The 20th Microelectronics Workshop Development status of SOI ASIC / FPGA

Size: px
Start display at page:

Download "The 20th Microelectronics Workshop Development status of SOI ASIC / FPGA"

Transcription

1 The 20th Microelectronics Workshop Development status of SOI ASIC / FPGA Oct. 30th 2007 Electronic, Mechanical Components and Materials Engineering Group, JAXA H.Shindou

2 Background In 2003, critical EEE parts for space use were selected at the Japan space EEE parts committee in order to develop advanced space systems. Programmable device (FPGA) was selected as one of the first phase items of critical components. We started the feasibility study about FPGA based on 0.15 m m FD-SOI technology. We also started the development of SEU / SET hardened cell library for SOI ASIC. SEU: Single Event Upset SET: Single Event Transient FD-DOI: Fully depleted Silicon on Insulator FPGA: Field Programmable Gate Array ASIC: Application Specific Integrated Circuit 1

3 Why we choose FD-SOI JAXA has developed LSIs with the latest technology for commercial market. For <0.18 m technology, SEEs are main concern for LSIs for space applications. FD-SOI is attractive for space because of its SEE hardness as compared with bulk technology. (also suitable for Low power application.) Now we plan to utilize the FD-SOI as a mainstream technology. Design Rule (1/2pitch) [ m] m, 33MHz 64bitMPU(3.3V) 0.18 m, 200MHz 64bitMPU(1.8V) 0.15 m, FDSOI(1.5V) Year Design rule trend and JAXA s LSI roadmap SEE: Single Event Effect 2

4 PD-SOI vs FD-SOI (Courtesy of OKI, quoted from 19MEWS material) 3

5 Oki FD-SOI Device Structure & Process um SOI (Production line) LOCOS STI Metal (1M)/0.48(<2M) BOX 200nm 145nm Low Leakage (LL) Ioff<2E-12A/um (Courtesy of OKI, quoted from 19MEWS material) 4

6 Development schedule (SOI process) Basic Process Development (3 Metal Layers) Process Module Development for 6 Metal Layers Process Development for 6 Metal Layers Test Element Group Chips #1 (3 Metal Layers) Test Element Group Chips #2 (3 & 6 Metal Layers) Design & Chip production/ Qualification Test ASIC Cell library / Memory generator Apr May Jun Finalizing 2007 Jul Aug Sep WLR WP: Wafer Processing WP Oct Nov Dec Jan Feb Mar WLR: Wafer Level Reliability Evaluation Evaluation Design Cell library & evaluation chip WP Design Memory generator WLR 2008 Apr May Jun Final SPICE /PDK - Process development with 6 metal layers is in progress. - Final SPICE/PDK is scheduled to be released at the end of fiscal year. WP 5

7 Target Specification for ASIC / FPGA 0.15μm commercial FD-SOI foundry with patented SEU/SET free primitive circuits. (RHBD techniques used) 1.5V V for core and 3.3V for I/Os. SEU/SET free up to LET of 64MeV/(mg/cm 2 ) TID: 1kGy(Si) (100krad(Si)) ASIC & FPGA Joint development with CNES / ATMEL SRAM based re-configurable FPGA. (Based on ATMEL architecture) 700k k ASIC gates FPGA RHBD: Radiation Hardened By Design TID: Total Ionizing Dose LET: Liner Energy Transfer 6

8 Single Event Transient signal generation CMOS/Bulk Inverter Input output V DD GND p-substrate n-well p+ Input 0 V DD 1 GND Output SET Signal - e-h pair generation by an Ion strike to the OFF-state transistor - Reversed biased junctions collect charge - Voltage transients propagate appreciable distances 7

9 Advantage of SOI structure CMOS/SOI Inverter Input output V DD GND n+ BOX(SiO 2 ) p-substrate p+ Input V DD Output GND - Sensitive volume for charge collection CMOS/Bulk > CMOS/SOI - All the transistors are electrically isolated by dielectric material It is possible to eliminate the SET signal generation by implementing RHBD! 8

10 Basic concept of RHBD 1.0 A Y Redundant Tr Pairs RHBD Inverter (SET free) Error X-Section [ m 2 /bit] 対策なし ( リファレンス ) 対策あり ( エラーなし 上限値 ) LET [MeV/(mg/cm 2 )] The redundant transistor pairs completely prevent the SET pulse generations on the output terminal.this concept can be easily extended for any logic gates and the logic circuits. However the optimization of area, power, speed penalties is an important issue. Ar Conventional RHBD Inverter Kr Xe 9

11 TEG evaluation The design and evaluation (Irradiation test) of the Test Element Group are in progress.test results will be applied to the design of FPGA and Cell library. Irradiation test system (Heavy-ion accelerator at Japan Atomic Energy Agency) 10

12 Development schedule (ASIC & FPGA) Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Basic Process Development (3 Metal Layers) Finalizing WLR Process Module Development for 6 Metal Layers WLR: Wafer Level Reliability Evaluation Process Development for 6 Metal Layers Test Element Group Chips #1 (3 Metal Layers) WP: Wafer Processing WP Evaluation WLR Final SPICE /PDK Test Element Group Chips #2 (3 & 6 Metal Layers) WP Design & Chip production/ Qualification Test ASIC Cell library / Memory generator Design Cell library & evaluation chip Design Memory generator WP Test Element Group Chips #1 Configuration bits / Free RAMs for FPGA RAM cells, Shift registers for SET testing Test Element Group Chips #2 Core cells for FPGA 11

