EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING

Size: px
Start display at page:

Download "EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING"

Transcription

1 EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING

2 THANK YOU! Xiaopeng Tong Xiaohua (Eric) Xu David Sandwell Yuri Fialko

3 OUTLINE Batch processing scripts in GMTSAR (focus on Sentinel-1) SBAS: a method for calculating InSAR time series. Atmospheric correction method for InSAR time series.

4 WHY BATCH PROCESSING? Automated processing of large (~TB) volumes of SAR data to generate hundreds to thousands of interferograms. Analyze interferograms to estimate ground deformation and how it varies in time: Earthquake cycle deformation Volcano unrest Glacier flow Urban and infrastructure Hydrology Landslides

5 Batch processing for time series

6 OVERVIEW Organize your data and decide processing strategies. Choose a master image. Align a stack of SAR data. Form interferograms. Post-process (SBAS time series, Atmospheric correction) Examples available on GMTSAR website: Envisat, Sentinel-1A

7 STEP ZERO: ORGANIZE YOUR DATA Directory tree (just a suggestion): ERS/ENVISAT/ALOS-1 SENTINEL-1A (TOPS) TRACK# TRACK# RAW TOPO INTF TOPO RAW F1 F2 F3 RAW INTF RAW INTF RAW INTF

8 STEP ONE: CHOOSE YOUR MASTER IMAGE SENTINEL-1A (TOPS) preproc_batch_tops.csh (mode 1) required inputs: data.in, dem.grd, mode Pre-process a stack of SAR data using default parameters (Earth radius, Doppler centroid, near range) Generate baseline-time plot to choose master images, alignment strategy, and interferometric pairs.

9 STEP ONE: CHOOSE YOUR MASTER IMAGE SENTINEL-1A (TOPS) preproc_batch_tops.csh (mode 1) input file data.in: S1A-IW1-SLC-VV-**D1T1**-001:S1A-IW1-SLC-VV-**D1T2**-001:S1A_***EOF S1A-IW1-SLC-VV-**D2T1**-001:S1A-IW1-SLC-VV-**D2T2**-001:S1A_***EOF S1A-IW1-SLC-VV-**D3T1**-001:S1A-IW1-SLC-VV-**D3T2**-001:S1A_***EOF

10 STEP ONE: CHOOSE YOUR MASTER IMAGE (EXAMPLE) A good master image 0 S1A _ALL_F1 covers your area of interest and minimizes perpendicular baselines baseline (m) S1A _ALL_F1 S1A _ALL_F1 between interferometric pairs. 50 Baseline-time plot: baseline.ps year

11 STEP ONE: CHOOSE YOUR MASTER IMAGE (EXAMPLE) A good master image , 11/10 S1A _ALL_F1 covers your area of interest and minimizes perpendicular baselines between interferometric baseline (m) 2014, 12/ , 12/28 S1A _ALL_F1 S1A _ALL_F1 pairs. 50 Baseline-time plot: baseline.ps year

12 STEP ONE: CHOOSE YOUR MASTER IMAGE (EXAMPLE) A good master image , 11/10 S1A _ALL_F1 covers your area of interest and minimizes perpendicular baselines between interferometric baseline (m) 2014, 12/ , 12/28 S1A _ALL_F1 S1A _ALL_F1 pairs. 50 Baseline-time plot: baseline.ps year

13 STEP TWO: PREPROCESS YOUR BATCH SENTINEL-1A (TOPS) preproc_batch_tops.csh (mode2) Modify data.in: put the master first! Output aligned.slc files that will be combined to form interferometric pairs.

14 STEP TWO: PREPROCESS YOUR BATCH SENTINEL-1A (TOPS) preproc_batch_tops.csh (mode 2) input file data.in: S1A-IW1-SLC-VV-**D2T1**-001:S1A-IW1-SLC-VV-**D2T2**-001:S1A_***EOF S1A-IW1-SLC-VV-**D1T1**-001:S1A-IW1-SLC-VV-**D1T2**-001:S1A_***EOF S1A-IW1-SLC-VV-**D3T1**-001:S1A-IW1-SLC-VV-**D3T2**-001:S1A_***EOF MASTER

15 STEP THREE: MAKE INTERFEROGRAMS! Choose the pairs you , 11/10 S1A _ALL_F1 want to connect. Interferograms in a circle should end up to zero! baseline (m) 2014, 12/ , 12/28 S1A _ALL_F1 S1A _ALL_F1 50 Baseline-time plot: baseline.ps year

16 STEP THREE: MAKE INTERFEROGRAMS! intf_tops.csh intf.in batch_tops.config batch_tops.config parameters: proc_stage master_image threshold_snaphu filter_wavelength range_dec, azimuth_dec, dec_factor switch_land defomax

17 STEP THREE: MAKE INTERFEROGRAMS! intf_tops.csh intf.in batch_tops.config intf.in is a list of pairs you want to connect, e.g., S1A _ALL_F1:S1A _ALL_F1

18 GMTSAR BATCH PROCESSING OPTIONAL STEP: MERGE THE SUB SWATHS Inside batch_tops.config, set proc_stage to 1, threshold_snaphu to 0, and threshold_geocode to 0. Run script merge_unwrap_geocode_tops.csh (on individual pairs) or batch_merge.csh (on a whole batch) to merge the (wrapped) phase, then unwrap and geocode.

