# Getting to know the 555

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Getting to know the 555 Created by Dave Astels Last updated on :32:58 PM UTC

2 Guide Contents Guide Contents Overview Background Voltage dividers RC Circuits The basics RS FlipFlop Transistor switch Grand tour Applications Monostable Operation Astable Operation Bistable Operation Other Uses References Adafruit Industries Page 2 of 21

3 Overview The 555 was designed back in the early 1970s by Hans Camenzind at the semiconductor company Signetics. It quickly became one of the most popular and used ICs of all time. Data from 2004 shows that it was selling about a billion chips per year and has been used in products ranging from toys to spacecraft. Adafruit Industries Page 3 of 21

4 Background There are a few things we will be talking about in our discussion of the 555 that you might not have run into before. To make sure you all have the background, the next few pages will cover some of the basics. Adafruit Industries Page 4 of 21

5 Voltage dividers Resistors are inserting components. If you put a voltage across a resistor, a current will flow through it. These three values: voltage, resistance, and current are related by an equation known as "Ohm's Law": V=IR where V is the voltage in volts I is the current in amps R is the resistance in ohms This is a very useful equation, mostly because you can manipulate it to help you compute the difference values depending on the situation. Let's say you are connecting an LED. You're using a 5v supply and know you need a currently limiting resistor to keep the LED from frying. An LED will have a specific and well known voltage drop across it. The manufacture's datasheet will have the specific value, but typically a red LED will have a voltage drop of around 1.8 volts. As the frequency of the emitted light increases, so does the voltage drop so a blue LED might have a voltage drop of closer to 3.3 volts. So if we have a red LED, it will have a 1.8v drop. The other 3.2v has to be across a resistor in series with the LED. What size resistor? If we make the assumption (that's always worked fine in my experience) that you want 20 milliamps flowing through the LED, then we use R = V/I That is, R = 3.2/0.020 = 160 You will want a 160 ohm resistor. More or less. In this case it's safer to use a higher valued resistor. The LED might be a bit dimmer than it could be, but if you let too much current flow through it (by using too small of a resistor) it could self-destruct. Aside: I've generally found that 220 ohm resistor is a good value to use... so I bought 1000 of them. I've also gone with 330 ohms for red LEDs and 150 ohms for green and blue. That brings us to voltage dividers. If we connect multiple resistors in series and apply a voltage across them, each one will take a portion of the voltage proportional to it's share of the total resistance. Adafruit Industries Page 5 of 21

6 Assuming the resistances are equal, the point between the resistors will measure as half the voltage across the pair and each resistor will have half the voltage across it. If we do this with three resistors, the points between the resistors will be at 1/3 and 2/3 of the overall voltage; each resistor will have 1/3 of the total voltage across it. This is worth noting as this is exactly what is inside the 555, as we will see later. Adafruit Industries Page 6 of 21

7 RC Circuits Before we can understand much about the operation of the 555 we need to understand resistor-capacitor circuits, commonly called rc circuits. The basics Resistors resist the flow of electrons through them. Capacitors store electrons. That's about it. If we place a voltage across a resistor a current (i.e. a flow of electrons) will flow through it. The greater the voltage, the greater the current. The greater the value of the resister (it's resistance) the lower the current. Things get interesting when we put resisters and capacitors together. You'll find them working together in various ways in all kinds of circuits. For the purpose of this guide, we're interested in a specific way of combining them. Consider this simple circuit. If C is fully discharged (i.e. is empty) when the power is applied, the voltage V will be 0 and C will start to charge through R. As it charges, V will increase. As this happens the voltage across R will get smaller. In turn this will lower the current flowing through it and this will slow the charging of C. In fact, V will follow a well defined logarithmic curve. Similarly, if we now connect the top end of R to ground instead of Vcc, C will discharge and V will go back to 0, again on a logarithmic curve. The timing of C's charging and discharging (and V) is dependent on the values of R and C. If we make the value of C larger it will charge more slowly. Likewise if we make the value of R larger. This might make more sense if we use an analogy. Let's represent C by a swimming pool and R by a hose. If we try filling an Olympic swimming pool using a garden hose it will take a long time. If we make the pool smaller by replacing it with a kiddie wading pool (i.e. a lower capacitance) or the hose bigger by replacing it with a fire hose (a lower resistance) it won't take as long to fill. When we have a circuit like this a handy number is the RC time constant. The value of C in farads multiplied by the Adafruit Industries Page 7 of 21

