Sentinel-1 System Overview

Size: px
Start display at page:

Download "Sentinel-1 System Overview"

Transcription

1 Sentinel-1 System Overview Dirk Geudtner, Rámon Torres, Paul Snoeij, Malcolm Davidson European Space Agency, ESTEC

2 Global Monitoring for Environment and Security (GMES) EU-led program aiming at providing operational user services based on Earth observation and in-situ data Provides relevant information to policy-makers, institutional EU + MS authorities (Core service), and local/regional users (Downstream) Space Component developed & coordinated by ESA Sentinels (1-5) Contributing (national) Missions Data Access In-situ component coordinated by EEA Observations mostly within national responsibility, with coordination at European level Air, sea- and ground-based systems and instrumentations Service component coordinated by EC Mapping and forecasting services: Land, Marine, Atmosphere, Emergency, Security and Climate Change

3 Sentinel 1 Mission Facts Constellation of two satellites (A & B units) C-Band Synthetic Aperture Radar Payload Near-Polar sun-synchronous (dawn-dusk) orbit at 693 km altitude Both S-1 satellites are in the same orbit (180 deg. phased in orbit) 12 days repeat cycle (1 satellite), 6 days for the constellation 7 years design life time with consumables for 12 years Launch of Sentinel-1 A scheduled for May 2013 followed by Sentinel-1 B 18 months later A B

4 Sentinel-1 Mission Objectives and Requirements (1/2) Provide routinely and systematically SAR data to GMES Services and National services focussing on the following applications Monitoring of Marine Environment (e.g. oil spills, sea ice zones) Surveillance of Maritime Transport zones (e.g. European and North Atlantic zones) Land Monitoring (e.g. land cover, surface deformation risk) Mapping in support of crisis situations (e.g. natural disasters and humanitarian aid) Monitoring of Polar environment (e.g. ice shelves and glaciers)

5 Sentinel-1 Mission Objectives and Requirements (2/2) Provide C-band SAR data continuity at medium resolution Complete global coverage within a single repeat orbit cycle (175 orbits in 12 days) and systematic revisit (greatly improved as compared to ENVISAT) Data quality similar or better than ERS/ENVISAT (e.g. equalized performance across the swath) Systematic data acquisition to enable build-up of long observation time series High system availability (SAR duty cycle) Conflict-free operations w.r.t. SAR mode selection for data acquisition (swath width and polarization) Capability for repeat-pass SAR interferometry, especially TOPS InSAR On-board data latency (i.e. downlink) requires max 200 min (2 orbits) One orbit for support of near real time (3h) applications Simultaneous SAR acquisition and downlink for real time applications

6 Sentinel-1 Reference Scenario for System Analysis - Coverage Average Revisit Time S-1A Satellite Average Revisit Time with S-1A + S-1B Satellites S-1A Satellite S-1A + S-1B Satellites Complete global coverage After 12 days Ice MTZ Europe Canada Rest of Land After 6 days Ice MTZ Europe Canada Rest of Land Number of acquisitions (range from - to) Average Revisit Time [day] ,0 3,7 5,5 8,2 9,9 5,0 1,9 2,7 4,1 4,9

7 Sentinel 1 System Overview

8 Sentinel 1 Spacecraft Satellite is organized in Payloads Subsystems (structure, thermal control, avionics, propulsion, power & electrical, TT&C, Payload Data Handling & Transmission) Satellite s mechanical configuration is based on TAS-I Prima multi-purpose platform (bus) used in other SAR missions COSMO-Skymed (ASI/IT MOD) RADARSAT-2 (CSA/MDA) Driving requirements for the design of the satellite Total launch mass (2300 kg) Lifetime of 7 years with consumables for 12 years Support SAR instrument transmit peak power (4400 W) Pointing accuracy ( 0.01 ) Precise orbit determination (10m, 3 ) Tight orbit control (orbital tube of 50m radius (rms))

9 Sentinel-1 Payload C-Band SAR instrument operates at centre frequency of GHz SAR Payload SAR Electronic Subsystem (SES) SAR Antenna Subsystem (SAS) using a phased-array antenna On-board data storage capacity (mass memory) of 1400 Gbit Two X-band RF channels for data downlink with 2 X 260 Mbps On-board data compression using Flexible Dynamic Block Adaptive Quantization GPS (2 dual frequency) receiver provide 10 m orbit knowledge and time tag Optical Communication Payload for data transfer via laser link with the GEO European Data Relay Satellite (ERDS) system

10 Sentinel 1 System Ground Segment Ground Segment comprises: Flight Operations Segment (FOS) and Payload Data Ground Segment (PDGS) S-band station for TT&C X-band receiving stations for data downlink (three stations are required) Mission operations lifetime is planned for a period of more than 20 years

11 Sentinel-1 SAR Imaging Modes (1/2) Instrument provides 4 exclusive SAR modes with different resolution and coverage Polarisation schemes for IW, EW & SM: single polarisation: HH or VV dual polarisation: HH+HV or VV+VH Wave mode: HH or VV SAR duty cycle per orbit: up to 25 min in any of the imaging modes up to 74 min in Wave mode Main modes of operations: IW and WV 11