19 OTHER SATELLITES (NOT SENTINEL) pre_proc_batch.csh SUPERMASTER! Get a baseline table Choose master(s) and SUPERMASTER! align_batch.csh align slaves to masters and the super master

20 BATCH PROCESSING RESULTS Interferograms are stored in individual folders in intf/ (intf_all/ for Sentinel, separate for each sub swath) The folder is named after the two dates (e.g., _ ) Each interferogram folder contains the following files: Amplitude, phase, correlation, unwrapped phase, filtered phase image files in NetCDF format.grd Corresponding files after geocoding with suffix _ll.grd Postscript plots:.ps Google Earth.kml and.png

21 MANY INTERFEROGRAMS 50 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 0 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F3 baseline (m) S1A _ALL_F3 S1A _ALL_F3 S1A _ALL_F S1A _ALL_F year

22 TIME SERIES METHODS Stacking (average multiple interferograms to get mean LOS rate) Small-Baseline Subset (SBAS) Test case available on the GMTSAR website Persistent Scatterer Insar (PSInSAR) StaMPS (Stanford Methods for PS InSAR - written in Matlab) Giant (Generic InSAR Analysis Toolbox) Multiple time-series analysis tools (written in Python)

23 TIME SERIES METHODS Stacking (average multiple interferograms to get mean LOS rate) Small-Baseline Subset (SBAS) Test case available on the GMTSAR website Persistent Scatterer Insar (PSInSAR) StaMPS (Stanford Methods for PS InSAR - written in Matlab) Giant (Generic InSAR Analysis Toolbox) Multiple time-series analysis tools (written in Python)

24 Small&Baseline&Subset&(SBAS)&methods& W βb βb λ λ λ λ... 0 m 1 m 2... m s Δh = W d 1 d W = diag{γ 1,γ 2,γ 3,!,γ n } d i B i γ i m i Δh?? )Unwrapped)phase)?? )Perpendicular)baseline)?? )Coherence))??))))))Incremental)range)change)??))))))DEM)error) [Berardino)et)al.,)2002;)Schmidt)and)Burgmann,)2003])

25 Comparison between the coherence-based SBAS and the tradi6onal SBAS flight look coherence-based SBAS Tradi6onal SBAS

26 TIME SERIES EXAMPLE ALOS data over Coachella Valley, California Time series prepared with the script sbas (included in GMTSAR) Input: intf.tab (list of interferograms), orbit numbers, baselines. scene.tab (list of scenes), day numbers N (number of interferograms) S (number of SAR scenes) xdim, ydim (dimensions of the interferograms must be the same for all images)

27 GMTSAR BATCH PROCESSING ATMOSPHERIC CORRECTION

28 ATMOSPHERIC CORRECTION Radar waves are refracted Pressure Temperature Water vapor Atmospheric noise is unpredictable Turbulent component (power law in space, uncorrelated in time) Seasonal weather patterns (correlated in time) Layers (correlated with topography)

29 ATMOSPHERIC CORRECTION Ionosphere Charged particles - radar phase speeds up. Ionosphere is dispersive. Long spatial wavelengths

30 ATMOSPHERIC CORRECTION Options: Weather models TEC models Filtering (in time or space or both) Topography-correlated models

31 ATMOSPHERIC CORRECTION METHOD Interferograms that share a common scene also share the same atmospheric contribution. Subtracting pair 2-3 from pair 1-2 will amplify the atmospheric signal, α2

32 ATMOSPHERIC CORRECTION METHOD For constant deformation and equal time spans between acquisitions, increasing the length of the averaging stencil increases the accuracy of retrieved αi For non-linear deformation and irregular acquisitions, we adopt an iterative procedure.

33 ATMOSPHERIC CORRECTION METHOD Calculate atmospheric contribution, αi, for all pixels for each of the scenes in the catalog. Compute the Atmospheric Noise Coefficient (ANC, below) for each scene. Obtain independent estimate for deformation by computing time series and fitting smoothing spline. Remove the estimate of deformation from interferograms that go into subsequent calculations. Recalculate αi, starting with scenes with the highest ANC. Recalculate ANC for each scene. Recalculate deformation signal, using estimates of αi to correct for atmospheric contribution. Repeat Steps 4-7 until convergence.

