DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE

Size: px
Start display at page:

Download "DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE"

Transcription

1 JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp ISSN ISSN-L (Print) / e-issn: DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE SARACIN Aurel, Tehnical University of Civil Engineering Bucharest, Faculty of Geodesy, saracinaurel@yahoo.com A B S T R A C T This article brings to the attention of specialists in terrestrial measurements, using radar interferometry for tracking movements and deformations land and buildings, using systems already on the market surveying instruments. Received: January 20, 2013 Accepted: March 10, 2013 Revised: March 31, 2013 Available online: May 31, 2013 Keywords: sensor module, linear rail, scenario, real-time monitoring INTRODUCTION Increasingly be required to perform fast and accurate measurements, low-cost, sometimes in difficult environmental conditions and terrain. Using electromagnetic waves and processing of data can lead to achieving these desiderata and more, radar interferometry can collect real-time lowest shape changes of monitored object. MATERIALS AND METHODS An ground radar interferometry system (Ground-Based Synthetic Aperture Radar (GB-SAR)) is an active sensor for information acquisition, based on the emission and reflection of microwaves to and from the object being examined (fig.1) [10]. Fig.1. Harmonic waves form There are three techniques [2], according to the figures below (fig. 2-4): Fig.2. Stepped Frequency Continuous Wave (SF-CW)

2 SARACIN A.: DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE Fig.3. Synthetic Aperture Radar Technique (SAR) Fig.4. Technique interferometry (InSAR) Such radar works by transmitting short pulses of electromagnetic energy that will be reflected by the land surface and the object examined: 1. GB-SAR concept 2R t = (1) c Fig.5. Real Aperture Radar (RAR) Fig.6. Synthetic Aperture Radar (SAR)

3 JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp ISSN ISSN-L (Print) / e-issn: c τ c R = 2 2 B λ ϕ = (2) 2 L Displacement sensor on a track approximately parallel positioned with the scenario to be monitored and to acquisition some radar images from slightly different angles (fig.7). Fig.7. Principle takeover radar images Interferometry technique is based on measuring the difference in path by comparing components of phase at two radar images, results as master and slave (fig.8) [4]. Fig.8. Referral displacement d λ = Φ 4 π M S (3) Influence of weather conditions and ambiguities: Φ ( ) (4) M S = Φ R + Φ atm + Φ n + Φ noise

4 SARACIN A.: DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE Determining the actual displacement d (fig.9) [1]: d R = d p (5) h Fig.9. Actual displacement GB-InSAR system consists of four main components (fig.10, 11, 12 and 13): - Sensor module that contains the proper radar and antennas. - Alignment of scan, consisting of a 2-3 meters of linear rail and motor used to move parallel the sensor module to the observed scene for getting more radar images of the same scene from slightly different positions, using SAR technique. - Control unit, PC with software to control the radar system. - Power supply, containing two 12 volt car batteries connected in series, and external power supplies for the safety of your PC. Fig.10. All components of GB-InSAR system Fig.11. Sensor module and linear rail Fig.12. PV panel as power supplies Fig.13. Mobile system

5 JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp ISSN ISSN-L (Print) / e-issn: In Europe, this technique is developed and promoted by the Politechnic di Milano, "Scuola di Ingegneria dei Sistemi" (IDS) by IBIS systems designed for various types of applications. IBIS technology revolutionizes the traditional approach of measuring the movement and deformation of land and structures, both in the slow movement (static) and vibration measurements (dynamic). Among its innovative features include: remote monitoring of movements in very inaccessible areas to investigate scenario at a distance of up to 4 km; monitoring some areas of 1-2 km square order while other sensors measure the displacement of selected points at a time, IBIS measures the simultaneous movement of the whole scenario, in real time; sub-millimeter accuracy of measurement: 1/10 mm, in normal circumstances, up to 1/100 mm in special situations; operation at any time, in any weather conditions: day, night, fog and rain; autonomous operation: the system can work continuous monitoring or running without human intervention. Real-time feedback for movement allows its use as early warning risk; dynamic measurement: IBIS allows continuous monitoring of slow movements and deformations, but can also measure the vibrations of structures (resonant frequencies, vibration modes), up to 100 Hz. 2. IBIS terrestrial radar system types 2.1. IBIS-M (M-exploitation of surface mine) IBIS-M system was developed for the mining industry, which allows monitoring of slopes in long-term, providing an early warning system of landslides and forecasting future operating. This not only increases the safety of surface mining, but also increases productivity by allowing a better assessment of the volume of ore mined (fig.14) [9]. IBIS-M360 is an integrated monitoring system based on multiple fixed and / or mobile units, controlled by interface using a single advanced software to provide a complete 360 degree coverage of slopes a career in real time, rendering engineers an overview of the entire career pits, providing comprehensive information about potential areas of instability. IBIS-M360 is based to a long-range, high resolution and fast scanning capabilities, was adapted to the specific requirements of the user, therefore, is ideal for all types of operations in open pits (fig.15) [9]. Fig.14. IBIS-M in mining Fig.15. IBIS-M360 system