12 Sentinel-1 SAR Imaging Modes (2/2) Mode Access Angle Single Look Resolution Swath Width Polarisation Chirp bandwidth [MHz] Interferometric Wide Swath > 25 deg. Range 5 m Azimuth 20 m > 250 km HH+HV or VV+VH Wave mode 23 deg. and 36.5 deg. Range 5 m Azimuth 5 m > 20 x 20 km Vignettes at 100 km intervals HH or VV Strip Map deg. Range 5 m Azimuth 5 m > 80 km HH+HV or VV+VH Extra Wide Swath > 20 deg. Range 20 m Azimuth 40 m > 400 km HH+HV or VV+VH Image Quality Parameters for all Modes (worst case) Radiometric accuracy (3 σ) Noise Equivalent Sigma Zero Point Target Ambiguity Ratio Distributed Target Ambiguity Ratio 1 db -22 db -25 db -22 db

13 Sentinel-1 SAR Instrument Phase Induced Phase Error Budget over 10 min

14 Sentinel-1 SAR TOPS Mode TOPS (Terrain Observation with Progressive Scans in azimuth) for Sentinel-1 Interferometric Wide Swath (IW) and Extended Wide Swath (EW) modes Provides large swath width (ScanSAR) & and enhanced radiometric performance due to reduced scalloping effect Important because there is only 1 azimuth look available radiometric look balancing is not possible TSX-ScanSAR image TSX-TOPS image

15 Sentinel-1 TOPS InSAR Capability S-1 TOPS InSAR study based on TerraSAR-X TOPS data, e.g. acquired over the Atacama desert (Chile) having 11-day repeat pass interval TSX-TOPS TSX-ScanSAR Coherence loss in ScanSAR due to SNR degradation at burst edges (after azimuth pattern correction) Azimuth antenna sweeping causes Doppler centroid variations of about 5.5 khz Introducing an azimuth phase ramp (azimuth fringes) for small co-registration errors azerr 2 Requires azimuth co-registration to be better than samples in order to obtain phase error less than 3 deg. f DC t Images courtesy: P. Prats, DLR

16 TOPS Burst Synchronization TOPS interferogram generation requires burst synchronization of repeat-pass datatakes TOPS burst duration for: EW: 0.54 s (worst case) IW : 0.82 s (worst case) Requirement for Burst Synchronization: 5ms Event Control Code (EEC) for datatake (Measurement Mode) Instrument schedule execution is using Orbit (on-board) Position Schedule (OPS) commanding based upon location Location for OPS is not specified by lat. and long. (e.g. WGS 84), but by means of OPS angle (angle in orbital plane between Reference plane and desired location on orbit

17 Sentinel-1 Orbital Tube and InSAR Baseline Satellite will be kept within an Orbital Tube around a Reference Mission Orbit (RMO) Orbital Tube radius (statistical) is 50 m (rms) Orbit control is achieved by applying across-track dead-band control at the most Northern point and Ascending Note crossing Sentinel-1 A & B will fly in the same orbital plane with 180 deg. phased in orbit 12-day repeat orbit cycle for each satellite Formation of SAR interferometry (InSAR) data pairs having time intervals of 6-days

18 Sentinel-1 Attitude Steering Modes Roll-steering mode Sensor altitude changes around the orbit Introduction of additional satellite roll angle depending on latitude to maintain a quasi constant slant range at Hmin = km off-nadir = at Hmax = km off-nadir = Advantages: Single PRF around orbit per swath or subswath (except for S5 (S5-N and S5-S) Fixed set of constant Elevation antenna beam patterns Total zero-doppler steering mode Yaw and pitch adjustments around the orbit to account for Earth rotation effect Provides Doppler centroid at about 0 Hz

19 Sentinel-1 Commissioning Phase Activities End-to-End System performance verification and calibration, involving ESA (ESTEC, ESRIN, ESOC) and external experts Check-out of spacecraft and ground segment In-orbit verification of instrument performance and calibration In-orbit calibration activities comprise: internal instrument calibration (using PCC techniques, calibration pulse analysis) pointing calibration (using data acquired over rainforest and transponder sites) geometric calibration antenna model verification radiometric calibration polarimetric calibration interferometric verification Level 0 and Level 1b SAR product verification (i.e. wrt SAR instrument performance) 3 months

20 Sentinel-1 Interferometric Verification Systematic generation of repeat-pass interferograms over dry test sites (e.g. Lake Uyuni, Bolivia, Atacama desert, Chile) Monitoring of instrument phase stability over 25 min datatake Measurement of InSAR phase stability over Corner Reflector site (at DLR) Measurement of phase stability in overlap area between bursts and sub-swaths Verification of InSAR baseline (round orbit) Verification of TOPS burst synchronization

21 Sentinel-1 Commissioning Phase Analysis Facility (CPAF) Set of data analysis tool boxes used by the Commissioning Phase Team Orbit data