34 ATMOSPHERIC CORRECTION EXAMPLE Atmospheric phase maps, ERS1-2 and ENVISAT Track 170

35 ATMOSPHERIC CORRECTION EXAMPLE May 8, 2010 Sept. 2, 2000 July 8, 2006 April 26, 1997

36 ATMOSPHERIC CORRECTION ATM. CORRECTION EXAMPLE

37 ATMOSPHERIC CORRECTION VALIDATION: SYNTHETIC TESTS LOS displacements (mm) (a) -30 Input signal Uncorrected time series Corrected time series (d) -30 Input signal Uncorrected timeseries Corrected timeseries Results of the synthetic data test. (a-c) Regular acquisitions with small baselines. (d- f) Set of interferograms that mimics the ERS/ENVISAT baseline distribution (Figure 4). (a,d) No LOS displacements (mm) (b) -30 Input signal Uncorrected time series Corrected time series (e) Input signal Uncorrected timeseries Corrected timeseries deformation. (b,e) Constant velocity of 1 mm/ yr. (c,f) Variable velocity. Blue dots denote prescribed deformation signal, red dots and crosses denote recovered time series with LOS displacements (mm) (c) -30 Input signal Uncorrected time series Corrected time series Time (years) (f) -30 Input signal Uncorrected timeseries Corrected timeseries Time (years) and without atmospheric corrections, respectively.

38 ATMOSPHERIC CORRECTION VALIDATION OF CORRECTED TIME SERIES (CGPS) LOS displacements (mm) Time (years)

39 ATMOSPHERIC CORRECTION EXAMPLE: DEFORMATION AT CERRO PRIETO GEOTHERMAL FIELD Xu et al., 2017

40 ATMOSPHERIC CORRECTION EXAMPLE: DEFORMATION AT CERRO PRIETO GEOTHERMAL FIELD Xu et al., 2017

41 DEM: 0.5 GB 30 SAR IMAGES: 2-3 GB EACH INSAR TIME SERIES: PRICELESS.

Terrain Motion and Persistent Scatterer InSAR

Terrain Motion and Persistent Scatterer InSAR Terrain Motion and Persistent Scatterer InSAR Andy Hooper University of Leeds ESA Land Training Course, Gödöllő, Hungary, 4-9 th September, 2017 Good Interferogram 2011 Tohoku earthquake Good correlation

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

Fringe 2015 Workshop

Fringe 2015 Workshop Fringe 2015 Workshop On the Estimation and Interpretation of Sentinel-1 TOPS InSAR Coherence Urs Wegmüller, Maurizio Santoro, Charles Werner and Oliver Cartus Gamma Remote Sensing AG - S1 IWS InSAR and

More information

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches Andy Hooper University of Iceland Time Multi-Temporal InSAR Same area imaged each time Multi-Temporal

More information

Persistent Scatterer InSAR

Persistent Scatterer InSAR Persistent Scatterer InSAR Andy Hooper University of Leeds Synthetic Aperture Radar: A Global Solution for Monitoring Geological Disasters, ICTP, 2 Sep 2013 Good Interferogram 2011 Tohoku earthquake Good

More information

Trainings and capacity buildings of space

Trainings and capacity buildings of space Trainings and capacity buildings of space technology, GIS and SAR products development for disaster management for DAN Dr. Masahiko NAGAI, Prof. Ryosuke Shibasaki Center for Spatial Information Science,

More information

How accurately can current and futureinsar missions map tectonic strain?

How accurately can current and futureinsar missions map tectonic strain? How accurately can current and futureinsar missions map tectonic strain? Outline: How accurately do we need to measure strain? InSAR missions Error budget for InSAR Ability of current, planned and proposed

More information

Change detection in cultural landscapes

Change detection in cultural landscapes 9-11 November 2015 ESA-ESRIN, Frascati (Rome), Italy 3 rd ESA-EARSeL Course on Remote Sensing for Archaeology Day 3 Change detection in cultural landscapes DeodatoTapete (1,2) & Francesca Cigna (1,2) (1)

More information

21-Sep-11. Outline. InSAR monitoring of CO2 sequestration - Complications. Enhanced solution (novel spatiotemporal atmospheric filtering)

21-Sep-11. Outline. InSAR monitoring of CO2 sequestration - Complications. Enhanced solution (novel spatiotemporal atmospheric filtering) Pushing the accuracy limit for CO2 sequestration monitoring: Statistically optimal spatio-temporal removal of the atmospheric component from InSAR Networks Bernhard Rabus Jayson Eppler MacDonald Dettwiler

More information

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA Javier Duro 1, Josep Closa 1, Erlinda Biescas 2, Michele Crosetto 2, Alain Arnaud 1 1 Altamira Information C/ Roger

More information

Integration of InSAR and GPS for precise deformation mapping

Integration of InSAR and GPS for precise deformation mapping Integration of InSAR and GPS for precise deformation mapping Zhenhong Li (COMET, University of Glasgow, UK) Eric J. Fielding (Jet Propulsion Laboratory, Caltech, USA) 30 November 2009 Contents Two major

More information

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY Junghum Yu *, Alex Hay-Man Ng, Sungheuk Jung, Linlin Ge, and Chris Rizos. School of Surveying and Spatial Information Systems, University

More information

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES Jayson Eppler (1), Mike Kubanski (1) (1) MDA Systems Ltd., 13800 Commerce Parkway, Richmond, British Columbia, Canada, V6V