8 value of R in ohms yields the RC time constant in seconds. For example the RC time constant of a 1k ohm resistor and a 1 microfarad capacitor is: 1000 ohms * farads = seconds, i.e. 1 ms As mentioned, the charging of the capacitor follows a logarithmic curve rather than a linear, so the rate of charger/discharge changes over time. The RC time constant is quite handy. V will be within 1% of Vcc in 5RC seconds. Furthermore, it will be at 63% of Vcc in RC seconds. The usefulness of this will become apparent later. Adafruit Industries Page 8 of 21

9 RS FlipFlop A flipflop is a digital circuit that can be used to store a single bit of information. They come in a variety of types that all work slightly differently. Flipflops will be discussed in detail in a later guide. For this guide we just need to know about the RS flipflop. The "RS" stands for Reset-Set. The way this flipflop works is that it can be set (making its state high) and reset (making it's state low) by using its two inputs: S and R, respectively. It also has an output that reflects its internal state. Flipflops typically also have an inverted output which will be the logical negation of the output (i.e. low if the output is high, high if it's low). We won't worry about the internal details at this point. A later guide dedicated to flip flops will develop the idea of a flipflop from the inside-out. R is the reset input, S is the set input, and Q is the output. It's something of a standard to use Q to denote the output. This was tradition even when I got started. The Q with a bar over it is the inverted output. We'll call this Q-bar. If Q is high, Q-bar will be low, and the opposite. On the flipflop this is denoted by the small circle at the Q-bar output. A small circle like this in digital logic diagrams means inversion. If both R and S are low, then the flipflop is stable and nothing changes. If S goes high briefly, Q becomes high, regardless what it was previously. If R goes high briefly, Q becomes low. Both R and S being high at the same time is not usually an interesting case, but if it happens, Q will go high. In practice both R and S will normally be low, one of them can be made high for some reason to cause Q to go high or low and stay that way until R or S goes high again. As such, an RS flipflop is a basic unit of memory, able to store a single bit of information. Adafruit Industries Page 9 of 21

10 Adafruit Industries Page 10 of 21

11 Transistor switch Transistors are a basic building block of electronics. You know how electrons, protons, etc are the building blocks of matter? Transistors are like that for electronics. All digital electronics are made of transistors. They have numerous uses but for understanding the operation of the 555 we just need one: a switch. The 555 uses a transistor as a switch to connect part of the circuit to ground: When the line labelled control goes high, the transistor turns on and connects the circuit it's connected to, to ground. In the 555 this is used as the mechanism to discharge the timing capacitor. Adafruit Industries Page 11 of 21