6 SARACIN A.: DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE 2.2. IBIS-L (L from land) [8] IBIS-L system was designed for monitoring the 2D displacements of the land, such as landslides, slopes, volcanoes and glaciers, and large structures, for example dams. It can cover several square kilometers at a distance until 4 km, without being necessary the access in monitored area without manually installing reflectors. It can operate a continuous monitoring with real-time feedback of displacements or its use as a risk warning device (fig.16) [3], [5] IBIS-S (S for structure) [8] IBIS-S system is designed to monitor displacement and deformation structures such as bridges, towers and buildings in dynamic conditions (measurements of vibration) and static (slow displacement in time) (fig.17) [6]. Fig.16. IBIS-L system Fig.17. IBIS-S system 3. Software required IBIS-M and IBIS-L is provided with Guardian software package that is specifically designed for monitoring. Guardian offers automatic radar data processing in real-time, view maps of displacement with multiple options for analysis (extraction time series for displacement, speed, settlements, etc.), and the ability to create multiple scenarios warning of danger, defining the criteria used for alarm monitoring (fig.18). Fig.18. Guardian software window

7 JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp ISSN ISSN-L (Print) / e-issn: Guardian IBIS uses automatic atmospheric correction algorithms to provide accurate and reliable displacement maps that are fully geo-referenced on a digital terrain model. Ability to manage long-term projects with large data sets makes Guardian software to be appropriate for long-term follow movements, geotechnical and geological analysis that can be useful for the authorities in case of landslide risk. IBIS-S system can work with specially developed software IBISDV who process raw files generated during sessions of measurements. The software has a complete set of features for evaluating static and dynamic overall structural movements. Static information that can be obtained is the image in the power spectrum monitored scenario to select the monitored points and displacement time history of investigated points belonging to monitor structures (bridges, dams, landslides, etc.) [7]. Can retrieve and process data together with IBIS-S, data from dynamic sensors installed on the monitored structure to identify the resonance frequencies of the structure. This information may lead to a complete monitoring system of efforts and viability status in a structure (fig.19). Fig.19. Monitoring efforts in a structure RESULTS Advantages over traditional techniques: remote sensor at a distance of 1 km, accuracy of the displacement up to 1/100 mm simultaneous mapping (for hundreds or thousands of points) of real-time deformation, quick installation and operation, static and dynamic monitoring, sampling vibration of structures with frequencies up to 100 Hz, work day and night, in all weather conditions, provide direct displacements, which are not derived from other components of the movements [8]. Monitoring applications:

8 SARACIN A.: DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE Static: structural load tests, structural displacement and danger of collapse, cultural Heritage. Dynamic: measuring the resonance frequency of the structures, modal analysis of structural forms, real-time monitoring of deformation structures. CONCLUSIONS Determining with sub-millimeter accuracy ( mm) of displacements and deformations. Possibility to observe at large distances up to 4 km of the monitored objectivs, considering the rough terrain sometimes or very difficult availability monitored surface structures. The objectiv can be monitored continuously at predetermined intervals both day and night. An important disadvantage is the very large volume of necessary equipment ( kg) and high energy use ( W). It is necessary to realize a stable platform whith concrete fasteners in the same position at each stage of observations, for the systems IBIS-L and IBIS-M. A good georeferencing is very useful when many points are needed to observe with ground radar interferometry systems. REFERENCES 1. ALBA, M., BERNARDINI, G., GIUSSANI, A., RICCI, P. P., RONCORONI F., SCAIONI, M., VALGOI, P.and ZHANG, K., Measurement of dam deformations by terrestrial interferometric techniques. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B1, pp BERNARDINI, G., PASQUALE, G. D., GALLINO, N., and GENTILE, C. (2007). Microwave interferometer for ambient vibration measurement on civil engineering structures: 2. Application to fullscale bridges. In Proc. Experimental Vibration Analysis for Civil Engineering Structures (EVACES'07). 3. LUZI, G., MONSERRAT, O., CROSETTO, M., COPONS, R.and ALTIMIR, J., Ground-Based SAR Interferometry applied to landslides monitoring in mountainous areas. Proceedings of the International Conference Mountain Risks, Florence. 4. SIMONS, M. and ROSEN, P., Interferometric Synthetic Aperture Radar Geodesy, Treatise on Geophysics, Schubert, G. (ed.), Volume 3- Geodesy, Elsevier Press, pp , BURGMANN, R.; ROSEN, P. and FIELDING, E., Synthetic Aperture Radar Interferometry to measure Earth's surface topography and its deformation, Ann.~Rev.~Earth Planet.~Sci., 2000, 28, MADSEN, S. N. and ZEBKER, H. A., Synthetic Aperture Radar Interferometry: Principles and Applications, Manual of Remote Sensing, Artech House, 1999, BERARDINO, P., FORNARO, G., LANARI, R. and SANSOSTI, E., (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40: *** viewed at 09/01/ *** viewed at 15/12/ *** viewed at 14/12/2012.

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters A HISTORY OF PROVIDING HIGH TECHNOLOGY IDS s Pisa Headquarters Geology and Environment IBIS-FL and IBIS-FMT, a dedicated configuration to enter into monitoring of landslides and mining market IBIS-FL:

More information

CASE STUDY BRIDGE DYNAMIC MONITORING

CASE STUDY BRIDGE DYNAMIC MONITORING Introduction BRIDGE DYNAMIC MONITORING Monitoring of structure movements and vibrations (bridges, buildings, monuments, towers etc.) is an increasingly important task for today s construction engineers.

More information

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Garry Spencer and Mark Bell 1 PRODUCTS IBIS range APPLICATIONS IBIS - FL LANDSLIDE & DAM MONITORING IBIS - FM SLOPE

More information

Deformation Monitoring with Terrestrial SAR Interferometry

Deformation Monitoring with Terrestrial SAR Interferometry Lisbon, 12 October 2009 Deformation Monitoring with Terrestrial SAR Interferometry Michele Crosetto Institute of Geomatics Castelldefels (Barcelona) michele.crosetto@ideg.es 1 Content Introduction: Satellite-based

More information

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments Riccardo Lanari Institute for Electromagnetic Sensing of the Environment (IREA) National Research Council of Italy (CNR)

More information

Use of ground based radar to monitor the effect of increased axle loading on rail bridges. Evgeny Shilov. IDS GeoRadar

Use of ground based radar to monitor the effect of increased axle loading on rail bridges. Evgeny Shilov. IDS GeoRadar Use of ground based radar to monitor the effect of increased axle loading on rail bridges aa Evgeny Shilov IDS GeoRadar Background of Techniques All rights reserved to IDS GeoRadar 2 Radar technology Radar

More information

An interferometric radar for remote sensing of deflections on large structures

An interferometric radar for remote sensing of deflections on large structures Structural Studies, Repairs and Maintenance of Heritage Architecture XI 359 An interferometric radar for remote sensing of deflections on large structures C. Gentile, S. Bulgarelli, N. Gallino & A. Oldini

More information

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA L. Ge a, H.-C. Chang a, A. H. Ng b and C. Rizos a Cooperative Research Centre for Spatial Information School of Surveying & Spatial Information Systems,

More information

APPLICABILITY OF DISPLACEMENT MEASUREMENTS BY MICROWAVE INTERFEROMETRY IN BRIDGE DYNAMICS

APPLICABILITY OF DISPLACEMENT MEASUREMENTS BY MICROWAVE INTERFEROMETRY IN BRIDGE DYNAMICS Bulletin of the Transilvania University of Braşov CIBv 2015 Vol. 8 (57) Special Issue No. 1-2015 APPLICABILITY OF DISPLACEMENT MEASUREMENTS BY MICROWAVE INTERFEROMETRY IN BRIDGE DYNAMICS A. FIRUS1 J. PULLAMTHARA2