First Results of 0.15µm CMOS SOI Pixel Detector

First Results of 0.15µm CMOS SOI Pixel Detector First Results of 0.15µm CMOS SOI Pixel Detector Y. Arai, M. Hazumi, Y. Ikegami, T. Kohriki, O. Tajima, S. Terada, T. Tsuboyama, Y. Unno, H. Ushiroda IPNS, High Energy Accelerator Reserach Organization

More information

STM RH-ASIC capability

STM RH-ASIC capability STM RH-ASIC capability JAXA 24 th MicroElectronic Workshop 13 th 14 th October 2011 Prepared by STM Crolles and AeroSpace Unit Deep Sub Micron (DSM) is strategic for Europe Strategic importance of European

More information

Southern Methodist University Dallas, TX, Southern Methodist University Dallas, TX, 75275

Southern Methodist University Dallas, TX, Southern Methodist University Dallas, TX, 75275 Single Event Effects in a 0.25 µm Silicon-On-Sapphire CMOS Technology Wickham Chen 1, Tiankuan Liu 2, Ping Gui 1, Annie C. Xiang 2, Cheng-AnYang 2, Junheng Zhang 1, Peiqing Zhu 1, Jingbo Ye 2, and Ryszard

More information

Laser attacks on integrated circuits: from CMOS to FD-SOI

Laser attacks on integrated circuits: from CMOS to FD-SOI DTIS 2014 9 th International Conference on Design & Technology of Integrated Systems in Nanoscale Era Laser attacks on integrated circuits: from CMOS to FD-SOI J.-M. Dutertre 1, S. De Castro 1, A. Sarafianos

More information

ECSS-Q-HB HANDBOOK Techniques for Radiation Effects Mitigation in ASICs and FPGAs

ECSS-Q-HB HANDBOOK Techniques for Radiation Effects Mitigation in ASICs and FPGAs ECSS-Q-HB-60-02 HANDBOOK Techniques for Radiation Effects Mitigation in ASICs and FPGAs A. Fernández León Microelectronics Section ESA / ESTEC SEE / MAPLD Workshop May 18-21, 2105 OUTLINE Scope and goals

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

Development of JAXA POL DC/DC converter (POL: Point-Of-Load)

Development of JAXA POL DC/DC converter (POL: Point-Of-Load) The 23 rd Microelectronics Workshop Development of JAXA POL DC/DC converter (POL: Point-Of-Load) Electronic Devices and Materials Group Aerospace Research and Development Directorate, Japan Aerospace Exploration

More information

IOLTS th IEEE International On-Line Testing Symposium

IOLTS th IEEE International On-Line Testing Symposium IOLTS 2018 24th IEEE International On-Line Testing Symposium Exp. comparison and analysis of the sensitivity to laser fault injection of CMOS FD-SOI and CMOS bulk technologies J.M. Dutertre 1, V. Beroulle

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes

Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes Amir Hasanbegovic (amirh@ifi.uio.no) Nanoelectronics Group, Dept. of Informatics, University of Oslo November 5, 2010 Overview

More information

Southern Methodist University Dallas, TX, Department of Physics. Southern Methodist University Dallas, TX, 75275

Southern Methodist University Dallas, TX, Department of Physics. Southern Methodist University Dallas, TX, 75275 Total Ionization Dose Effect Studies of a 0.25 µm Silicon-On-Sapphire CMOS Technology Tiankuan Liu 2, Ping Gui 1, Wickham Chen 1, Jingbo Ye 2, Cheng-AnYang 2, Junheng Zhang 1, Peiqing Zhu 1, Annie C. Xiang

More information

LSI ON GLASS SUBSTRATES

LSI ON GLASS SUBSTRATES LSI ON GLASS SUBSTRATES OUTLINE Introduction: Why System on Glass? MOSFET Technology Low-Temperature Poly-Si TFT Technology System-on-Glass Technology Issues Conclusion System on Glass CPU SRAM DRAM EEPROM

More information

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen What is Silicon on Insulator (SOI)? SOI silicon on insulator, refers to placing a thin layer of silicon on top of an insulator such as SiO2. The devices

More information

Total Ionization Dose Effects and Single-Event Effects Studies Of a 0.25 μm Silicon-On-Sapphire CMOS Technology

Total Ionization Dose Effects and Single-Event Effects Studies Of a 0.25 μm Silicon-On-Sapphire CMOS Technology > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Total Ionization Dose Effects and Single-Event Effects Studies Of a 0.25 μm Silicon-On-Sapphire CMOS Technology

More information

CHAPTER 7 A BICS DESIGN TO DETECT SOFT ERROR IN CMOS SRAM

CHAPTER 7 A BICS DESIGN TO DETECT SOFT ERROR IN CMOS SRAM 131 CHAPTER 7 A BICS DESIGN TO DETECT SOFT ERROR IN CMOS SRAM 7.1 INTRODUCTION Semiconductor memories are moving towards higher levels of integration. This increase in integration is achieved through reduction