More information

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments Riccardo Lanari Institute for Electromagnetic Sensing of the Environment (IREA) National Research Council of Italy (CNR)

More information

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * O. Lawlor, T. Logan, R. Guritz, R. Fatland, S. Li, Z. Wang, and C. Olmsted Alaska SAR Facility

More information

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010)

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010) Synthetic Aperture Radar Interferometry () Technique (Lecture I- Tuesday 11 May 2010) ISNET/CRTEAN Training Course on Synthetic Aperture Radar (SAR) Imagery: Processing, Interpretation and Applications

More information

ASAR Training Course, Hanoi, 25 February 7 March 2008 Introduction to Radar Interferometry

ASAR Training Course, Hanoi, 25 February 7 March 2008 Introduction to Radar Interferometry Introduction to Radar Interferometry Presenter: F.Sarti (ESA/ESRIN) 1 Imaging Radar : reminder 2 Physics of radar Potentialities of radar All-weather observation system (active system) Penetration capabilities

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS G. Savio (1), A. Ferretti (1) (2), F. Novali (1), S. Musazzi (3), C. Prati (2), F. Rocca (2) (1) Tele-Rilevamento Europa T.R.E.

More information

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry Mario Costantini e-geos - an ASI/Telespazio Company, Rome, Italy mario.costantini@e-geos.it Summary COSMO-SkyMed satellite

More information

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA L. Ge a, H.-C. Chang a, A. H. Ng b and C. Rizos a Cooperative Research Centre for Spatial Information School of Surveying & Spatial Information Systems,

More information

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Riccardo Lanari IREA-CNR Napoli EGU2014, Vienna 30 April, 2014 Why Radar (SAR) Imaging from space?

More information

Introduction to radar. interferometry

Introduction to radar. interferometry Introduction to radar Introduction to Radar Interferometry interferometry Presenter: F.Sarti (ESA/ESRIN) With kind contribution by the Radar Department of CNES All-weather observation system (active system)

More information

MULTIPLE APERTURE INSAR (MAI) WITH C-BAND AND L-BAND DATA: NOISE AND PRECISION

MULTIPLE APERTURE INSAR (MAI) WITH C-BAND AND L-BAND DATA: NOISE AND PRECISION MULTIPLE APERTURE INSAR (MAI) WITH C-BAND AND L-BAND DATA: NOISE AND PRECISION Noa Bechor Ben-Dov and Thomas A. Herring Massachusetts Institute of Technology, Cambridge, MA 2139, USA, Email: nbechor@chandler.mit.edu

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data Fringe 2007 - ESA-ESRIN - Frascati, November 28, 2007 Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data D. Perissin Politecnico di Milano Tele-Rilevamento Europa -

More information

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Ref.: RV-14524 Doc.: CM-168-01 January 31, 2013 SUBMITTED TO: Southern California Gas Company 555 W. Fifth Street (Mail Location

More information

Synthetic Aperture Radar for Rapid Flood Extent Mapping

Synthetic Aperture Radar for Rapid Flood Extent Mapping National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Synthetic Aperture Radar for Rapid Flood Extent Mapping Sang-Ho Yun ARIA Team Jet

More information

Analysing Surface Deformation in Surabaya from Sentinel-1A Data using DInSAR Method

Analysing Surface Deformation in Surabaya from Sentinel-1A Data using DInSAR Method Analysing Surface Deformation in Surabaya from Sentinel-1A Data using DInSAR Method Ira M. Anjasmara, Meiriska Yusfania, Akbar Kurniawan, Roni Kurniawan, Awalina L C Resmi Presenter Name Date of Birth

More information

Sentinel-1 Overview. Dr. Andrea Minchella

Sentinel-1 Overview. Dr. Andrea Minchella Dr. Andrea Minchella 21-22/01/2016 ESA SNAP-Sentinel-1 Training Course Satellite Applications Catapult - Electron Building, Harwell, Oxfordshire Contents Sentinel-1 Mission Sentinel-1 SAR Modes Sentinel-1

More information

Dynamics and Control Issues for Future Multistatic Spaceborne Radars

Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dr Stephen Hobbs Space Research Centre, School of Engineering, Cranfield University, UK Abstract Concepts for future spaceborne radar

More information

SARscape for ENVI. A Complete SAR Analysis Solution

SARscape for ENVI. A Complete SAR Analysis Solution SARscape for ENVI A Complete SAR Analysis Solution IDL and ENVI A Foundation for SARscape IDL The Data Analysis & Visualization Platform Data Access: IDL supports virtually every data format, type and

More information

Client: Statens vegvesen, Region midt County: Sør Trondelag

Client: Statens vegvesen, Region midt County: Sør Trondelag Geological Survey of Norway N-7441 Trondheim, Norway REPORT Report no.: 2004.043 ISSN 0800-3416 Grading: Open Title: Preliminary analysis of InSAR data over Trondheim with respect to future road development