More information

HANDY MICROWAVE SENSOR FOR REMOTE DETECTION OF

HANDY MICROWAVE SENSOR FOR REMOTE DETECTION OF 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17140 HANDY MICROWAVE SENSOR FOR REMOTE DETECTION OF STRUCTURAL

More information

Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities

Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities Massimiliano Pieraccini University

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

MODE TINSAR: AN ESA INCUBATION PROJECT DEDICATED TO THE TERRESTRIAL SAR INTERFEROMETRY

MODE TINSAR: AN ESA INCUBATION PROJECT DEDICATED TO THE TERRESTRIAL SAR INTERFEROMETRY MODE TINSAR: AN ESA INCUBATION PROJECT DEDICATED TO THE TERRESTRIAL SAR INTERFEROMETRY Mazzanti Paolo (1-2-3), Brunetti Alessandro (1-3), Scarascia Mugnozza Gabriele (1-2-3) (1) NHAZCA S.r.l., Spin-off

More information

Dynamic control of historical buildings through interferometric radar technique.

Dynamic control of historical buildings through interferometric radar technique. . An useful approach for Structural Health Monitoring on earthquake damaged structures. Sergio Vincenzo Calcina, Luca Piroddi and Gaetano Ranieri Università di Cagliari Dipartimento di Ingegneria Civile,

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

Advances in the use of Ground Based Radar for Disaster Recovery Risk Management

Advances in the use of Ground Based Radar for Disaster Recovery Risk Management Advances in the use of Ground Based Radar for Disaster Recovery Risk Management Mark BELL, Australia Key words: Radar, GPR, Interferometry, Synthetic Aperture Radar SUMMARY At the beginning of the 20th

More information

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY Junghum Yu *, Alex Hay-Man Ng, Sungheuk Jung, Linlin Ge, and Chris Rizos. School of Surveying and Spatial Information Systems, University

More information

RESERVOIR MONITORING USING RADAR SATELLITES

RESERVOIR MONITORING USING RADAR SATELLITES RESERVOIR MONITORING USING RADAR SATELLITES Alain Arnaud, Johanna Granda, Geraint Cooksley ALTAMIRA INFORMATION S.L., Calle Córcega 381-387, E-08037 Barcelona, Spain. Key words: Reservoir monitoring, InSAR,

More information

Dynamic Behavior of Indonesian Bridges using Interferometric Radar Technology

Dynamic Behavior of Indonesian Bridges using Interferometric Radar Technology Special Issue: Electronic Journal of Structural Engineering 18(1) 218 Dynamic Behavior of Indonesian Bridges using Interferometric Radar Technology M. Maizuar 1,2*, E. Lumantarna 1, M. Sofi 1, Y. Oktavianus

More information

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES Massimiliano Pieraccini, Guido Luzi, Daniele Mecatti, Linhsia Noferini, Giovanni Macaluso, and Carlo Atzeni University of Florence Department

More information

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Hsing-Chung CHANG, Linlin GE and Chris RIZOS, Australia Key words: Mining Subsidence, InSAR, DInSAR, DEM. SUMMARY

More information

Client: Statens vegvesen, Region midt County: Sør Trondelag

Client: Statens vegvesen, Region midt County: Sør Trondelag Geological Survey of Norway N-7441 Trondheim, Norway REPORT Report no.: 2004.043 ISSN 0800-3416 Grading: Open Title: Preliminary analysis of InSAR data over Trondheim with respect to future road development

More information

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS Alessandro Ferretti (), Carlo Colesanti (), Daniele Perissin (), Claudio Prati (), and Fabio Rocca () () Tele-Rilevamento

More information

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Hoonyol LEE, Seong-Jun CHO, Nak-Hoon SUNG and Jung-Ho KIM Department of Geophysics, Kangwon National University

More information

Urban tunneling and the advantages of using InSAR SPN satellite technology to detect and monitor surface deformation effects

Urban tunneling and the advantages of using InSAR SPN satellite technology to detect and monitor surface deformation effects Urban tunneling and the advantages of using InSAR SPN satellite technology to detect and monitor surface deformation effects María de Faragó 1, Geraint Cooksley 1 1 Altamira Information, Spain ABSTRACT