More information

Low Power Dissipation SEU-hardened CMOS Latch

Low Power Dissipation SEU-hardened CMOS Latch PIERS ONLINE, VOL. 3, NO. 7, 2007 1080 Low Power Dissipation SEU-hardened CMOS Latch Yuhong Li, Suge Yue, Yuanfu Zhao, and Guozhen Liang Beijing Microelectronics Technology Institute, 100076, China Abstract

More information

Electronic Radiation Hardening - Technology Demonstration Activities (TDAs)

Electronic Radiation Hardening - Technology Demonstration Activities (TDAs) Electronic Radiation Hardening - Technology Demonstration Activities (TDAs) Véronique Ferlet-Cavrois ESA/ESTEC Acknowledgements to Ali Mohammadzadeh, Christian Poivey, Marc Poizat, Fredrick Sturesson ESA/ESTEC,

More information

Low Power System-On-Chip-Design Chapter 12: Physical Libraries

Low Power System-On-Chip-Design Chapter 12: Physical Libraries 1 Low Power System-On-Chip-Design Chapter 12: Physical Libraries Friedemann Wesner 2 Outline Standard Cell Libraries Modeling of Standard Cell Libraries Isolation Cells Level Shifters Memories Power Gating

More information

TSM2307CX 30V P-Channel MOSFET

TSM2307CX 30V P-Channel MOSFET SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain Key Parameter Performance Parameter Value Unit V DS -30 V V GS = -10V 95 R DS(on) (max) mω V GS = -4.5V 140 Q g 10 nc Features Advance Trench Process Technology

More information

BCD Smart Power Roadmap Trends and Challenges. Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th

BCD Smart Power Roadmap Trends and Challenges. Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th BCD Smart Power Roadmap Trends and Challenges Giuseppe Croce NEREID WORKSHOP Smart Energy Bertinoro, October 20 th Outline 2 Introduction Major Trends in Smart Power ASICs An insight on (some) differentiating

More information

Excerpt from. Critical Space Technologies. for. European Strategic Non-Dependence. List of Urgent Actions for 2012/2013

Excerpt from. Critical Space Technologies. for. European Strategic Non-Dependence. List of Urgent Actions for 2012/2013 Excerpt from Critical Space Technologies for European Strategic Non-Dependence List of Urgent Actions for 2012/2013 Update for the 2015 Call of Horizon 2020 June 2014 This page is intentionally left blank.

More information

TSM V P-Channel MOSFET

TSM V P-Channel MOSFET SOT-26 Pin Definition: 1. Drain 6. Drain 2. Drain 5, Drain 3. Gate 4. Source PRODUCT SUMMARY V DS (V) R DSON (mω) I D (A) 20 60 @ VGS = -4.5V -4.7 100 @ VGS = -2.5V -3.8 Features Advance Trench Process

More information

TSM6866SD 20V Dual N-Channel MOSFET

TSM6866SD 20V Dual N-Channel MOSFET TSSOP-8 Pin Definition: 1. Drain 1 8. Drain 2 2. Source 1 7. Source 2 3. Source 1 6. Source 2 4. Gate 1 5. Gate 2 PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 30 @ V GS = 4.5V 6.0 20 40 @ V GS = 2.5V

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

Monolithic Pixel Detector in a 0.15µm SOI Technology

Monolithic Pixel Detector in a 0.15µm SOI Technology Monolithic Pixel Detector in a 0.15µm SOI Technology 2006 IEEE Nuclear Science Symposium, San Diego, California, Nov. 1, 2006 Yasuo Arai (KEK) KEK Detector Technology Project : [SOIPIX Group] Y. Arai Y.

More information

TSM V N-Channel MOSFET

TSM V N-Channel MOSFET SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 60 156 @ V GS = 10V 3 192 @ V GS = 4.5V 2.1 Features Advance Trench Process Technology High Density Cell

More information

TSM V P-Channel MOSFET

TSM V P-Channel MOSFET SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 39 @ V GS = -4.5V -4.7-20 52 @ V GS = -2.5V -4.1 68 @ V GS = -1.8V -2.0 Features Advance Trench Process

More information

Not Recommended. TSM V N-Channel MOSFET. PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) Features. Block Diagram. Application

Not Recommended. TSM V N-Channel MOSFET. PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) Features. Block Diagram. Application SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 30 @ V GS = 10V 5.8 30 43 @ V GS = 4.5V 5.0 Features Advance Trench Process Technology High Density Cell

More information

TSM V N-Channel MOSFET

TSM V N-Channel MOSFET SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain Key Parameter Performance Parameter Value Unit V DS 20 V V GS = 4.5V 33 R DS(on) (max) V GS = 2.5V 40 V GS = 1.8V 51 mω Q g 11 nc Features Advance Trench

More information

TSM V P-Channel MOSFET

TSM V P-Channel MOSFET SOT-23 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 55 @ V GS =-4.5V -3.2-20 80 @ V GS =-2.5V -2.7 130 @ V GS =-1.8V -2.0 Features Advance Trench Process Technology