12 Grand tour Here is the internal block diagram of the 555. On the left we can see a voltage divider as described earlier. The values of the resistors aren't relevant to this discussion, other than that they are all the same. That gives us 1/3 and 2/3 of Vcc at the points between resistors. The rest of the behaviour of the circuit is driven by this divider. One of the benefits of this is that the operation is independent of Vcc. There is a bit of an urban legend that claims the 555 got it's name from these 3 resistors each being 5K. This is officially not true from what I have found from some research. In fact the part number "555" was arbitrary. See this interview. Moving right we find two voltage comparitors. The top one compares the voltage on the threshold pin (6) with the 2/3 Vcc value. Then the threshold voltage is above 2/3 Vcc the output of the comparitor goes high. The lower comparitor compares the voltage on the trigger pin (2) to 1/3 Vcc. Note that the trigger input is connected to the comparitor input annotated with a negating circle. This indicates the input that should be lower that the other input for the comparitors output to be high. On the top comparitor the negating input was connected to the 2/3 Vcc voltage so the threshold value had to be the higher of the two for the comparitor output to be high. In the bottom comparitor the trigger voltage has to be below the 1/3 Vcc voltage for the comparitor output to be high. Next we have the RS flipflop. The trigger comparitor output is used to set the flipflop (making its Q output high and, more importantly here, it's Q-bar output low. The threshold comparitor output is used to reset the flipflop, making the Q-bar output high. Notice that there is an active low (meaning that it is normally high and brought low to do something) reset pin (4) that can be used to reset the flipflop (and thus the 555) to a known state, with Q-bar high (which drives output low and discharge grounded, as we will see momentarily). The Q-bar output of the flipflop is inverted and buffered (to be able to supply more current to whatever circuit is connected). This buffered signal is connected to the output pin (3). The Q-bar output of the flipflop is also used to control a transistor switch that, when on, connects the discharge pin (7) to ground (when the not Q is high, i,e, when the flipflop is in the reset state). Adafruit Industries Page 12 of 21

13 Finally there is the control voltage pin (5) which can be used to override the operation of the voltage divider by setting the 2/3 point of the divider (the voltage that the threshold input is compared to) to an external voltage. Note that this also effects the voltage the input signal is compared to (it is now 1/2 of the control voltage) As you can see this is a very simple and elegant circuit. The 555 doesn't do much other than compare some voltages (the divider and comparitors), keep some state (the flipflop), and ground a pin (the transistor). This is what makes it so versatile: with a few external components connected in various configurations, this little chip can do all manor of interesting and useful things. We will be referring to the above diagram throughout the rest of this guide, so it's a good idea to have a pretty solid grasp on the material up to this point. If you really want to understand the 555, you can grab the "Three-Fives" kit and poke around inside the circuit with an oscilloscope or multi-meter. It's a fully functional version of the 555 made from transistors and resistors, just like inside the real chip. Adafruit Industries Page 13 of 21

14 Applications Now that we understand what the 555 is, and how it operates, it's time to explore what it can be used for. The 555 has 3 basic modes of operation: 1. Monostable/one-shot: The trigger input is used to make the output high for some amount of time, after which is goes low until it is triggered again. 2. Astable/free-running: The output switches between high and low at a specific frequency and duty cycle. 3. Bistable: The output is controlled by two inputs. This basically just exposes the internal flip-flop. Adafruit Industries Page 14 of 21

15 Monostable Operation The monostable, aka one-shot, configuration generates a single pulse of a predetermined length in response to a trigger. At rest, the trigger input will be high (in this case that means > 1/3 Vcc) and the output will be low. This means that the Q-bar output from the flipflop will be high, which turns on the discharge transistor keeping C1 empty and the threshold voltage at 0v. When the trigger input goes low briefly (i.e. falls below 1/3 Vcc) the trigger comparitor sets the flipflop, making its Q-bar output low. This turns off the discharge transistor allowing C1 to charge through R1. It also causes the output to go high. C1 charges through R1 until the threshold voltage reaches 2/3 Vcc. Recall that this will take RC seconds. When it gets to that point, the threshold comparitor resets the flipflop, making Q-bar high. This makes the output low, and turns on the discharge transistor which grounds the discharge pin. Since this is connected directly to the point between the capacitor and resistor, the capacitor discharges essentially instantaneously. This also causes the threshold voltage to go to zero, and the flipflop's reset input to go low. Now both the set and reset inputs to the flipflop are low and the circuit is again in a stable state with the output low. Adafruit Industries Page 15 of 21