More information

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES Jayson Eppler (1), Mike Kubanski (1) (1) MDA Systems Ltd., 13800 Commerce Parkway, Richmond, British Columbia, Canada, V6V

More information

Remote Sensing ISSN

Remote Sensing ISSN Remote Sens. 2010, 2, 36-51; doi:10.3390/rs2010036 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables

More information

Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface

Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface Using InSAR Technology for Monitoring vertical Deformation of the Earth Surface AUREL SĂRĂCIN, CONSTANTIN COSARCĂ, CAIUS DIDULESCU, ADRIAN SAVU, AUREL NEGRILĂ Faculty of Geodesy Technical University of

More information

Monitoring of Bridge Deformation with InSAR: An Experimental Study

Monitoring of Bridge Deformation with InSAR: An Experimental Study XXIV FIG International Congress 2010 11-16 April 2010 Sydney, Australia Monitoring of Bridge Deformation with InSAR: An Experimental Study Lei Zhang 1, Xiaoli Ding 1 and Zhong Lu 2 1 Department of Land

More information

IOMAC'15 DYNAMIC TESTING OF A HISTORICAL SLENDER BUILDING USING ACCELEROMETERS AND RADAR

IOMAC'15 DYNAMIC TESTING OF A HISTORICAL SLENDER BUILDING USING ACCELEROMETERS AND RADAR IOMAC'15 6 th International Operational Modal Analysis Conference 2015 May12-14 Gijón - Spain DYNAMIC TESTING OF A HISTORICAL SLENDER BUILDING USING ACCELEROMETERS AND RADAR M. Diaferio 1, D. Foti 2, C.

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING

EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING THANK YOU! Xiaopeng Tong Xiaohua (Eric) Xu David Sandwell Yuri Fialko OUTLINE Batch processing scripts in GMTSAR (focus on Sentinel-1) SBAS: a method for calculating

More information

Monitoring of the Manhattan Bridge and interferometric radar systems

Monitoring of the Manhattan Bridge and interferometric radar systems Monitoring of the Manhattan Bridge and interferometric radar systems L. Mayer IDS Ingegneria Dei Sistemi S.p.A., Pisa, Italy B. Yanev New York City DOT, New York, NY L.D. Olson Olson Engineering, Inc.,

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Riccardo Lanari IREA-CNR Napoli EGU2014, Vienna 30 April, 2014 Why Radar (SAR) Imaging from space?

More information

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA Javier Duro 1, Josep Closa 1, Erlinda Biescas 2, Michele Crosetto 2, Alain Arnaud 1 1 Altamira Information C/ Roger

More information

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry Mario Costantini e-geos - an ASI/Telespazio Company, Rome, Italy mario.costantini@e-geos.it Summary COSMO-SkyMed satellite

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Article Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Rashid Hussain Faculty of Engineering Science and Technology, Hamdard University, Karachi

More information

3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS

3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS 3-DEMON MONITORING PLATFORM: EXAMPLES OF APPLICATIONS IN STRUCTURAL AND GEOTECHNICAL MONITORING PROJECTS Luca MANETTI, Daniele INAUDI and Branko GLISIC Smartec SA, Switzerland Abstract: The 3DeMoN (3-Dimentional

More information

Earth Observation from a Moon based SAR: Potentials and Limitations

Earth Observation from a Moon based SAR: Potentials and Limitations Earth Observation from a Moon based SAR: Potentials and Limitations F. Bovenga 1, M. Calamia 2,3, G. Fornaro 5, G. Franceschetti 4, L. Guerriero 1, F. Lombardini 5, A. Mori 2 1 Politecnico di Bari - Dipartimento

More information

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS G. Savio (1), A. Ferretti (1) (2), F. Novali (1), S. Musazzi (3), C. Prati (2), F. Rocca (2) (1) Tele-Rilevamento Europa T.R.E.