More information

IAA-XX-14-0S-0P. Using the NANOSATC-BR1 to evaluate the effects of space radiation incidence on a radiation hardened ASIC

IAA-XX-14-0S-0P. Using the NANOSATC-BR1 to evaluate the effects of space radiation incidence on a radiation hardened ASIC 1 Techn Session XX: TECHNICAL SESSION NAME IAA-XX-14-0S-0P Using the NANOSATC-BR1 to evaluate the effects of space radiation incidence on a radiation hardened ASIC Leonardo Medeiros *, Carlos Alberto Zaffari

More information

Recreation Facility Hours

Recreation Facility Hours NORMAL HOURS Recreation Facility Hours August 1, 2016 July 31, 2017 Last Revised: July 29, 2016 Effective Dates 2016: AUG 23 31, SEP 1 2, SEP 6 16, SEP 18 23, SEP 25 30, OCT 1 7, OCT 9 18, OCT 24 30, NOV

More information

Not Recommended. TSM V P-Channel MOSFET. PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) Features. Block Diagram. Application

Not Recommended. TSM V P-Channel MOSFET. PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) Features. Block Diagram. Application SOP-8 Pin Definition: 1. Source 8. Drain 2. Source 7. Drain 3. Source 6. Drain 4. Gate 5. Drain PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 14 @ V GS = -10V -11-30 20 @ V GS = -4.5V -8.5 Features Advance

More information

N-Channel Power MOSFET 800V, 0.3A, 21.6Ω

N-Channel Power MOSFET 800V, 0.3A, 21.6Ω N-Channel Power MOSFET 800V, 0.3A, 21.6Ω FEATURES Advanced planar process 100% avalanche tested Fast switching APPLICATION Power Supply Lighting KEY PERFORMANCE PARAMETERS PARAMETER VALUE UNIT V DS 800

More information

TSM4936D 30V N-Channel MOSFET

TSM4936D 30V N-Channel MOSFET SOP-8 Pin Definition: 1. Source 1 8. Drain 1 2. Gate 1 7. Drain 1 3. Source 2 6. Drain 2 4. Gate 2 5. Drain 2 PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 36 @ V GS = 10V 5.9 30 53 @ V GS = 4.5V 4.9

More information

Digital design & Embedded systems

Digital design & Embedded systems FYS4220/9220 Digital design & Embedded systems Lecture #5 J. K. Bekkeng, 2.7.2011 Phase-locked loop (PLL) Implemented using a VCO (Voltage controlled oscillator), a phase detector and a closed feedback

More information

Affordable Rad-Hard An Impossible Dream? David R. Alexander Air Force Research Laboratory 3550 Aberdeen Avenue, SE, Albuquerque, NM;

Affordable Rad-Hard An Impossible Dream? David R. Alexander Air Force Research Laboratory 3550 Aberdeen Avenue, SE, Albuquerque, NM; SSC08-XI-5 Affordable Rad-Hard An Impossible Dream? David R. Air Force Research Laboratory 3550 Aberdeen Avenue, SE, Albuquerque, NM; 505-269-3895 Ken Hunt, Marc Owens, James Lyke Air Force Research Laboratory

More information

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP05 Jan. 4, 2001

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP05 Jan. 4, 2001 TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP05 Jan. 4, 2001 J.J. Wang Igor Kleyner (408) 522-4576 (301) 286-5683 jih-jong.wang@actel.com igor.kleyner@gsfc.nasa.gov I. SUMMARY TABLE Parameters

More information

Evaluation of the AMS 0.35 µm CMOS Technology for Use in Space Applications

Evaluation of the AMS 0.35 µm CMOS Technology for Use in Space Applications Evaluation of the AMS 0.35 µm CMOS Technology for Use in Space Applications J. Ramos-Martos (1, A. Arias-Drake (2, A. Ragel-Morales (1, J. Ceballos-Cáceres (1, J. M. Mora-Gutiérrez (1, B. Piñero-García

More information

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology CMOS Digital Logic Design with Verilog Chapter1 Digital IC Design &Technology Chapter Overview: In this chapter we study the concept of digital hardware design & technology. This chapter deals the standard

More information

NOTICE ASSOCIATE COUNSEL (PATENTS) CODE NAVAL RESEARCH LABORATORY WASHINGTON DC 20375

NOTICE ASSOCIATE COUNSEL (PATENTS) CODE NAVAL RESEARCH LABORATORY WASHINGTON DC 20375 Serial No.: 09/614.682 Filing Date: 12 July 2000 Inventor: Geoffrey Summers NOTICE The above identified patent application is available for licensing. Requests for information should be addressed to: ASSOCIATE

More information

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS

FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS FUTURE PROSPECTS FOR CMOS ACTIVE PIXEL SENSORS Dr. Eric R. Fossum Jet Propulsion Laboratory Dr. Philip H-S. Wong IBM Research 1995 IEEE Workshop on CCDs and Advanced Image Sensors April 21, 1995 CMOS APS

More information

N-Channel Power MOSFET 100V, 81A, 10mΩ

N-Channel Power MOSFET 100V, 81A, 10mΩ N-Channel Power MOSFET 100V, 81A, 10mΩ FEATURES Advanced Trench Technology 100% avalanche tested APPLICATION Synchronous Rectification in SMPS High Speed Power Switching KEY PERFORMANCE PARAMETERS PARAMETER