22 Conclusions Sentinel-1 will provide routinely and systematically SAR data for operational monitoring tasks especially for GMES Services and National services Using the same SAR imaging mode (instrument settings, e.g. IW) facilitates the build-up of data time series for long-term continuity of observations with equidistant and short time intervals (interferogram stacks) TOPS burst synchronization to facilitate image co-registration Sentinel-1 A & B will fly in the same orbital plane with 180 deg. phased in orbit, each with12-day repeat orbit cycle Formation of InSAR data pairs having time intervals of 6-days Small orbital tube with radius of 50m (rms) provides small InSAR baselines Coherent Change Detection Monitoring applications Monitoring of geophysical phenomena related to surface displacements and/or changes in scattering properties having different time scales (mm/year m/day) Collaboration with CSA s RADARSAT Constellation Mission (RCM) to facilitate multi-satellite InSAR monitoring (requires harmonization of data acquisition strategies and interfaces)

Sentinel-1 Calibration and Performance

Sentinel-1 Calibration and Performance Sentinel-1 Calibration and Performance Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Berthyl Duesmann Malcolm Davidson Ramon Torres European Space Agency Sentinel-1 Mission Objectives Component

More information

Sentinel-1 Overview. Dr. Andrea Minchella

Sentinel-1 Overview. Dr. Andrea Minchella Dr. Andrea Minchella 21-22/01/2016 ESA SNAP-Sentinel-1 Training Course Satellite Applications Catapult - Electron Building, Harwell, Oxfordshire Contents Sentinel-1 Mission Sentinel-1 SAR Modes Sentinel-1

More information

GMES Sentinel-1 Transponder Development

GMES Sentinel-1 Transponder Development GMES Sentinel-1 Transponder Development Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Malcolm Davidson ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands Outline 1. GMES Sentinel-1 overview

More information

The Sentinel-1 Constellation

The Sentinel-1 Constellation The Sentinel-1 Constellation Evert Attema, Sentinel-1 Mission & System Manager AGRISAR and EAGLE Campaigns Final Workshop 15-16 October 2007 ESA/ESTECNoordwijk, The Netherlands Sentinel-1 Programme Sentinel-1

More information

SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation

SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation Dirk Geudtner, Guy Séguin,, Ralph Girard Canadian Space Agency RADARSAT Follow-on Program CSA is in the middle of a Phase

More information

Biomass, a polarimetric interferometric P-band SAR mission

Biomass, a polarimetric interferometric P-band SAR mission Biomass, a polarimetric interferometric P-band SAR mission M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, N. Miranda, K. Scipal Fringe 2015, ESRIN 27/03/2015 The Biomass Mission 1. Biomass was

More information

Polarisation Capabilities and Status of TerraSAR-X

Polarisation Capabilities and Status of TerraSAR-X Polarisation Capabilities and Status of TerraSAR-X Irena Hajnsek, Josef Mittermayer, Stefan Buckreuss, Kostas Papathanassiou German Aerospace Center Microwaves and Radar Institute irena.hajnsek@dlr.de

More information

SAR missions for oceanography at the European Space Agency

SAR missions for oceanography at the European Space Agency SAR missions for oceanography at the European Space Agency ERS-1, ERS-2, Envisat, Sentinel-1A, Sentinel-1B, ESA 3 rd Party Missions (ALOS) Prepared by ESA teams and ESA supporting companies ESA and SAR

More information

ALOS and PALSAR. Masanobu Shimada

ALOS and PALSAR. Masanobu Shimada ALOS and PALSAR Masanobu Shimada Earth Observation Research Center, National Space Development Agency of Japan, Harumi 1-8-10, Harumi island triton square office tower X 22, Chuo-Ku, Tokyo-To, Japan, 104-6023,

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

The Biomass Mission, status of the satellite system

The Biomass Mission, status of the satellite system The Biomass Mission, status of the satellite system M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, K. Scipal PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015 1. Key facts (lifetime, duty cycle

More information

The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project

The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project + The 16 th KC meeting Japan Aerospace Exploration Agency Masanobu Shimada, Yukihiro KANKAKU The

More information

S1-B N-Cyclic Performance Report Cycles 43 to 46 (03-July-2017 to 20-August-2017)

S1-B N-Cyclic Performance Report Cycles 43 to 46 (03-July-2017 to 20-August-2017) S-1 MPC Cycles 43 to 46 (03-July-2017 to 20-August-2017) Reference: Nomenclature: MPC-0356 DI-MPC-NPR Issue: 2017-03. 5 Date: 2017,Sep.01 FORM-NT-GB-10-0 2017,Sep.01 i.1 Chronology Issues: Issue: Date:

More information

Status of Sentinel-1 and acquisition plans for GFOI

Status of Sentinel-1 and acquisition plans for GFOI Status of Sentinel-1 and acquisition plans for GFOI Frank Martin Seifert, Pierre Potin, Johannes Roeder, ESA Earth Observation Programme 5 th Space Data Coordination, ESRIN, Frascati, 24 February 2014

More information

Affordable space based radar for homeland security

Affordable space based radar for homeland security Changing the economics of space Affordable space based radar for homeland security Adam Baker Brent Abbott Phil Whittaker Rachel Bird Luis Gomes Summary Why Radar? However: Radar data is expensive Users

More information

TerraSAR-X Mission: Application and Data Access

TerraSAR-X Mission: Application and Data Access TerraSAR-X Mission: Application and Data Access Irena Hajnsek & TSX TEAM German Aerospace Center Microwaves and Radar Institute Pol-InSAR Research Group 2 years in Orbit (since June 2007) irena.hajnsek@dlr.de