More information

RESERVOIR MONITORING USING RADAR SATELLITES

RESERVOIR MONITORING USING RADAR SATELLITES RESERVOIR MONITORING USING RADAR SATELLITES Alain Arnaud, Johanna Granda, Geraint Cooksley ALTAMIRA INFORMATION S.L., Calle Córcega 381-387, E-08037 Barcelona, Spain. Key words: Reservoir monitoring, InSAR,

More information

Envisat and ERS missions: data and services

Envisat and ERS missions: data and services FRINGE 2005 Workshop Envisat and ERS missions: and services Henri LAUR Envisat Mission Manager Our top objective: ease access to Earth Observation Common objective for all missions handled by ESA: Envisat,

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE

DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp.111-118 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 DISPLACEMENT AND DEFORMATION MEASUREMENT USING

More information

Interferometric Cartwheel 1

Interferometric Cartwheel 1 The Interferometric CartWheel A wheel of passive radar microsatellites for upgrading existing SAR projects D. Massonnet, P. Ultré-Guérard (DPI/EOT) E. Thouvenot (DTS/AE/INS/IR) Interferometric Cartwheel

More information

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES Massimiliano Pieraccini, Guido Luzi, Daniele Mecatti, Linhsia Noferini, Giovanni Macaluso, and Carlo Atzeni University of Florence Department

More information

Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation

Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation P.-L. Frison, S. Kmiha, B. Fruneau, K. Soudani, E. Dufrêne, T. Koleck, L. Villard, M. Lepage, J.-F. Dejoux, J.-P.

More information

Research Article Performance Evaluation of Azimuth Offset Method for Mitigating the Ionospheric Effect on SAR Interferometry

Research Article Performance Evaluation of Azimuth Offset Method for Mitigating the Ionospheric Effect on SAR Interferometry Hindawi Journal of Sensors Volume 217, Article ID 4587475, 1 pages https://doi.org/1.1155/217/4587475 Research Article Performance Evaluation of Azimuth Offset Method for Mitigating the Ionospheric Effect

More information

Monitoring of railroad infrastructure with the use of differential interferometric techniques of SAR data processing

Monitoring of railroad infrastructure with the use of differential interferometric techniques of SAR data processing A.S.Vasileisky, R.I.Shuvalov Monitoring of railroad infrastructure with the use of differential interferometric techniques of SAR data processing From Imagery to Map Digital Photogrammetric Technologies

More information

PALSAR SCANSAR SCANSAR Interferometry

PALSAR SCANSAR SCANSAR Interferometry PALSAR SCANSAR SCANSAR Interferometry Masanobu Shimada Japan Aerospace Exploration Agency Earth Observation Research Center ALOS PI symposium, Greece Nov. 6 2008 1 Introduction L-band PALSAR strip mode

More information

COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST

COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST Iulia Dana (1), Valentin Poncos (2), Delia Teleaga (2) (1) Romanian Space Agency, 21-25 Mendeleev Street, 010362, Bucharest,

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique Heresh Fattahi, Member, IEEE, Mark Simons,

More information

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue L-band PS analysis: JERS-1 results and TerraSAR L predictions Kenji Daito (1), Alessandro Ferretti (), Shigeki Kuzuoka (3),Fabrizio Novali (), Pietro Panzeri (), Fabio Rocca (4) (1) Daido Institute of

More information

Monitoring of Bridge Deformation with InSAR: An Experimental Study

Monitoring of Bridge Deformation with InSAR: An Experimental Study XXIV FIG International Congress 2010 11-16 April 2010 Sydney, Australia Monitoring of Bridge Deformation with InSAR: An Experimental Study Lei Zhang 1, Xiaoli Ding 1 and Zhong Lu 2 1 Department of Land

More information

SARscape s Coherent Changes Detection Tutorial

SARscape s Coherent Changes Detection Tutorial SARscape s Coherent Changes Detection Tutorial Version 1.0 April 2018 1 Index Introduction... 3 Setting Preferences... 4 Data preparation... 5 Input data... 5 DEM Extraction... 5 Single Panels processing...

More information

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Hsing-Chung CHANG, Linlin GE and Chris RIZOS, Australia Key words: Mining Subsidence, InSAR, DInSAR, DEM. SUMMARY

More information

Sentinel-1 System Overview

Sentinel-1 System Overview Sentinel-1 System Overview Dirk Geudtner, Rámon Torres, Paul Snoeij, Malcolm Davidson European Space Agency, ESTEC Global Monitoring for Environment and Security (GMES) EU-led program aiming at providing

More information

Fundamentals of Remote Sensing: SAR Interferometry

Fundamentals of Remote Sensing: SAR Interferometry INSIS Fundamentals of Remote Sensing: SAR Interferometry Notions fondamentales de télédétection : l interférométrie RSO Gabriel VASILE Chargé de Recherche CNRS gabriel.vasile@gipsa-lab.grenoble-inp.fr