More information

TOTAL IONIZING DOSE CHARACTERIZATION OF A COMMERCIALLY FABRICATED ASYNCHRONOUS FFT FOR SPACE APPLICATIONS *

TOTAL IONIZING DOSE CHARACTERIZATION OF A COMMERCIALLY FABRICATED ASYNCHRONOUS FFT FOR SPACE APPLICATIONS * TOTAL IONIZING DOSE CHARACTERIZATION OF A COMMERCIALLY FABRICATED ASYNCHRONOUS FFT FOR SPACE APPLICATIONS * D. Barnhart, P. Duggan, B. Suter Air Force Research Laboratory C. Brothers Air Force Institute

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

TSM6N50 500V N-Channel Power MOSFET

TSM6N50 500V N-Channel Power MOSFET ITO-220 TO-252 (DPAK) Features Low R DS(ON) 1.4Ω (Max.) TO-251 (IPAK) Low gate charge typical @ 25nC (Typ.) Low Crss typical @ 15pF (Typ.) Fast Switching Ordering Information Part No. Package Packing TSM6N50CI

More information

N-Channel Power MOSFET 100V, 160A, 5.5mΩ

N-Channel Power MOSFET 100V, 160A, 5.5mΩ N-Channel Power MOSFET 100V, 160A, 5.5mΩ FEATURES Advanced Trench Technology Low R DS(ON) 5.5mΩ (Max.) Low gate charge typical @ 154nC (Typ.) Low Crss typical @ 260pF (Typ.) KEY PERFORMANCE PARAMETERS

More information

Leading at the edge TECHNOLOGY AND MANUFACTURING DAY

Leading at the edge TECHNOLOGY AND MANUFACTURING DAY Leading at the edge 22FFL technology MARK BOHR Intel Senior Fellow, Technology and Manufacturing Group Director, Process Architecture and Integration Disclosures Intel Technology and Manufacturing Day

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

2.5D & 3D Package Signal Integrity A Paradigm Shift

2.5D & 3D Package Signal Integrity A Paradigm Shift 2.5D & 3D Package Signal Integrity A Paradigm Shift Nozad Karim Technology & Platform Development November, 2011 Enabling a Microelectronic World Content Traditional package signal integrity vs. 2.5D/3D

More information

Features. Description. Table 1. Device summary. Quality level. Package. Gold TO-254AA

Features. Description. Table 1. Device summary. Quality level. Package. Gold TO-254AA Rad-Hard 100 V, 48 A N-channel Power MOSFET Features Datasheet - production data V BDSS I D R DS(on) Q g 100 V 48 A 30 mω 135 nc TO-254AA 3 1 2 Fast switching 100% avalanche tested Hermetic package 50

More information

TSM V P-Channel MOSFET

TSM V P-Channel MOSFET SOT-26 Pin Definition: 1. Drain 6. Drain 2. Drain 5, Drain 3. Gate 4. Source PRODUCT SUMMARY V DS (V) R DS(on) (mω) I D (A) 48 @ V GS = -10V -5.3-30 79 @ V GS = -4.5V -4.1 Features Advance Trench Process

More information

Features. Description. Table 1. Device summary. Gold TO-257AA

Features. Description. Table 1. Device summary. Gold TO-257AA Rad-Hard 100 V, 12 A P-channel Power MOSFET Features Datasheet - production data V DSS I D R DS(on) Q g 100V 12 A 265 mω 40 nc TO-257AA 1 2 3 Fast switching 100% avalanche tested Hermetic package 100 krad

More information

REDI. M. Wind (SL), P. Beck (SL), M. Latocha (SL), S. Metzger (INT), M. Poizat(ESA), M. Steffens (INT)

REDI. M. Wind (SL), P. Beck (SL), M. Latocha (SL), S. Metzger (INT), M. Poizat(ESA), M. Steffens (INT) REDI Radiation evaluation of digital isolators currently available, suitable for space missions in terms of radiation tolerance (TID and SEE) including the JUICE mission M. Wind (SL), P. Beck (SL), M.

More information

CMOS 65nm Process Monitor

CMOS 65nm Process Monitor CMOS 65nm Process Monitor Advisors: Dr. Hugh Grinolds Mr. Brian Misek Allen Chen Ryan Hoppal Phillip Misek What is Process Variation? The process parameters can vary from: Lot-to-Lot (interprocess variation)

More information

N-Channel Power MOSFET 40V, 3.9A, 45mΩ

N-Channel Power MOSFET 40V, 3.9A, 45mΩ N-Channel Power MOSFET 40V, 3.9A, 45mΩ FEATURES Advance Trench Process Technology High density cell design for Ultra Low On-resistance Pb-free plating Compliant to RoHS Directive 2011/65/EU and in accordance

More information

STRH8N10. Rad-Hard 100 V, 6 A N-channel Power MOSFET. Features. Applications. Description