More information

PAZ Product Definition

PAZ Product Definition PAZ Product Definition CALVAL Centre Juan Manuel Cuerda Muñoz, Javier del Castillo Mena, Adolfo López Pescador, Nuria Gimeno Martínez, Nuria Casal Vázquez, Patricia Cifuentes Revenga, Marcos García Rodríguez,

More information

KOMPSAT Constellation. November 2012 Satrec Initiative

KOMPSAT Constellation. November 2012 Satrec Initiative KOMPSAT Constellation November 2012 Satrec Initiative KOMPSAT Constellation KOMPSAT National program Developed and operated by KARI (Korea Aerospace Research Institute) Dual use : Government & commercial

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

RADARSAT-2 Program Update Daniel De Lisle Canadian Space Agency

RADARSAT-2 Program Update Daniel De Lisle Canadian Space Agency RADARSAT-2 Program Update Daniel De Lisle Canadian Space Agency Presentation outline RADARSAT-1 Update RADARSAT-2 Mission description Mission Objectives System Characteristics Data Commercialization/Allocation

More information

TerraSAR-X Calibration Status 2 Years in Flight

TerraSAR-X Calibration Status 2 Years in Flight 2 Years in Flight Dirk Schrank, Marco Schwerdt, Markus Bachmann, Björn Döring, Clemens Schulz November 2009 CEOS 09 VG 1 Calibration Tasks Performed 2009 Introduction Challenge Schedule Re-Calibration

More information

European Space Agency and IPY

European Space Agency and IPY European Space Agency and IPY ESA supports IPY 2007-2008 activities: First ESA step was a dedicated Announcement Opportunity (AO) for EO data provision in support IPY, released in 2006, with data provision

More information

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments Riccardo Lanari Institute for Electromagnetic Sensing of the Environment (IREA) National Research Council of Italy (CNR)

More information

ERS/ENVISAT ASAR Data Products and Services

ERS/ENVISAT ASAR Data Products and Services ERS/ENVISAT ASAR Data Products and Services Andrea Celentano Business Manager celentan@eurimage.com What is Eurimage? Founded in 1989 Current shareholders: Since 1989 Commercial Partner of the European

More information

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

KONGSBERG SATELLITE SERVICES 2017 Line Steinbakk, Director Programs. Himmel og hav - Ålesund 3. Oktober 2017

KONGSBERG SATELLITE SERVICES 2017 Line Steinbakk, Director Programs. Himmel og hav - Ålesund 3. Oktober 2017 KONGSBERG SATELLITE SERVICES 2017 Line Steinbakk, Director Programs Himmel og hav - Ålesund 3. Oktober 2017 KSAT HQ IN TROMSØ 69N Established in 1967 Kongsberg Satellite Services since 2002 World leading

More information

NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation

NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation Changing the economics of space NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation SSTL: Philip Davies, Phil Whittaker, Rachel Bird, Luis Gomes, Ben Stern, Prof Sir Martin Sweeting

More information

The use of satellite images to forecast agricultural

The use of satellite images to forecast agricultural The use of satellite images to forecast agricultural Luxembourg, 12.03.2014 r. Tomasz Milewski NUTS for Poland: NUTS 1 macro-regions (grup of province, voivodships) (6), NUTS 2 - regions (province,

More information

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS Richard Ghail (1) and David Hall (2) (1) Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Sentinel-1A Tile #11 Failure

Sentinel-1A Tile #11 Failure MPC-S1 Reference: Nomenclature: MPC-0324 OI-MPC-ACR Issue: 1. 2 Date: 2016,Oct.13 FORM-NT-GB-10-1 MPC-0324 OI-MPC-ACR V1.2 2016,Oct.13 i.1 Chronology Issues: Issue: Date: Reason for change: Author 1.0

More information

Introduction to KOMPSAT

Introduction to KOMPSAT Introduction to KOMPSAT September, 2016 1 CONTENTS 01 Introduction of SIIS 02 KOMPSAT Constellation 03 New : KOMPSAT-3 50 cm 04 New : KOMPSAT-3A 2 KOMPSAT Constellation KOMPSAT series National space program

More information

The TerraSAR-L System and Mission Objectives

The TerraSAR-L System and Mission Objectives The TerraSAR-L System and Mission Objectives Manfred Zink & Ramon Torres TerraSAR Project, ESA-ESTEC Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands Tel: +31 71565 3038, Fax: +31 71565 3191, Email: Manfred.Zink@esa.int

More information

Sentinel-1. ESA s Radar Observatory Mission for GMES Operational Services

Sentinel-1. ESA s Radar Observatory Mission for GMES Operational Services Sentinel-1 ESA s Radar Observatory Mission for GMES Operational Services SP-1322/1 March 2012 Sentinel-1 ESA s Radar Observatory Mission for GMES Operational Services Acknowledgements In the preparation

More information

TanDEM-X SAR System Verification

TanDEM-X SAR System Verification TanDEM-X SAR System Verification Mathias Weigt, Ulrich Steinbrecher, Thomas Kraus, Johannes Böer, Benjamin Bräutigam 07-09 November 2011 Overview Monostatic Commissioning Phase Verification of Power/Thermal

More information

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5.