More information

STRUCTURAL MONITORING OF A TELECOMMUNICATION MAST BY RADAR INTERFEROMETRY

STRUCTURAL MONITORING OF A TELECOMMUNICATION MAST BY RADAR INTERFEROMETRY Proceedings of the 5th International Conference on Integrity-Reliability-Failure, Porto/Portugal 24-28 July 2016 Editors J.F. Silva Gomes and S.A. Meguid Publ. INEGI/FEUP (2016) PAPER REF: 6406 STRUCTURAL

More information

Ground based SAR interferometry: a novel tool for Geoscience

Ground based SAR interferometry: a novel tool for Geoscience Ground based SAR interferometry: a novel tool for Geoscience 1 X 1 Ground based SAR interferometry: a novel tool for Geoscience Guido Luzi University of Florence Italy 1. Introduction The word Radar is

More information

The Shuttle Radar Topography Mission: A Global DEM

The Shuttle Radar Topography Mission: A Global DEM The Shuttle Radar Topography Mission: A Global DEM Tom G. Farr, Mike Kobrick Jet Propulsion Laboratory California Institute of Technology Pasadena, CAUSA Digital topographic data are critical for a variety

More information

Remote sensing radio applications/ systems for environmental monitoring

Remote sensing radio applications/ systems for environmental monitoring Remote sensing radio applications/ systems for environmental monitoring Alexandre VASSILIEV ITU Radiocommunication Bureau phone: +41 22 7305924 e-mail: alexandre.vassiliev@itu.int 1 Source: European Space

More information

CHC MINING DEFORMATION MONITORING SOLUTION

CHC MINING DEFORMATION MONITORING SOLUTION CHC MINING DEFORMATION MONITORING SOLUTION Safety is first in mining. CHC offers solutions designed to improve safety for personnel on the ground and in the cab with 24/7 precision positioning for automatic

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010)

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010) Synthetic Aperture Radar Interferometry () Technique (Lecture I- Tuesday 11 May 2010) ISNET/CRTEAN Training Course on Synthetic Aperture Radar (SAR) Imagery: Processing, Interpretation and Applications

More information

L. Mayer, B. Yanev, L.D. Olson, and A. Smyth 1

L. Mayer, B. Yanev, L.D. Olson, and A. Smyth 1 L. Mayer, B. Yanev, L.D. Olson, and A. Smyth 1 Monitoring of the Manhattan Bridge for Vertical and Torsional Performance with GPS and Interferometric Radar Systems Word Count: Abstract: 207 Text: 3668

More information

Principles of Remote Sensing. Shuttle Radar Topography Mission S R T M. Michiel Damen. Dept. Earth Systems Analysis

Principles of Remote Sensing. Shuttle Radar Topography Mission S R T M. Michiel Damen. Dept. Earth Systems Analysis Principles of Remote Sensing Shuttle Radar Topography Mission S R T M Michiel Damen Dept. Earth Systems Analysis Contents Present problems with DEMs Advantage of SRTM Cell size Mission and system Radar

More information

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data Fringe 2007 - ESA-ESRIN - Frascati, November 28, 2007 Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data D. Perissin Politecnico di Milano Tele-Rilevamento Europa -

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS

INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS INSAR RADARGRAMMETRY : A SOLUTION TO THE PHASE INTEGER AMBIGUITY PROBLEM FOR SINGLE INTERFEROGRAMS ABSTRACT Andrew Sowter (), John Bennett () () IESSG, University of Nottingham, University Park, Nottingham

More information

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Ref.: RV-14524 Doc.: CM-168-01 January 31, 2013 SUBMITTED TO: Southern California Gas Company 555 W. Fifth Street (Mail Location

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA 1. Introduction Availability of a reasonably accurate elevation information for many parts of the world was once very much limited. Dense

More information

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL Ralph Cordey (1), Tim Pearson (2), Yves-Louis Desnos (3), Betlem Rosich-Tell (3) (1) European Space Agency, ESTEC, Keplerlaan

More information

Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems

Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems Proc. of Int. Conf. on Current Trends in Eng., Science and Technology, ICCTEST Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems Kavitha T M

More information

Nazemeh Ashrafianfar, Hans-Peter Hebel and Wolfgang Busch

Nazemeh Ashrafianfar, Hans-Peter Hebel and Wolfgang Busch MONITORING OF MINING INDUCED LAND SUBSIDENCE - DIFFERENTIAL SAR INTERFEROMETRY AND PERSISTENT SCATTERER INTERFEROMETRY USING TERRASAR-X DATA IN COMPARISON WITH ENVISAT DATA ABSTRACT Nazemeh Ashrafianfar,