STRH8N10. Rad-Hard 100 V, 6 A N-channel Power MOSFET. Features. Applications. Description Rad-Hard 100 V, 6 A N-channel Power MOSFET Features Datasheet - production data V DSS I D R DS(on) Q g 100 V 6 A 0.30 Ω 22 nc SMD.5 Fast switching 100% avalanche tested Hermetic package 50 krad TID SEE

More information

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Internal Note IFJ PAN Krakow (SOIPIX) Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 by MOHAMMED IMRAN AHMED Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Test and Measurement

More information

IRHNJ63C krads(si) A SMD-0.5

IRHNJ63C krads(si) A SMD-0.5 PD-9798D 2N7598U3 IRHNJ67C3 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) 6V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHNJ67C3 krads(si) 3. 3.4A IRHNJ63C3

More information

TOTAL IONIZING DOSE EFFECTS IN ADVANCED CMOS TECHNOLOGIES. Nadia Rezzak. Dissertation. Submitted to the Faculty of the

TOTAL IONIZING DOSE EFFECTS IN ADVANCED CMOS TECHNOLOGIES. Nadia Rezzak. Dissertation. Submitted to the Faculty of the TOTAL IONIZING DOSE EFFECTS IN ADVANCED CMOS TECHNOLOGIES By Nadia Rezzak Dissertation Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements

More information

TSM3N90 900V N-Channel Power MOSFET

TSM3N90 900V N-Channel Power MOSFET TO-220 ITO-220 PRODUCT SUMMARY Pin Definition: 1. Gate 2. Drain 3. Source V DS (V) R DS(on) (Ω) I D (A) 900 5.1 @ V GS =10V 1.25 TO-251 (IPAK) TO-252 (DPAK) General Description The TSM3N90 N-Channel Power

More information

TID Influence on the SEE sensitivity of Active EEE components. Lionel Salvy

TID Influence on the SEE sensitivity of Active EEE components. Lionel Salvy TID Influence on the SEE sensitivity of Active EEE components Lionel Salvy Purpose of the study During space application, devices are subject to TID and SEE at the same time But part radiation qualification

More information

Component Miniaturization and High-Density Technologies in Space Applications

Component Miniaturization and High-Density Technologies in Space Applications Component Miniaturization and High-Density Technologies in Space Applications Norio NEMOTO Parts Program Office Safety and Mission Assurance Department JAXA 2014/10/23 MEWS 27 1 1. JAXA EEE Parts Organization

More information

P-Channel Power MOSFET -40V, -22A, 15mΩ

P-Channel Power MOSFET -40V, -22A, 15mΩ TSM5P4LCS P-Channel Power MOSFET -4V, -22A, 5mΩ FEATURES Low R DS(ON) to minimize conductive losses Logic level Low gate charge for fast power switching % UIS and R g tested Compliant to RoHS directive

More information

N-Channel Power MOSFET 40V, 135A, 3.8mΩ

N-Channel Power MOSFET 40V, 135A, 3.8mΩ TSM38N4LCP N-Channel Power MOSFET 4V, 35A, 3.8mΩ FEATURES Low R DS(ON) to minimize conductive losses Logic level Low gate charge for fast power switching % UIS and R g tested Compliant to RoHS directive

More information

AMICSA Bridging Science & Applications F r o m E a r t h t o S p a c e a n d b a c k. Kayser-Threde GmbH. Space

AMICSA Bridging Science & Applications F r o m E a r t h t o S p a c e a n d b a c k. Kayser-Threde GmbH. Space Bridging Science & Applications F r o m E a r t h t o S p a c e a n d b a c k E a r t h S p a c e & F u t u r e Kayser-Threde GmbH Space Industrial Applications AMICSA 2008 First radiation test results

More information

A Novel Radiation Tolerant SRAM Design Based on Synergetic Functional Component Separation for Nanoscale CMOS.

A Novel Radiation Tolerant SRAM Design Based on Synergetic Functional Component Separation for Nanoscale CMOS. A Novel Radiation Tolerant SRAM Design Based on Synergetic Functional Component Separation for Nanoscale CMOS. Abstract This paper presents a novel SRAM design for nanoscale CMOS. The new design addresses

More information

IRHY63C30CM 300k Rads(Si) A TO-257AA

IRHY63C30CM 300k Rads(Si) A TO-257AA PD-95837D 2N7599T3 IRHY67C3CM RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-257AA) 6V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHY67C3CM k Rads(Si) 3. 3.4A IRHY63C3CM

More information

IMPACT OF DESIGNER-CONTROLLED PARAMETERS ON SINGLE-EVENT RESPONSES FOR FLIP-FLOP DESIGNS IN ADVANCED TECHNOLOGIES. Hangfang Zhang.