16 In summary, taking the trigger low briefly causes the output to go high for the length of time defined by RC. Below is a diagram showing the temporal relationship between these various signals. Adafruit Industries Page 16 of 21

17 Astable Operation The astable configuration generates an ongoing stream of pulses of fixed length and frequency. It's called astable since it has no stable state, continually toggling back and forth. This is very similar to the monostable circuit with two seemingly minor differences: There's a second resistor (R2) between discharge and the capacitor/threshold. Trigger is connected to threshold, rather than being an external input. Because of these differences, the operation is quite different. As before, C1 charges, but this time it's through the combination of R1 and R2. Since the trigger input is the voltage on C1, the 555 triggers when C1 discharges to 1/3Vcc, at which point the flipflop gets set and C1 starts charging again. This means that C1 never discharges to 0v so when it charges isn't not charging from 0v, it's changing from 1/3Vcc. The practical effect of this is that the charge time isn't a full (R1+R2)C. Instead it takes 0.693(R1+R2)C1 seconds. Why 0.693? Math. When the discharge pin gets grounded in response to the capacitor/threshold voltage reaching 2/3Vcc, C1 discharges through R2. This takes some amount of time determined by R2 and C1. Once again C1 is discharging from 2/3Vcc to 1/3Vcc so the time will be 0.693(R2C1). Adafruit Industries Page 17 of 21

18 Here's an actual scope trace of the threshold (green) and output (yellow) pins. This circuit is called astable because it doesn't have a stable state that it needs to be bumped out of like the monostable. Rather, it's continuously alternating between charging C1 from 1/3Vcc to 2/3Vcc and discharging it back to 1/3Vcc. The output is correspondingly high while C1 charges and low while it discharges. The time the output is high is 0.693(R1+R2)C1. The time the output is low 0.693(R2)C1. The total cycle time is the sum of these: 0.693C1(R1+2R2). This means that the frequency is the reciprocal of that: 1.44/((R1+2R2)C1). Because the charge time depends on R1+R2 and the discharge depends on R2, the two times can not be equal, so you can't get a 50% duty cycle. This, however is seldom a real issue. In those cases where it is, you can achieve it by doing some tricks using the CMOS version of the 555. Adafruit Industries Page 18 of 21

19 Bistable Operation The bistable configuration is stable in both states, staying where you put it. In this configuration the 555 is being used as an RS flipflop. It simply exposes the operation of the internal flipflop. Making the trigger low briefly sets the flipflop, making the output high. When reset is made low briefly, the flipflop is reset, making the output low. In this configuration, discharge is not used and left unconnected. Similarly threshold is not used, but it needs to be connected to ground to make sure it stays well below 2/3 Vcc. While this may seem like overkill, it does give you an RS flipflop in a small, 8 pin package with a very flexible supply voltage. Alternatives would be using a 14 pin chip or building a flipflop from gates or transistors, both of which would take considerably more space and likely have supply voltage restrictions. Adafruit Industries Page 19 of 21

20 Other Uses The previous sections cover the basic operating modes of the 555. Beyond this there are a staggering variety of uses this little chip has found since it was released in There are some sources of projects in the References section. One place 555s (actually a 558: 4 555s on a single 16-pin chip) were used in early microcomputers (notably the Apple ][ and the IBM PC) was the game controller interface. By using a 555 in monostable mode and using a potentiometer in place of the timing resistor, software could trigger the timers and measure the length of the output pulses. The pulse length was proportional to the value of the resistor, and thus the position of the paddle/joystick. Adafruit Industries Page 20 of 21

21 References The Art of Electronics by Paul Horowitx and Winfried Hill, especially sections 1.4, 2.2.1, and Engineer's Mini-Notebook: 555 Circuits by Forrest M. Mims, III The Ultimate Beginner's Guide to the 555 Timer by Jesse Rutherford The 555 Timer Applications Sourcebook by Howard Berlin 555 Circuits from Engineer's Garage Interview with 555 Designer, Hans Camenzind Adafruit Industries Last Updated: :32:57 PM UTC Page 21 of 21