More information

School of Rural and Surveying Engineering National Technical University of Athens

School of Rural and Surveying Engineering National Technical University of Athens Laboratory of Photogrammetry National Technical University of Athens Combined use of spaceborne optical and SAR data Incompatible data sources or a useful procedure? Charalabos Ioannidis, Dimitra Vassilaki

More information

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue L-band PS analysis: JERS-1 results and TerraSAR L predictions Kenji Daito (1), Alessandro Ferretti (), Shigeki Kuzuoka (3),Fabrizio Novali (), Pietro Panzeri (), Fabio Rocca (4) (1) Daido Institute of

More information

Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements

Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements Kleusberg, Klaedtke 139 Accuracy assessment of a digital height model derived from airborne synthetic aperture radar measurements ALFRED KLEUS BERG and HANS-GEORG KLAEDTKE, S tuttgart ABSTRACT A digital

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

THE modern airborne surveillance and reconnaissance

THE modern airborne surveillance and reconnaissance INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 1, PP. 37 42 Manuscript received January 19, 2011; revised February 2011. DOI: 10.2478/v10177-011-0005-z Radar and Optical Images

More information

Use of Synthetic Aperture Radar images for Crisis Response and Management

Use of Synthetic Aperture Radar images for Crisis Response and Management 2012 IEEE Global Humanitarian Technology Conference Use of Synthetic Aperture Radar images for Crisis Response and Management Gerardo Di Martino, Antonio Iodice, Daniele Riccio, Giuseppe Ruello Department

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners.

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. SAR Analysis Made Easy with SARscape 5.1 All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. 2014, Exelis Visual Information

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

Change detection in cultural landscapes

Change detection in cultural landscapes 9-11 November 2015 ESA-ESRIN, Frascati (Rome), Italy 3 rd ESA-EARSeL Course on Remote Sensing for Archaeology Day 3 Change detection in cultural landscapes DeodatoTapete (1,2) & Francesca Cigna (1,2) (1)

More information

Integration of InSAR and GPS for precise deformation mapping

Integration of InSAR and GPS for precise deformation mapping Integration of InSAR and GPS for precise deformation mapping Zhenhong Li (COMET, University of Glasgow, UK) Eric J. Fielding (Jet Propulsion Laboratory, Caltech, USA) 30 November 2009 Contents Two major

More information

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity.

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity. Sensor Network for Landslide Monitoring With Laser Ranging System Avoiding Rainfall Influence on Laser Ranging by Means of Time Diversity and Satellite Imagery Data Based Landslide Disaster Relief Kohei

More information

Review Article Monitoring of Civil Infrastructures by Interferometric Radar: AReview

Review Article Monitoring of Civil Infrastructures by Interferometric Radar: AReview The Scientific World Journal Volume 2013, Article ID 786961, 8 pages http://dx.doi.org/10.1155/2013/786961 Review Article Monitoring of Civil Infrastructures by Interferometric : AReview Massimiliano Pieraccini

More information

Some Notes on Using Balloon Photography For Modeling the Landslide Area

Some Notes on Using Balloon Photography For Modeling the Landslide Area Some Notes on Using Balloon Photography For Modeling the Landslide Area Catur Aries Rokhmana Department of Geodetic-Geomatics Engineering Gadjah Mada University Grafika No.2 Yogyakarta 55281 - Indonesia

More information

Monitoring with low-cost GNSS receivers

Monitoring with low-cost GNSS receivers Monitoring with low-cost GNSS receivers GNSS monitoring with low-cost receivers 1 Why GNSS? Your advantages! free of charge and available worldwide No line of sight connection is necessary to the measuring

More information

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals Journal of Global Positioning Systems (00) Vol. 1, No. 1: 34-39 3D Multi-static SA System for errain Imaging Based on Indirect GPS Signals Yonghong Li, Chris izos School of Surveying and Spatial Information

More information

Investigation of Low-Cost Accelerometer, Terrestrial Laser Scanner and Ground-Based Radar Interferometer for Vibration Monitoring of Bridges

Investigation of Low-Cost Accelerometer, Terrestrial Laser Scanner and Ground-Based Radar Interferometer for Vibration Monitoring of Bridges 6th European Workshop on Structural Health Monitoring - Fr.2.C.2 More info about this article: http://www.ndt.net/?id=14063 Investigation of Low-Cost Accelerometer, Terrestrial Laser Scanner and Ground-Based