IMPACT OF DESIGNER-CONTROLLED PARAMETERS ON SINGLE-EVENT RESPONSES FOR FLIP-FLOP DESIGNS IN ADVANCED TECHNOLOGIES. Hangfang Zhang. IMPACT OF DESIGNER-CONTROLLED PARAMETERS ON SINGLE-EVENT RESPONSES FOR FLIP-FLOP DESIGNS IN ADVANCED TECHNOLOGIES By Hangfang Zhang Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt

More information

Single Event Effects Testing of the ISL7124SRH Quad Operational Amplifier June 2002

Single Event Effects Testing of the ISL7124SRH Quad Operational Amplifier June 2002 Single Event Effects Testing of the ISL7124SRH Quad Operational Amplifier June 2002 Purpose - This report describes the results of single event effects testing of the ISL7124SRH quad operational amplifier

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

TS79L00 Series 3-Terminal 100mA Negative Voltage Regulator

TS79L00 Series 3-Terminal 100mA Negative Voltage Regulator TO-92 SOT-89 Pin Definition: 1. Ground 2. Input 3. Output General Description The TS79L00 Series of negative voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications

More information

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures Chenming Hu and Je Min Park Univ. of California, Berkeley -1- Outline Introduction Background and Motivation MOSFETs with Vacuum-Spacer

More information

RADIATION HARDENED HIGH AND LOW SIDE GATE DRIVER

RADIATION HARDENED HIGH AND LOW SIDE GATE DRIVER Features RADIATION HARDENED HIGH AND W SIDE GATE DRIER n Total dose capability to 100 krads(si) n Floating channel designed for bootstrap operation n Fully operational to +400 n Tolerant to negative transient

More information

TID Influence on the SEE sensitivity of Active EEE components

TID Influence on the SEE sensitivity of Active EEE components TID Influence on the SEE sensitivity of Active EEE components ESA Contract No. 4000111336 Lionel Salvy, Benjamin Vandevelde, Lionel Gouyet Anne Samaras, Athina Varotsou, Nathalie Chatry Alexandre Rousset,

More information

X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement

X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement June 4, 2015 X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement Ikuo Kurachi 1, Kazuo Kobayashi 2, Hiroki Kasai 3, Marie Mochizuki 4, Masao Okihara 4, Takaki Hatsui 2, Kazuhiko

More information

45nm Foundry CMOS with Mask-Lite Reduced Mask Costs

45nm Foundry CMOS with Mask-Lite Reduced Mask Costs This work is sponsored in part by the Air Force Research Laboratory (AFRL/RVSE) 45nm Foundry CMOS with Mask-Lite Reduced Mask Costs 21 March 2012 This work is sponsored in part by the National Aeronautics

More information

Radiation hardened CMOS Image Sensors Development

Radiation hardened CMOS Image Sensors Development Radiation hardened CMOS Image Sensors Development Vincent Goiffon, ISAE-SUPAERO, Université de Toulouse, France CERN Radiation Working Group meeting 2017, April 13th Outline ISAE-SUPAERO Image Sensor Research

More information

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP04 April 2, 2001

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP04 April 2, 2001 TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP04 April 2, 2001 J.J. Wang Igor Kleyner (408) 522-4576 (301) 286-5683 jih-jong.wang@actel.com igor.kleyner@gsfc.nasa.gov I. SUMMARY TABLE Parameters

More information

N-Channel Power MOSFET 900V, 4A, 4.0Ω

N-Channel Power MOSFET 900V, 4A, 4.0Ω N-Channel Power MOSFET 900V, 4A, 4.0Ω FEATURES Low R DS(ON) 4Ω (Max.) Low gate charge typical @ 25nC (Typ.) Improve dv/dt capability APPLICATION High efficiency switch mode power Supply Lighting KEY PERFORMANCE

More information

Lecture 6. Technology Trends and Modeling Pitfalls: Transistors in the real world

Lecture 6. Technology Trends and Modeling Pitfalls: Transistors in the real world Lecture 6 Technology Trends and Modeling Pitfalls: Transistors in the real world Guest lecturer: Jared Zerbe Rambus Inc jared@rambus.com Copyright 2004 by Mark Horowitz Some Figures courtesy of C. Enz,

More information

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B PD-9440B RAD-HARD SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL Product Summary Part Number Radiation Level RDS(on) QG 00K Rads (Si) 6.mΩ 60nC IRHSLNA53064 300K Rads (Si) 6.mΩ 60nC IRHSLNA54064

More information

CMOS Image Sensors in Harsh Radiation Environments

CMOS Image Sensors in Harsh Radiation Environments CMOS Image Sensors in Harsh Radiation Environments Vincent Goiffon, ISAE-SUPAERO, Université de Toulouse, France TWEPP 2016 - Topical Workshop on Electronics for Particle Physics 26-30 September 2016 Karlsruhe

More information

Partial evaluation based triple modular redundancy for single event upset mitigation

Partial evaluation based triple modular redundancy for single event upset mitigation University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 Partial evaluation based triple modular redundancy for single event upset mitigation Sujana Kakarla University

More information

Design and Performance Analysis of SOI and Conventional MOSFET based CMOS Inverter

Design and Performance Analysis of SOI and Conventional MOSFET based CMOS Inverter I J E E E C International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626 and Computer Engineering 3(2): 138-143(2014) Design and Performance Analysis of SOI and Conventional MOSFET based

More information

Sony IMX118CQT 18.5 Mp, 1.25 µm Pixel Pitch Back Illuminated CIS from the Sony DSC-WX100 Camera

Sony IMX118CQT 18.5 Mp, 1.25 µm Pixel Pitch Back Illuminated CIS from the Sony DSC-WX100 Camera 18.5 Mp, 1.25 µm Pixel Pitch Back Illuminated CIS from the Sony DSC-WX100 Camera Imager Process Review 1891 Robertson Road, Suite 500, Ottawa, ON K2H 5B7 Canada Tel: 613-829-0414 www.chipworks.com Imager

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

MANY foundries with radiation-hard technologies have

MANY foundries with radiation-hard technologies have 1550 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER 2005 Radiation Test Results on First Silicon in the Design Against Radiation Effects (DARE) Library Steven Redant, R. Marec, L. Baguena,

More information

CHARACTERIZATION OF HEAVY-ION INDUCED SINGLE EVENT. TRANSIENTS IN 32nm AND 45nm SILICON-ON-INSULATOR TECHNOLOGIES. Jeffrey Alan Maharrey.