More information

Deformation Monitoring with Terrestrial SAR Interferometry

Deformation Monitoring with Terrestrial SAR Interferometry Lisbon, 12 October 2009 Deformation Monitoring with Terrestrial SAR Interferometry Michele Crosetto Institute of Geomatics Castelldefels (Barcelona) michele.crosetto@ideg.es 1 Content Introduction: Satellite-based

More information

Nazemeh Ashrafianfar, Hans-Peter Hebel and Wolfgang Busch

Nazemeh Ashrafianfar, Hans-Peter Hebel and Wolfgang Busch MONITORING OF MINING INDUCED LAND SUBSIDENCE - DIFFERENTIAL SAR INTERFEROMETRY AND PERSISTENT SCATTERER INTERFEROMETRY USING TERRASAR-X DATA IN COMPARISON WITH ENVISAT DATA ABSTRACT Nazemeh Ashrafianfar,

More information

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Hoonyol LEE, Seong-Jun CHO, Nak-Hoon SUNG and Jung-Ho KIM Department of Geophysics, Kangwon National University

More information

Francesco Holecz. TUBE II meeting - 17 June Land Degradation. Land Degradation

Francesco Holecz. TUBE II meeting - 17 June Land Degradation. Land Degradation Land Degradation Francesco Holecz Objective To identify and monitor land degraded areas, in particular those related to agricultural and pastoral activities. Following products are generated: Land cover

More information

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite.

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite. Technical Specifications Radar Ortho Suite The Radar Ortho Suite includes rigorous and rational function models developed to compensate for distortions and produce orthorectified radar images. Distortions

More information

School of Rural and Surveying Engineering National Technical University of Athens

School of Rural and Surveying Engineering National Technical University of Athens Laboratory of Photogrammetry National Technical University of Athens Combined use of spaceborne optical and SAR data Incompatible data sources or a useful procedure? Charalabos Ioannidis, Dimitra Vassilaki

More information

Damage detection in the 2015 Nepal earthquake using ALOS-2 satellite SAR imagery

Damage detection in the 2015 Nepal earthquake using ALOS-2 satellite SAR imagery Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Damage detection in the 2015 Nepal earthquake using ALOS-2

More information

Performance Comparison between Dual Polarimetric and Fully Polarimetric data for DInSAR Subsidence monitoring Dani Monells, Jordi J. Mallorquí Universitat Politècnica de Catalunya, Departament de Teoria

More information

OPTIMIZATION OF SATELLITE INSAR TECHNIQUES FOR MONITORING OF SUBSIDENCE IN THE SURROUNDINGS OF KARVINÁ MINE: LAZY PLANT

OPTIMIZATION OF SATELLITE INSAR TECHNIQUES FOR MONITORING OF SUBSIDENCE IN THE SURROUNDINGS OF KARVINÁ MINE: LAZY PLANT Acta Geodyn. Geomater., Vol. 10, No. 1 (169), 51 55, 2013 OPTIMIZATION OF SATELLITE INSAR TECHNIQUES FOR MONITORING OF SUBSIDENCE IN THE SURROUNDINGS OF KARVINÁ MINE: LAZY PLANT Milan LAZECKÝ * and Eva

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Change Detection and Monitoring: Geospatial / Image Intelligence April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Change Detection and Monitoring:

More information

PSInSAR validation by means of a blind experiment using dihedral reflectors

PSInSAR validation by means of a blind experiment using dihedral reflectors PSInSAR validation by means of a blind experiment using dihedral reflectors A.Ferretti( 1 )( 2 ), S. Musazzi( 3 ), F.Novali ( 2 ), C. Prati( 1 ), F. Rocca( 1 ), G. Savio ( 2 ) ( 1 ) Politecnico di Milano

More information

SAR Remote Sensing (Microwave Remote Sensing)

SAR Remote Sensing (Microwave Remote Sensing) iirs SAR Remote Sensing (Microwave Remote Sensing) Synthetic Aperture Radar Shashi Kumar shashi@iirs.gov.in Electromagnetic Radiation Electromagnetic radiation consists of an electrical field(e) which

More information

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS Alessandro Ferretti (), Carlo Colesanti (), Daniele Perissin (), Claudio Prati (), and Fabio Rocca () () Tele-Rilevamento

More information

The Future of Scientific Computing for InSAR Geodetic Imaging

The Future of Scientific Computing for InSAR Geodetic Imaging The Future of Scientific Computing for InSAR Geodetic Imaging Paul A. Rosen Jet Propulsion Laboratory California Institute of Technology October 29, 2012-1 - Outline Background geodetic imaging measurements

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface

Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface AUREL SĂRĂCIN, CONSTANTIN COSARCĂ, CAIUS DIDULESCU, ADRIAN SAVU, AUREL NEGRILĂ Faculty of Geodesy Technical University of

More information

Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring

Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring Wolfgang Wagner wolfgang.wagner@geo.tuwien.ac.at Department of Geodesy

More information

Mine Subsidence Monitoring Using Multi-source Satellite SAR Images

Mine Subsidence Monitoring Using Multi-source Satellite SAR Images Mine Subsidence Monitoring Using Multi-source Satellite SAR Images Linlin Ge, Hsing-Chung Chang and Chris Rizos Cooperative Research Centre for Spatial Information & School of Surveying and Spatial Information