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5. TanDEM-X Science Meeting No. 1 Dresden 15.5.2006 Wolfgang Pitz EADS Astrium GmbH D-88039 Friedrichshafen 1. Mission Overview 2. SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher

More information

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL Ralph Cordey (1), Tim Pearson (2), Yves-Louis Desnos (3), Betlem Rosich-Tell (3) (1) European Space Agency, ESTEC, Keplerlaan

More information

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Xiaolong DONG, Wenming LIN, Di ZHU, (CSSAR/CAS) PO Box 8701, Beijing, 100190, China Tel: +86-10-62582841, Fax: +86-10-62528127

More information

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer Miguel A. Aguirre Introduction to Space Systems Design and Synthesis ) Springer Contents Foreword Acknowledgments v vii 1 Introduction 1 1.1. Aim of the book 2 1.2. Roles in the architecture definition

More information

SAOCOM-CS Mission and ESA Airborne Campaign Data

SAOCOM-CS Mission and ESA Airborne Campaign Data SAOCOM-CS Mission and ESA Airborne Campaign Data Malcolm Davidson Head of the EOP Campaign Section Malcolm.Davidson@esa.int Objectives of presentation Introduce a new type of ESA SAR mission with Polarimetrice,

More information

Nadir Margins in TerraSAR-X Timing Commanding

Nadir Margins in TerraSAR-X Timing Commanding CEOS SAR Calibration and Validation Workshop 2008 1 Nadir Margins in TerraSAR-X Timing Commanding S. Wollstadt and J. Mittermayer, Member, IEEE Abstract This paper presents an analysis and discussion of

More information

7.7 TerraSAR-X & TanDEM-X

7.7 TerraSAR-X & TanDEM-X 7.7 TerraSAR-X & TanDEM-X Two Innovative Remote Sensing Stars for space-borne Earth Observation Vorlesung Wolfgang Keydel Microwaves and Radar Institute, German Aerospace Research Center (DLR), D-82230

More information

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team Photo by Sassan Saatchi UAVSAR in Africa Quality Assurance and Preliminary Results Brian Hawkins, UAVSAR Team CEOS SAR Cal/Val Workshop 2016 Copyright 2016 California Institute of Technology. Government

More information

A Novel Method for Achieving SAR Imaging with a Pair of Micro-Satellites by Means of a Bi-Static Configuration

A Novel Method for Achieving SAR Imaging with a Pair of Micro-Satellites by Means of a Bi-Static Configuration SSC02-IV-3 A Novel Method for Achieving SAR Imaging with a Pair of Micro-Satellites by Means of a Bi-Static Configuration Dr. C. I. Underwood, O. S. Mitchell Surrey Space Centre University of Surrey, Guildford,

More information

EPS Bridge Low-Cost Satellite

EPS Bridge Low-Cost Satellite EPS Bridge Low-Cost Satellite Results of a Concept Study being performed for Dr. Hendrik Lübberstedt OHB-System AG OpSE Workshop Walberberg 8th November 2005 EPS Bridge Key System Requirements Minimum

More information

The Tandem-L Formation

The Tandem-L Formation The Tandem-L Formation G. Krieger, I. Hajnsek, K. Papathanassiou, M. Eineder, M. Younis, F. De Zan, P. Prats, S. Huber, M. Werner, A. Freeman +, P. Rosen +, S. Hensley +, W. Johnson +, L. Veilleux +, B.

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

How accurately can current and futureinsar missions map tectonic strain?

How accurately can current and futureinsar missions map tectonic strain? How accurately can current and futureinsar missions map tectonic strain? Outline: How accurately do we need to measure strain? InSAR missions Error budget for InSAR Ability of current, planned and proposed

More information

Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection

Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection Krištof Oštir, Space-SI, Slovenia Contents Natural and technological disasters Current

More information

PALSAR SCANSAR SCANSAR Interferometry

PALSAR SCANSAR SCANSAR Interferometry PALSAR SCANSAR SCANSAR Interferometry Masanobu Shimada Japan Aerospace Exploration Agency Earth Observation Research Center ALOS PI symposium, Greece Nov. 6 2008 1 Introduction L-band PALSAR strip mode

More information

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES Jayson Eppler (1), Mike Kubanski (1) (1) MDA Systems Ltd., 13800 Commerce Parkway, Richmond, British Columbia, Canada, V6V

More information

Interferometric Cartwheel 1

Interferometric Cartwheel 1 The Interferometric CartWheel A wheel of passive radar microsatellites for upgrading existing SAR projects D. Massonnet, P. Ultré-Guérard (DPI/EOT) E. Thouvenot (DTS/AE/INS/IR) Interferometric Cartwheel

More information

The TerraSAR-L Interferometric Mission Objectives

The TerraSAR-L Interferometric Mission Objectives The TerraSAR-L Interferometric Mission Objectives Manfred Zink TerraSAR Project, ESA-ESTEC Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands Tel: +31 71565 3038, Fax: +31 71565 3191, Email: Manfred.Zink@esa.int