### ASTABLE MULTIVIBRATOR

555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

### HIGH LOW Astable multivibrators HIGH LOW 1:1

1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

### Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

### Police Siren Circuit using NE555 Timer

Police Siren Circuit using NE555 Timer Multivibrator: Multivibrator discover their own space in lots of applications as they are among the most broadly used circuits. The application can be anyone either

### LM555 and LM556 Timer Circuits

LM555 and LM556 Timer Circuits LM555 TIMER INTERNAL CIRCUIT BLOCK DIAGRAM "RESET" And "CONTROL" Input Terminal Notes Most of the circuits at this web site that use the LM555 and LM556 timer chips do not

### EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS Prepared By: Ajay Kumar Kadel, Kathmandu Engineering College 1) PIN DESCRIPTIONS Fig.1 555 timer Pin Configurations Pin 1 (Ground):- All voltages are measured

### High Current MOSFET Toggle Switch with Debounced Push Button

Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

### Process Components. Process component

What are PROCESS COMPONENTS? Input Transducer Process component Output Transducer The input transducer circuits are connected to PROCESS COMPONENTS. These components control the action of the OUTPUT components

### PRESENTATION ON 555 TIMER A Practical Approach

PRESENTATION ON 555 TIMER A Practical Approach By Nagaraj Vannal Assistant Professor School of Electronics Engineering, K.L.E Technological University, Hubballi-31 nagaraj_vannal@bvb.edu 555 Timer The

### AND ITS APPLICATIONS M.C.SHARMA

AND ITS APPLICATIONS M.C.SHARMA 555 TIMER AND ITS APPLICATIONS BY M. C. SHARMA, M. Sc. PUBLISHERS: BUSINESS PROMOTION PUBLICATIONS 376, Lajpat Rai Market, Delhi-110006 By the same author Transistor Novelties

### Exam Booklet. Pulse Circuits

Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

### Electric Circuit Fall 2017 Lab8 LABORATORY 8. Audio Synthesizer. Guide

LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

### Monostable multivibrators

Monostable multivibrators We've already seen one example of a monostable multivibrator in use: the pulse detector used within the circuitry of flip-flops, to enable the latch portion for a brief time when

### Electronic Instrumentation ENGR-4300 Fall 2004 Section Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes

Experiment 7 Introduction to the 555 Timer, LEDs and Photodiodes Purpose: In this experiment, we learn a little about some of the new components which we will use in future projects. The first is the 555

### Chapter 13: Comparators

Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

### FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Monostable Learning Outcomes You should be able to: demonstrate knowledge and understanding of

### Massachusetts Institute of Technology MIT

Massachusetts Institute of Technology MIT Real Time Wireless Electrocardiogram (ECG) Monitoring System Introductory Analog Electronics Laboratory Guilherme K. Kolotelo, Rogers G. Reichert Cambridge, MA

### EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

### Analog Circuits Part 3 Operational Amplifiers

Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

### Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

### Transistor Design & Analysis (Inverter)

Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

### COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

### Spec. Instructor: Center

PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

### Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 8. Audio Synthesizer. Guide

LABORATORY 8 Audio Synthesizer Guide The 555 Timer IC Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by the energy storage that is inherent to these components.

### Comparators, positive feedback, and relaxation oscillators

Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

### THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

### UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

### Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

### FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Astable Learning Outcomes You should be able to: demonstrate knowledge and understanding of the

### Congratulations on your purchase of the SparkFun Arduino ProtoShield Kit!

Congratulations on your purchase of the SparkFun Arduino ProtoShield Kit! Well, now what? The focus of this guide is to aid you in turning that box of parts in front of you into a fully functional prototyping

### ENGR 210 Lab 12: Analog to Digital Conversion

ENGR 210 Lab 12: Analog to Digital Conversion In this lab you will investigate the operation and quantization effects of an A/D and D/A converter. A. BACKGROUND 1. LED Displays We have been using LEDs

### ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC)

ELEC451 Integrated Circuit Engineering Fall 2009 Solution to CAD Assignment 2 Inverter Voltage Transfer Characteristic (VTC) The plot below shows how the inverter's threshold voltage changes with the relative

### Logic families (TTL, CMOS)

Logic families (TTL, CMOS) When you work with digital IC's, you should be familiar, not only with their logical operation, but also with such operational properties as voltage levels, noise immunity, power

### Speed Control of DC Motor Using Phase-Locked Loop

Speed Control of DC Motor Using Phase-Locked Loop Authors Shaunak Vyas Darshit Shah Affiliations B.Tech. Electrical, Nirma University, Ahmedabad E-mail shaunak_vyas1@yahoo.co.in darshit_shah1@yahoo.co.in

### COMPARATOR CHARACTERISTICS The important characteristics of a comparator are these: 1. Speed of operation 2. Accuracy 3. Compatibility of output

SCHMITT TRIGGER (regenerative comparator) Schmitt trigger is an inverting comparator with positive feedback. It converts an irregular-shaped waveform to a square wave or pulse, also called as squaring

### An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam Emma Ideal, University of California at Los Angeles Enrico Fermi Institute, University of Chicago, REU 2008 Abstract A schematic design

### Supply Voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply Voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

### Electronics II. Previous Lecture

Fall 204 (Rev. 3.0) Lecture 25 555 Timer IC (Mono Stable Operation) Voltage Controlled Oscillator and Phase Locked Loop Muhammad Tilal Department of Electrical Engineering CIIT Attock Campus Duplication

### CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is

### What is Digital Logic? Why's it important? What is digital? What is digital logic? Where do we see it? Inputs and Outputs binary

What is Digital Logic? Why's it important? What is digital? Electronic circuits can be divided into two categories: analog and digital. Analog signals can take any shape and be an infinite number of possible

### LMC555 CMOS Timer. Features. Block and Connection Diagrams. Pulse Width Modulator. October 2003

LMC555 CMOS Timer General Description The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. In addition to the standard package (SOIC, MSOP, and MDIP) the LMC555 is also

### Features. Applications

IttyBitty RC Timer/Oscillator General Description The MIC1555 IttyBitty CMOS RC timer/oscillator and MIC1557 IttyBitty CMOS RC oscillator are designed to provide rail-to-rail pulses for precise time delay

### CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

### Power Line Carrier Communication

IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. II (Mar - Apr. 2014), PP 50-55 Power Line Carrier Communication Dorathe.

### multiplier input Env. Det. LPF Y (Vertical) VCO X (Horizontal)

Spectrum Analyzer Objective: The aim of this project is to realize a spectrum analyzer using analog circuits and a CRT oscilloscope. This interface circuit will enable to use oscilloscopes as spectrum

### Designing Information Devices and Systems II Fall 2017 Note 1

EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

### DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring 2017 V2 6.101 Introductory Analog Electronics Laboratory Laboratory

### Lab 12: Timing sequencer (Version 1.3)

Lab 12: Timing sequencer (Version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

### ANALOG TO DIGITAL CONVERTER

Final Project ANALOG TO DIGITAL CONVERTER As preparation for the laboratory, examine the final circuit diagram at the end of these notes and write a brief plan for the project, including a list of the

### Electronic Instrumentation

Electronic Instrumentation Project 4: Optical Communication Link 1. Optical Communications 2. Initial Design 3. PSpice Model 4. Final Design 5. Project Report Why use optics? Advantages of optical communication

### Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

### RoHS Compliant Product

RoHS Compliant Product Description The SMSNE555 is a highly stable timer IC that can be operated in astable mode and monostable mode. For monostable mode: time delay is controlled by one external and one

