Particle shape Particle size Particle shape Morphologi detailed specification sheets from www.malvern.co.uk Introducing a new concept in image analysis The Morphologi high sensitivity particle analyzer is more than just

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Fundamentals of optical and scanning electron microscopy Dr. S. Sankaran Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module 03 Unit-6 Instrumental details

More information

Optical Sensor Systems from Carl Zeiss CORONA PLUS. Tuned by Carl Zeiss. The next generation in the compact class

Optical Sensor Systems from Carl Zeiss CORONA PLUS. Tuned by Carl Zeiss. The next generation in the compact class Optical Sensor Systems from Carl Zeiss CORONA PLUS Tuned by Carl Zeiss The next generation in the compact class Standard: Innovative spectrometer technologies, superior measuring convenience, optimal handling.

More information

Micro-manipulated Cryogenic & Vacuum Probe Systems

Micro-manipulated Cryogenic & Vacuum Probe Systems Janis micro-manipulated probe stations are designed for non-destructive electrical testing using DC, RF, and fiber-optic probes. They are useful in a variety of fields including semiconductors, MEMS, superconductivity,

More information

Topics 3b,c Electron Microscopy

Topics 3b,c Electron Microscopy Topics 3b,c Electron Microscopy 1.0 Introduction and History 1.1 Characteristic Information 2.0 Basic Principles 2.1 Electron-Solid Interactions 2.2 Electromagnetic Lenses 2.3 Breakdown of an Electron

More information

Strata DB235 FESEM FIB

Strata DB235 FESEM FIB Strata DB235 FESEM FIB Standard Operating Procedure Revision: 5.0 Last Updated: August 16/2016, revised by Li Yang Overview This document will provide a detailed operation procedure of the Focused Ion

More information

Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP

Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP S Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP THE PROBLEM: As a microscopist you often have to work with samples that are difficult to focus. When viewing a 3-D sample using an optical microscope

More information