More information

Advanced Optical Satellite (ALOS-3) Overviews

Advanced Optical Satellite (ALOS-3) Overviews K&C Science Team meeting #24 Tokyo, Japan, January 29-31, 2018 Advanced Optical Satellite (ALOS-3) Overviews January 30, 2018 Takeo Tadono 1, Hidenori Watarai 1, Ayano Oka 1, Yousei Mizukami 1, Junichi

More information

Mission requirements and satellite overview

Mission requirements and satellite overview Mission requirements and satellite overview E. BOUSSARIE 1 Dual concept Users need Defence needs Fulfil the Defence needs on confidentiality and security Civilian needs Fulfillment of the different needs

More information

Final Results of the Efficient TerraSAR-X Calibration Method

Final Results of the Efficient TerraSAR-X Calibration Method Final Results of the Efficient TerraSAR-X Calibration Method M. Schwerdt, B. Bräutigam, M. Bachmann, B. Döring, Dirk Schrank and Jaime Hueso Gonzalez Microwave and Radar Institute of the German Aerospace

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Maritime Monitoring: Ship Detection April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Maritime Monitoring: Ship Detection Issue Maritime security

More information

RADARSAT-2 Image Quality and Calibration Update

RADARSAT-2 Image Quality and Calibration Update RADARSAT-2 Image Quality and Calibration Update by Dan Williams, Yiman Wang, Marielle Chabot, Pierre Le Dantec, Ron Caves, Yan Wu, Kenny James, Alan Thompson, Cathy Vigneron www.mdacorporation.com Image

More information

SCANSAR AND SPOTLIGHT IMAGING OPERATION STUDY FOR SAR SATELLITE MISSION

SCANSAR AND SPOTLIGHT IMAGING OPERATION STUDY FOR SAR SATELLITE MISSION SCANSAR AND SPOTLIGHT IMAGING OPERATION STUDY FOR SAR SATELLITE MISSION Bor-Han Wu, Meng-Che Wu and Ming-Hwang Shie National Space Organization, National Applied Research Laboratory, Taiwan *Corresponding

More information

ENVISAT ASAR MONTHLY REPORT MARCH 2012

ENVISAT ASAR MONTHLY REPORT MARCH 2012 ENVISAT ASAR MONTHLY REPORT MARCH 2012 PUBLIC SUMMARY prepared by/préparé par IDEAS SAR Team reference/réference ENVI-CLVL-EOPG-TN-04-0009 issue/édition 73 revision/révision 0 date of issue/date d édition

More information

ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES

ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES Prepared by ESA Agenda Item: III.5 Discussed in WG3 ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES The ESA Sentinel missions are being designed for the GMES services, with special emphasis

More information

TanDEM-X: Mission Status & Scientific Contribution

TanDEM-X: Mission Status & Scientific Contribution TanDEM-X: Mission Status & Scientific Contribution Irena Hajnsek 1/2, Gerhard Krieger 1, Kostas Papathanassiou 1, Stefan Baumgartner 1, Marc Rodriguez-Cassola 1, Pau Prats 1, Maria Sanjuan Ferrer 1, Florian

More information

REVIEW OF THE IMPACT OF ERS-2 PILOTING MODES ON THE SAR DOPPLER STABILITY

REVIEW OF THE IMPACT OF ERS-2 PILOTING MODES ON THE SAR DOPPLER STABILITY REVIEW OF THE IMPACT OF ERS-2 PILOTING MODES ON THE SAR DOPPLER STABILITY N.Miranda (1), B.Rosich (2), C. Santella (3), M. Grion (3) (1) Serco Spa, via Galileo Galilei, 00044 Frascati, Italy, nuno.miranda@esa.int

More information

KEY TECHNOLOGY DEVELOPMENT FOR THE ADVENACED LAND OBSERVING SATELLITE

KEY TECHNOLOGY DEVELOPMENT FOR THE ADVENACED LAND OBSERVING SATELLITE KEY TECHNOLOGY DEVELOPMENT FOR THE ADVENACED LAND OBSERVING SATELLITE Takashi HAMAZAKI, and Yuji OSAWA National Space Development Agency of Japan (NASDA) hamazaki.takashi@nasda.go.jp yuji.osawa@nasda.go.jp

More information

RADARSAT-1: An End-of-Mission Review of the Imaging and Calibration Performance of a Magnificent Canadian Instrument

RADARSAT-1: An End-of-Mission Review of the Imaging and Calibration Performance of a Magnificent Canadian Instrument RADARSAT-1: An End-of-Mission Review of the Imaging and Calibration Performance of a Magnificent Canadian Instrument S. Cote, S. Srivastava Canadian Space Agency S. Muir Calian Technologies Ltd 1 RADARSAT-1

More information

Envisat and ERS missions: data and services

Envisat and ERS missions: data and services FRINGE 2005 Workshop Envisat and ERS missions: and services Henri LAUR Envisat Mission Manager Our top objective: ease access to Earth Observation Common objective for all missions handled by ESA: Envisat,

More information

ERS-2 SAR CYCLIC REPORT

ERS-2 SAR CYCLIC REPORT 28TH SEPTEMBER 2009-2ND NOVEMBER 2009 (CYCLE 151) PUBLIC SUMMARY prepared by/préparé par IDEAS SAR Team reference/réference IDEAS-BAE-OQC-REP-0245 issue/édition 9 revision/révision 0 date of issue/date

More information

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE

L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE L-BAND ICE-PENETRATING RADAR ON BOARD A SMALL SATELLITE Anoop Parthasarathy Mtech. Digital Signal Processing Centre for Emerging Technologies Jain University ACKNOWLEDGEMENTS My sincere thanks to Dr. G.