### Electronics Fundamentals Courseware

Innovative Training Solutions Student Lab Manual Electronics Fundamentals Courseware Comprehensive Course in AC / DC Electronics Second Edition Electronics Fundamentals Student Lab Manual Innovative Training

### Laboratory Project 1: Design of a Myogram Circuit

1270 Laboratory Project 1: Design of a Myogram Circuit Abstract-You will design and build a circuit to measure the small voltages generated by your biceps muscle. Using your circuit and an oscilloscope,

### Basic Analog Circuits

Basic Analog Circuits Overview This tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series, will teach you a specific topic of common measurement applications,

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM555 Timer General Description The LM555 is a highly stable device for

### Verification of competency for ELTR courses

Verification of competency for ELTR courses The purpose of these performance assessment activities is to verify the competence of a prospective transfer student with prior work experience and/or formal

### Application Note AN-3006 Optically Isolated Phase Controlling Circuit Solution

www.fairchildsemi.com Application Note AN-3006 Optically Isolated Phase Controlling Circuit Solution Introduction Optocouplers simplify logic isolation from the ac line, power supply transformations, and

### Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

### Digital Applications of the Operational Amplifier

Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

### UNIT I Circuit Configuration for Linear ICs

UNIT I Circuit Configuration for Linear ICs Current Mirror Circuit: A current mirror is a circuit designed to copy a current through one active device by controlling the current in another

### Lab 11: 555 Timer/Oscillator Circuits

Page 1 of 6 Laboratory Goals Familiarize students with the 555 IC and its uses Design a free-running oscillator Design a triggered one-shot circuit Compare actual to theoretical values for the circuits

### Name & SID 1 : Name & SID 2:

EE40 Final Project-1 Smart Car Name & SID 1 : Name & SID 2: Introduction The final project is to create an intelligent vehicle, better known as a robot. You will be provided with a chassis(motorized base),

### A High-Voltage Buck-Boost Capacitor Charger

A High-Voltage Buck-Boost Capacitor Charger Reference is made to an associated paper titled A High-Voltage Boost Capacitor Charger. The earlier paper examined a capacitor charger in which the primary and

### Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

### EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #4 Diode Rectifiers and Power Supply Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

### CV Arpeggiator Rev 1. Last updated

CV Arpeggiator Rev Last updated 6--20 The CV Arpeggiator is a modular synth project used for creating arpeggios of control voltage. It utilizes a custom programmed PIC 6F685 micro controller. It includes

### Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful:

Operational Amplifiers A. Stolp, 4/22/01 rev, 2/6/12 An operational amplifier is basically a complete high-gain voltage amplifier in a small package. Op-amps were originally developed to perform mathematical

### DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

### Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 04 Feedback in Amplifiers, Feedback Configurations and Multi Stage Amplifiers Lecture No. # 03 Input

### RGB LED Strips. Created by lady ada. Last updated on :21:20 PM UTC

RGB LED Strips Created by lady ada Last updated on 2017-11-26 10:21:20 PM UTC Guide Contents Guide Contents Overview Schematic Current Draw Wiring Usage Arduino Code CircuitPython Code 2 3 5 6 7 10 12

### For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

### CMOS Schmitt Trigger A Uniquely Versatile Design Component

CMOS Schmitt Trigger A Uniquely Versatile Design Component INTRODUCTION The Schmitt trigger has found many applications in numerous circuits both analog and digital The versatility of a TTL Schmitt is

### L M 5 5 5/N E 5 5 5/S A 5 5 5

L M 5 5 5/N E 5 5 5/S A 5 5 5 S i n g l e T i m e r www.fairchildsemi.com Features High Current Drive Capability (00mA) Adjustable Duty Cycle Temperature Stability of 0.005%/ C Timing From µsec to Hours

### Dual Protocol Transceivers Ease the Design of Industrial Interfaces

Dual Protocol Transceivers Ease the Design of Industrial Interfaces Introduction The trend in industrial PC designs towards smaller form factors and more communication versatility is driving the development