CHARACTERIZATION OF HEAVY-ION INDUCED SINGLE EVENT. TRANSIENTS IN 32nm AND 45nm SILICON-ON-INSULATOR TECHNOLOGIES. Jeffrey Alan Maharrey. CHARACTERIZATION OF HEAVY-ION INDUCED SINGLE EVENT TRANSIENTS IN 32nm AND 45nm SILICON-ON-INSULATOR TECHNOLOGIES By Jeffrey Alan Maharrey Thesis Submitted to the Faculty of the Graduate School of Vanderbilt

More information

Soft Error Susceptibility in SRAM-Based FPGAs. With the increasing emphasis on minimizing mass and volume along with

Soft Error Susceptibility in SRAM-Based FPGAs. With the increasing emphasis on minimizing mass and volume along with Talha Ansari CprE 583 Fall 2011 Soft Error Susceptibility in SRAM-Based FPGAs With the increasing emphasis on minimizing mass and volume along with cost in aerospace equipment, the use of FPGAs has slowly

More information

N-Channel Power MOSFET 30V, 78A, 3.8mΩ

N-Channel Power MOSFET 30V, 78A, 3.8mΩ TSM38N3PQ33 N-Channel Power MOSFET 3V, 78A, 3.8mΩ FEATURES Low R DS(ON) to minimize conductive losses Low gate charge for fast power switching % UIS and R g tested Compliant to RoHS directive 2/65/EU and

More information

DesignofaRad-HardLibraryof DigitalCellsforSpaceApplications

DesignofaRad-HardLibraryof DigitalCellsforSpaceApplications DesignofaRad-HardLibraryof DigitalCellsforSpaceApplications Alberto Stabile, Valentino Liberali and Cristiano Calligaro stabile@dti.unimi.it, liberali@dti.unimi.it, c.calligaro@redcatdevices.it Department

More information

NEW INSIGHTS INTO THE TOTAL DOSE RESPONSE OF FULLY- DEPLETED PLANAR AND FINFET SOI TRANSISTORS

NEW INSIGHTS INTO THE TOTAL DOSE RESPONSE OF FULLY- DEPLETED PLANAR AND FINFET SOI TRANSISTORS NEW INSIGHTS INTO THE TOTAL DOSE RESPONSE OF FULLY- DEPLETED PLANAR AND FINFET SOI TRANSISTORS By Farah El Mamouni Thesis Submitted to the Faculty of the Graduate school of Vanderbilt University in partial

More information

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 33-1 Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 Contents: 1. MOSFET scaling

More information

Development of the Pixelated Photon Detector. Using Silicon on Insulator Technology. for TOF-PET

Development of the Pixelated Photon Detector. Using Silicon on Insulator Technology. for TOF-PET July 24, 2015 Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET A.Koyama 1, K.Shimazoe 1, H.Takahashi 1, T. Orita 2, Y.Arai 3, I.Kurachi 3, T.Miyoshi 3, D.Nio

More information

Radiation Hardened 32K x 8 CMOS EEPROM

Radiation Hardened 32K x 8 CMOS EEPROM Radiation Hardened 32K x 8 CMOS EEPROM Introduction The W28C256 is a 32K x 8 radiation hardened EEPROM designed by Sandia National Laboratories, Albuquerque, NM, and manufactured by the Northrop Grumman

More information

N-Channel Power MOSFET 60V, 70A, 12mΩ

N-Channel Power MOSFET 60V, 70A, 12mΩ TSM2N6LCP N-Channel Power MOSFET 6V, 7A, 2mΩ FEATURES Low R DS(ON) to minimize conductive losses Logic level Low gate charge for fast power switching % UIS and R g tested Compliant to RoHS directive 2/65/EU

More information

80mA Low Noise Ultra Low Dropout Voltage Regulator

80mA Low Noise Ultra Low Dropout Voltage Regulator 80mA Low Noise Ultra Low Dropout Voltage Regulator DESCRIPTION The TS5204 series is an efficient linear voltage regulator with ultra-low noise output, very low dropout voltage (typically 20mV at light

More information

Progress on Silicon-on-Insulator Monolithic Pixel Process

Progress on Silicon-on-Insulator Monolithic Pixel Process Progress on Silicon-on-Insulator Monolithic Pixel Process Sep. 17, 2013 Vertex2013@Lake Starnberg Yasuo Arai, KEK yasuo.arai@kek.jp http://rd.kek.jp/project/soi/ 1 Outline Introduction Basic SOI Pixel

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information