More information

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Distribution Limitation, SI Imaging Services Proprietary Data : The data contained in this document, without the

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Change Detection and Monitoring: Geospatial / Image Intelligence April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Change Detection and Monitoring:

More information

Concept of the future L-band SAR mission for wide swath SAR observation

Concept of the future L-band SAR mission for wide swath SAR observation Concept of the future SAR mission for wide swath SAR observation A.Karasawa 1, Y.Okada 1, Y.Yokota 1, S.Nakamura 1 1) Mitsubishi Electric Corporation 1 Outline 1:Development of SAR systems in MELCO 2:Development

More information

SARscape 4.1 Supported Sensors/Products (October 2008)

SARscape 4.1 Supported Sensors/Products (October 2008) SARscape 4.1 Supported Sensors/Products (October 2008) ALOS PALSAR (provided by JAXA) In case of RAW (level 1.0) data, import is carried out within the Focusing Module. PALSAR RAW data in CEOS standard

More information

GNSS Reflectometry and Passive Radar at DLR

GNSS Reflectometry and Passive Radar at DLR ACES and FUTURE GNSS-Based EARTH OBSERVATION and NAVIGATION 26./27. May 2008, TU München Dr. Thomas Börner, Microwaves and Radar Institute, DLR Overview GNSS Reflectometry a joined proposal of DLR and

More information

KONGSBERG SATELLITE SERVICES Earth Observation for Maritime Operations Current Capabilities and Future Potential

KONGSBERG SATELLITE SERVICES Earth Observation for Maritime Operations Current Capabilities and Future Potential KONGSBERG SATELLITE SERVICES 2017 Earth Observation for Maritime Operations Current Capabilities and Future Potential Andreas Hay Kaljord Project Manager KSAT HQ IN TROMSØ - 69N WELCOME TO TROMSØ Established

More information

COPERNICUS COLLABORATIVE GROUND SEGMENT TO SUPPORT MARITIME SITUATIONAL AWARENESS

COPERNICUS COLLABORATIVE GROUND SEGMENT TO SUPPORT MARITIME SITUATIONAL AWARENESS COPERNICUS COLLABORATIVE GROUND SEGMENT TO SUPPORT MARITIME SITUATIONAL AWARENESS D. Krause*, E. Schwarz, H. Damerow, German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Kalkhorstweg

More information

Prague - 29 June 2009 A. COLETTA COLETTA. COSMO-SkyMed Mission: COSMO-SkyMed Mission. Application and Data Access

Prague - 29 June 2009 A. COLETTA COLETTA. COSMO-SkyMed Mission: COSMO-SkyMed Mission. Application and Data Access A. A. COLETTA COLETTA COSMO-SkyMed COSMO-SkyMed Mission Mission Manager Manager ITALIAN ITALIAN SPACE SPACE AGENCY AGENCY COSMO-SkyMed Mission: Application and Data Access The COSMO-SkyMed PROGRAMME The

More information

Session I: Status Reports on Ongoing and Future Missions Chairs: M.Shimada (JAXA) and P. Snoeij (ESA)

Session I: Status Reports on Ongoing and Future Missions Chairs: M.Shimada (JAXA) and P. Snoeij (ESA) Session I: Status Reports on Ongoing and Future Missions Chairs: M.Shimada (JAXA) and P. Snoeij (ESA) Canadian Radarsat Mission status-s. Cote Operating far beyond design lifetime (RSAT-1: 16 years, ASAR:

More information

RADARSAT-1 Satellite

RADARSAT-1 Satellite RADARSAT-1 Satellite Summary: RADARSAT-1 is an advanced Earth observation satellite project developed by the Canadian Space Agency (CSA) to monitor environmental change and to support resource sustainability.

More information

RESERVOIR MONITORING USING RADAR SATELLITES

RESERVOIR MONITORING USING RADAR SATELLITES RESERVOIR MONITORING USING RADAR SATELLITES Alain Arnaud, Johanna Granda, Geraint Cooksley ALTAMIRA INFORMATION S.L., Calle Córcega 381-387, E-08037 Barcelona, Spain. Key words: Reservoir monitoring, InSAR,

More information

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA. SATELLITE COMMUNICATIONS (EEC 021) QUESTION BANK 1. Write the advantages and disadvantages of Satellite Communication. 2. Distinguish between active and

More information

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Ocean SAR altimetry from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Template reference : 100181670S-EN L. Phalippou, F. Demeestere SAR Altimetry EGM NOC, Southampton, 26 June 2013 History of SAR altimetry

More information

COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST

COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST Iulia Dana (1), Valentin Poncos (2), Delia Teleaga (2) (1) Romanian Space Agency, 21-25 Mendeleev Street, 010362, Bucharest,