More information

Assessment of Slow Deformations and Rapid Motions by Radar Interferometry

Assessment of Slow Deformations and Rapid Motions by Radar Interferometry 'Photogrammetric Week 05' Dieter Fritsch, Ed. Wichmann Verlag, Heidelberg 2005. Bamler et al. 111 Assessment of Slow Deformations and Rapid Motions by Radar Interferometry RICHARD BAMLER, BERT KAMPES,

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Maritime Monitoring: Ship Detection April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Maritime Monitoring: Ship Detection Issue Maritime security

More information

Satellite Assessment and Monitoring for Pavement Management

Satellite Assessment and Monitoring for Pavement Management CAIT-UTC-NC4 Satellite Assessment and Monitoring for Pavement Management Final Report November 2015 Ardeshir Fagrhi, Ph.D. Professor Mingxin Li, Ph.D. Research Associate II Abdulkadir Ozden Graduate Research

More information

RADAR INTERFEROMETRY FOR MONITORING LAND SUBSIDENCE DUE TO OVER-PUMPING GROUND WATER IN CRETE, GREECE

RADAR INTERFEROMETRY FOR MONITORING LAND SUBSIDENCE DUE TO OVER-PUMPING GROUND WATER IN CRETE, GREECE RADAR INTERFEROMETRY FOR MONITORING LAND SUBSIDENCE DUE TO OVER-PUMPING GROUND WATER IN CRETE, GREECE S. P. Mertikas (1), E.S. Papadaki (1) (1) The Technical University of Crete, GR- 73 100, Chania, Crete,

More information

European Space Agency and IPY

European Space Agency and IPY European Space Agency and IPY ESA supports IPY 2007-2008 activities: First ESA step was a dedicated Announcement Opportunity (AO) for EO data provision in support IPY, released in 2006, with data provision

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

Study of Low Cost InSAR for SAGD Steam Chamber Monitoring

Study of Low Cost InSAR for SAGD Steam Chamber Monitoring Study of Low Cost InSAR for SAGD Steam Chamber Monitoring LOOKNorth Report R-15-033-6055 Prepared for: Revision 2.1 2015-07-07 Captain Robert A. Bartlett Building Morrissey Road St. John s, NL Canada A1B

More information

Radar and Satellite Remote Sensing. Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas

Radar and Satellite Remote Sensing. Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas Radar and Satellite Remote Sensing Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas 2of 43 Outline Background ice sheet characterization Radar

More information

INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS

INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS ABSTRACT Andrew Sowter (), John Bennett () () IESSG, University of Nottingham, University Park, Nottingham

More information

Warren Cartwright, Product Manager MDA Geospatial Services, Canada

Warren Cartwright, Product Manager MDA Geospatial Services, Canada Advanced InSAR Techniques for Urban Infrastructure Monitoring Warren Cartwright, Product Manager MDA Geospatial Services, Canada www.mdacorporation.com RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF

More information

THREE-DIMENSIONAL MAPPING USING BOTH AIRBORNE AND SPACEBORNE IFSAR TECHNOLOGIES ABSTRACT INTRODUCTION

THREE-DIMENSIONAL MAPPING USING BOTH AIRBORNE AND SPACEBORNE IFSAR TECHNOLOGIES ABSTRACT INTRODUCTION THREE-DIMENSIONAL MAPPING USING BOTH AIRBORNE AND SPACEBORNE IFSAR TECHNOLOGIES Trina Kuuskivi Manager of Value Added Products and Services, Intermap Technologies Corp. 2 Gurdwara Rd, Suite 200, Ottawa,

More information

Sentinel-1A Tile #11 Failure

Sentinel-1A Tile #11 Failure MPC-S1 Reference: Nomenclature: MPC-0324 OI-MPC-ACR Issue: 1. 2 Date: 2016,Oct.13 FORM-NT-GB-10-1 MPC-0324 OI-MPC-ACR V1.2 2016,Oct.13 i.1 Chronology Issues: Issue: Date: Reason for change: Author 1.0

More information

Spectral coherence applied to vessel tracking

Spectral coherence applied to vessel tracking Spectral coherence applied to vessel tracking Christian Barbier (cbarbier@ulg.ac.be) Dominique Derauw (dderauw@ulg.ac.be) Centre Spatial de Liège 2 Wide-band potential Recent sensors use wide band signals

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

SYNTHETIC aperture radar (SAR) interferometry is a powerful

SYNTHETIC aperture radar (SAR) interferometry is a powerful IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 5, MAY 2013 3191 Ionospheric Correction of SAR Interferograms by Multiple-Aperture Interferometry Hyung-Sup Jung, Member, IEEE, Dong-Taek

More information

TREBALL DE FI DE CARRERA

TREBALL DE FI DE CARRERA TREBALL DE FI DE CARRERA TITLE: Interferometric SAR data analysis and processing DEGREE: Technical Telecommunication Engineering Speciality: Telecommunication Systems AUTHOR: Álvaro Fernández Salas DIRECTOR:

More information

Contributions of the Remote Sensing by Earth Observation Satellites on Engineering Geology

Contributions of the Remote Sensing by Earth Observation Satellites on Engineering Geology 10th Asian Regional Conference of IAEG (2015) Contributions of the Remote Sensing by Earth Observation Satellites on Engineering Geology Takeo TADONO (1), Hiroto NAGAI (1), Atsuko NONOMURA (2) and Ryoichi

More information

ASAR, MERIS and AATSR products

ASAR, MERIS and AATSR products ASAR, MERIS and AATSR products Francesco Sarti and Steffen Dransfeld ESA/ESRIN 25 February 2008 ENVISAT http://envisat.esa.int/ Launched in 2002. Sun-synchronous polar orbit (SSO): Nominal reference orbit

More information

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Basics, methods & applications ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Annett.Bartsch@polarresearch.at Active microwave remote sensing of land surface hydrology Landsurface hydrology:

More information

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES Chris Oliver, CBE, NASoftware Ltd 28th January 2007 Introduction Both satellite and airborne SAR data is subject to a number of perturbations which stem from

More information

Sub-Mesoscale Imaging of the Ionosphere with SMAP

Sub-Mesoscale Imaging of the Ionosphere with SMAP Sub-Mesoscale Imaging of the Ionosphere with SMAP Tony Freeman Xiaoqing Pi Xiaoyan Zhou CEOS Workshop, ASF, Fairbanks, Alaska, December 2009 1 Soil Moisture Active-Passive (SMAP) Overview Baseline Mission

More information

ANALYZING TERRASAR-X AND COSMO-SKYMED HIGH-RESOLUTION SAR DATA OF URBAN AREAS

ANALYZING TERRASAR-X AND COSMO-SKYMED HIGH-RESOLUTION SAR DATA OF URBAN AREAS ANALYZING TERRASAR-X AND COSMO-SKYMED HIGH-RESOLUTION SAR DATA OF URBAN AREAS Mingsheng Liao*, Timo Balz, Lu Zhang, Yuanyuan Pei, Houjun Jiang State Key Laboratory of Information Engineering in Surveying,

More information

Ionospheric Structure Imaging with ALOS PALSAR

Ionospheric Structure Imaging with ALOS PALSAR The Second ALOS PI Symposium Rhodes, Greece November 3 7, 008 Ionospheric Structure Imaging with ALOS PALSAR PI Number: 37 JAXA-RA PI: Jong-Sen Lee, Thomas L. Ainsworth and Kun-Shan Chen CSRSR, National

More information

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Review. Guoqing Sun Department of Geography, University of Maryland ABrief Review Guoqing Sun Department of Geography, University of Maryland gsun@glue.umd.edu ABrief Introduction Scattering Mechanisms and Radar Image Characteristics Data Availability Example of Applications

More information

PROGRESS IN ADDRESSING SCIENCE GOALS FOR GLACIER OBSERVATIONS BY MEANS OF SAR. Frank Paul & Thomas Nagler

PROGRESS IN ADDRESSING SCIENCE GOALS FOR GLACIER OBSERVATIONS BY MEANS OF SAR. Frank Paul & Thomas Nagler PROGRESS IN ADDRESSING SCIENCE GOALS FOR GLACIER OBSERVATIONS BY MEANS OF SAR Frank Paul & Thomas Nagler SAR Coordination Working Group Meeting, 13/11/2016 Observed glacier products and sensors Product

More information

Improvement and Validation of Ranging Accuracy with YG-13A

Improvement and Validation of Ranging Accuracy with YG-13A Article Improvement and Validation of Ranging Accuracy with YG-13A Mingjun Deng 1, Guo Zhang 2, *, Ruishan Zhao 3, Jiansong Li 1, Shaoning Li 2 1 School of Remote Sensing and Information Engineering, Wuhan

More information

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters A HISTORY OF PROVIDING HIGH TECHNOLOGY IDS s Pisa Headquarters Geology and Environment IBIS-FL and IBIS-FMT, a dedicated configuration to enter into monitoring of landslides and mining market IBIS-FL:

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Exploring the Potential Pol-InSAR Techniques at X-Band: First Results & Experiments from TanDEM-X

Exploring the Potential Pol-InSAR Techniques at X-Band: First Results & Experiments from TanDEM-X Exploring the Potential Pol-InSAR Techniques at X-Band: First Results & Experiments from TanDEM-X K. Papathanassiou, F. Kugler, J-S. Kim, S-K. Lee, I. Hajnsek Microwaves and Radar Institute (DLR-HR) German

More information

Campaign GPS processing

Campaign GPS processing Campaign GPS processing Fun with GAMIT, GLOBK, TRACK, and the Queen s nose Authors: Tom Herring, Robert King, Mike Floyd, Eric Lindsey, Katia Tymofyeyeva Outline What are GAMIT, GLOBK, and TRACK? What

More information