### = V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached.

Switching Circuits Learners should be able to: (a) describe and analyse the operation and use of n-channel enhancement mode MOSFETs and npn transistors in switching circuits, including those which interface

### ECEN Network Analysis Section 3. Laboratory Manual

ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

### Department of Biomedical Engineering BME 317. Medical Electronics Lab

Department of Biomedical Engineering BME 317 Medical Electronics Lab Modified by Dr.Husam AL.Hamad and Eng.Roba AL.Omari Summer 2009 Exp # Title Page 1 2 3 4 An Introduction To Basic Laboratory Equipments

Maxim > Design Support > Technical Documents > Application Notes > Basestations/Wireless Infrastructure > APP 3671 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP

### LIC & COMMUNICATION LAB MANUAL

LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

### Lab Manual Rev 2. General Information: Lab Report Format: EE360, Fall03, Kolk

Lab Manual Rev 2 EE360, Fall03, Kolk General Information: 1. The lab is located in Dana 115. Our lab assistant is Jun Kondo. Lab hours for EE360 are Monday evenings 7:00 9:00 pm. The lab is available after

### Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

### 18-3 Circuit Analogies, and Kirchoff s Rules

18-3 Circuit Analogies, and Kirchoff s Rules Analogies can help us to understand circuits, because an analogous system helps us build a model of the system we are interested in. For instance, there are

### LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits

### DC Motor-Driver H-Bridge Circuit

Page 1 of 9 David Cook ROBOT ROOM home projects contact copyright & disclaimer books links DC Motor-Driver H-Bridge Circuit Physical motion of some form helps differentiate a robot from a computer. It

### BAP1551 Gate Drive Board

Application Note and Datasheet for Half Bridge Inverters Figure 1: BAP1551 IGBT Gate Driver Board Patent Pending Introduction The BAP1551 Insulated Gate Bipolar Transistor (IGBT) Gate Drive Board (GDB)

### GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

### Operational Amplifiers

1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

### Ludwig Phase II Synthesizer Tech Overview

Ludwig Phase II Synthesizer Tech Overview Filter 1 Lo-Z Filter 2 Output switch/output Mixer-Amp Amplifier Hi-Z Dry Buffer Rpts/ mix/ffm level Trajectory switches Anim/LFO Dry signal to output Rocker/ Ctl

### Bend Sensor Technology Electronic Interface Design Guide

Technology Electronic Interface Design Guide Copyright 2015 Flexpoint Sensor Systems Page 1 of 15 www.flexpoint.com Contents Page Description.... 3 Voltage Divider... 4 Adjustable Buffers.. 5 LED Display

### University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

### Exercise 1: Series RLC Circuits

RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

### SAW-TOOTH GENERATOR VOLTAGE COMPARATOR. DTs Ts

ECEN4618: Experiment è2 PulseWidth Modulator Design cæ 1997 Dragan Maksimoviçc Department of Electrical and Computer Engineering University of Colorado, Boulder In the Lab è1, a simple pulse generator

### Impedance of HART Transmitters Nesebar, Inc.

Impedance of HART Transmitters Nesebar, Inc. A 2Wire 420 ma Process Transmitter is essentially a current regulator. The compliance impedance of the regulator is often tens of megohms near DC but drops

### SG1524/SG2524/SG3524 REGULATING PULSE WIDTH MODULATOR DESCRIPTION FEATURES HIGH RELIABILITY FEATURES - SG1524 BLOCK DIAGRAM

SG54/SG54/SG54 REGULATING PULSE WIDTH MODULATOR DESCRIPTION This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included

### An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam

An Audio Integrator Box: Indication of Spill at the Fermilab Test Beam Emma Ideal, University of California at Los Angeles Enrico Fermi Institute, University of Chicago, REU 2008 Abstract A schematic design

### Field Effect Transistors

Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,