More information

Non-Contacting Sensor for Small Displacement and Vibration Monitoring Based on Reflection Coefficient Measurement

Non-Contacting Sensor for Small Displacement and Vibration Monitoring Based on Reflection Coefficient Measurement Progress In Electromagnetics Research M, Vol. 71, 1 8, 2018 Non-Contacting Sensor for Small Displacement and Vibration Monitoring Based on Reflection Coefficient Measurement Aloysius A. Pramudita 1, *,

More information

Radio Frequency Sensing from Space

Radio Frequency Sensing from Space Radio Frequency Sensing from Space Edoardo Marelli ITU-R WP 7C Chairman ITU-R Seminar Manta (Ecuador) 20 September 2012 Why observing the Earth from space? Satellites orbiting around the Earth offer an

More information

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * O. Lawlor, T. Logan, R. Guritz, R. Fatland, S. Li, Z. Wang, and C. Olmsted Alaska SAR Facility

More information

ANALYSIS OF SRTM HEIGHT MODELS

ANALYSIS OF SRTM HEIGHT MODELS ANALYSIS OF SRTM HEIGHT MODELS Sefercik, U. *, Jacobsen, K.** * Karaelmas University, Zonguldak, Turkey, ugsefercik@hotmail.com **Institute of Photogrammetry and GeoInformation, University of Hannover,

More information

DEFORMATION CAMERA

DEFORMATION CAMERA DEFORMATION CAMERA Automated optical deformation analysis for long-term monitoring of instabilities in rock and ice based on high-resolution images and sophisticated image processing methods. GEOPREVENT

More information

Multipass coherent processing on synthetic aperture sonar data

Multipass coherent processing on synthetic aperture sonar data Multipass coherent processing on synthetic aperture sonar data Stig A V Synnes, Hayden J Callow, Roy E Hansen, Torstein O Sæbø Norwegian Defence Research Establishment (FFI), P O Box 25, NO-2027 Kjeller,

More information

Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road and Bridge

Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road and Bridge 2017 3rd International Conference on Social Science, Management and Economics (SSME 2017) ISBN: 978-1-60595-462-2 Application of GPS and Remote Sensing Image Technology in Construction Monitoring of Road

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Improvement and Validation of Ranging Accuracy with YG-13A

Improvement and Validation of Ranging Accuracy with YG-13A Article Improvement and Validation of Ranging Accuracy with YG-13A Mingjun Deng 1, Guo Zhang 2, *, Ruishan Zhao 3, Jiansong Li 1, Shaoning Li 2 1 School of Remote Sensing and Information Engineering, Wuhan

More information

Correcting topography effects on terrestrial radar maps

Correcting topography effects on terrestrial radar maps Correcting topography effects on terrestrial radar maps M. Jaud, R. Rouveure, P. Faure, M-O. Monod, L. Moiroux-Arvis UR TSCF Irstea, National Research Institute of Science and Technology for Environment

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Change Detection and Monitoring: Geospatial / Image Intelligence April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Change Detection and Monitoring:

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Assessment of Slow Deformations and Rapid Motions by Radar Interferometry

Assessment of Slow Deformations and Rapid Motions by Radar Interferometry 'Photogrammetric Week 05' Dieter Fritsch, Ed. Wichmann Verlag, Heidelberg 2005. Bamler et al. 111 Assessment of Slow Deformations and Rapid Motions by Radar Interferometry RICHARD BAMLER, BERT KAMPES,

More information

Persistent Scatterer InSAR

Persistent Scatterer InSAR Persistent Scatterer InSAR Andy Hooper University of Leeds Synthetic Aperture Radar: A Global Solution for Monitoring Geological Disasters, ICTP, 2 Sep 2013 Good Interferogram 2011 Tohoku earthquake Good

More information

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Advanced RF Sensors and Remote Sensing Instruments 2014 Ka-band Earth

More information

Co-ReSyF RA lecture: Vessel detection and oil spill detection

Co-ReSyF RA lecture: Vessel detection and oil spill detection This project has received funding from the European Union s Horizon 2020 Research and Innovation Programme under grant agreement no 687289 Co-ReSyF RA lecture: Vessel detection and oil spill detection

More information