More information

Overview of the Small Optical TrAnsponder (SOTA) Project

Overview of the Small Optical TrAnsponder (SOTA) Project Overview of the Small Optical TrAnsponder (SOTA) Project Space Communications Laboratory Wireless Networks Research Center National Institute of Information and Communications Technology (NICT) Satellite

More information

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Basics, methods & applications ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Annett.Bartsch@polarresearch.at Active microwave remote sensing of land surface hydrology Landsurface hydrology:

More information

Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring

Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring Towards Sentinel-1 Soil Moisture Data Services: The Approach taken by the Earth Observation Data Centre for Water Resources Monitoring Wolfgang Wagner wolfgang.wagner@geo.tuwien.ac.at Department of Geodesy

More information

Annex B: HEO Satellite Mission

Annex B: HEO Satellite Mission Annex B: HEO Satellite Mission Table of Content TABLE OF CONTENT...I 1. INTRODUCTION...1 1.1. General... 1 1.2. Response Guidelines... 1 2. BRAODBAND CAPACITY...2 2.1. Mission Overview... 2 2.1.1. HEO

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

OVERVIEW OF THE ALOS SATELLITE SYSTEM

OVERVIEW OF THE ALOS SATELLITE SYSTEM OVERVIEW OF THE ALOS SATELLITE SYSTEM Presented to The Symposium for ALOS Data Application Users @Kogakuin University, Tokyo, Japan Mar. 27, 2001 Takashi Hamazaki Senior Engineer ALOS Project National

More information

COSMO-SkyMed Mission Status Presented by Fabrizio BATTAZZA (ASI)

COSMO-SkyMed Mission Status Presented by Fabrizio BATTAZZA (ASI) COSMO-SkyMed Mission Status Presented by Fabrizio BATTAZZA (ASI) COSMO-1 & COSMO-2 LAUNCHES FIRST SATELLITE OF THE CONSTELLATION SUCCESSFULLY LAUNCHED 08 June 2007 03:35 (GMT) Vandenberg U.S.A. Air Force

More information

Sentinel-1A Radiometric Calibration

Sentinel-1A Radiometric Calibration Sentinel-1A Radiometric Calibration Peter Meadows 1, Alan Pilgrim 1, Riccardo Piantanida 2, Davide Riva 2, Nuno Miranda 3 (1) BAE Systems Applied Intelligence, West Hanningfield Road, Great Baddow, Chelmsford,

More information

School of Rural and Surveying Engineering National Technical University of Athens

School of Rural and Surveying Engineering National Technical University of Athens Laboratory of Photogrammetry National Technical University of Athens Combined use of spaceborne optical and SAR data Incompatible data sources or a useful procedure? Charalabos Ioannidis, Dimitra Vassilaki

More information

Sub-Mesoscale Imaging of the Ionosphere with SMAP

Sub-Mesoscale Imaging of the Ionosphere with SMAP Sub-Mesoscale Imaging of the Ionosphere with SMAP Tony Freeman Xiaoqing Pi Xiaoyan Zhou CEOS Workshop, ASF, Fairbanks, Alaska, December 2009 1 Soil Moisture Active-Passive (SMAP) Overview Baseline Mission

More information

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink Calibration Concepts for Future Low Frequency SAR Systems Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink DLR.de Chart 2 Low Frequency SAR Missions OHB DLR.de Chart 3 BIOMASS - Facts

More information

Canadian Space Agency program update

Canadian Space Agency program update Canadian Space Agency program update Briefing to the meeting of the Expert Team on Satellite Systems (ET-SAT-11) Geneva, 4 April 2017 Guennadi Kroupnik Canadian Space Agency RADARSAT-2: CURRENT OPERATIONAL

More information

RAX: The Radio Aurora explorer

RAX: The Radio Aurora explorer RAX: Matt Bennett University of Michigan CubeSat Workshop Cal Poly, San Luis Obispo April 22 nd, 2009 Background Sponsored by National Science Foundation University of Michigan and SRI International Collaboration

More information

SARscape for ENVI. A Complete SAR Analysis Solution

SARscape for ENVI. A Complete SAR Analysis Solution SARscape for ENVI A Complete SAR Analysis Solution IDL and ENVI A Foundation for SARscape IDL The Data Analysis & Visualization Platform Data Access: IDL supports virtually every data format, type and

More information

B ==================================== C

B ==================================== C Satellite Space Segment Communication Frequencies Frequency Band (GHz) Band Uplink Crosslink Downlink Bandwidth ==================================== C 5.9-6.4 3.7 4.2 0.5 X 7.9-8.4 7.25-7.7575 0.5 Ku 14-14.5

More information

Chapter 6 Spaceborne SAR Antennas for Earth Science

Chapter 6 Spaceborne SAR Antennas for Earth Science Chapter 6 Spaceborne SAR Antennas for Earth Science Yunjin Kim and Rolando L. Jordan 6.1 Introduction Before the development of the first synthetic aperture radar (SAR) antenna flown in space, Jet Propulsion

More information

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics Compact High Resolution Imaging Spectrometer (CHRIS) Mike Cutter (Mike_Cutter@siraeo.co.uk) Summary CHRIS Instrument Design Instrument Specification & Performance Operating Modes Calibration Plan Data

More information