Community College of Allegheny County Unit 4 Page #1. Timers and PWM Motor Control

Size: px
Start display at page:

Download "Community College of Allegheny County Unit 4 Page #1. Timers and PWM Motor Control"

Transcription

1 Community College of Allegheny County Unit 4 Page #1 Timers and PWM Motor Control Revised: Dan Wolf, 3/1/2018

2 Community College of Allegheny County Unit 4 Page #2 OBJECTIVES: Timers: Astable and Mono-Stable 555 Timers Pulse Width Modulation for Motor Control DELIVERABLES THAT YOU MUST SUBMIT 1. Graphs #1 and #2, Tables #1 and #2 2. Practice Problems On-Line Reading Material: Required: a) b) Optional: a) How to Build a 555 Timer Mono-stable Circuit: b) How to Build a 555 Timer Bi-stable Circuit: c) INTRODUCTION TO THE 555 TIMER: The IC 555 has three operating modes: a) Astable (free-running) mode: As per Figure #1, in this mode, the 555 operates as an electronic oscillator where the square wave output frequency is given by the equation: f = C (R1 + 2R2) Where R1 and R2 are in ohms and C is the value of the capacitor in farads. The High time from each pulse is given by: high = C (R1 + R2)

3 Community College of Allegheny County Unit 4 Page #3 And the Low time from each pulse is given by: low = C R2 b) Monostable mode: As per Figure #2, in this mode, the 555 functions as a "one-shot" pulse generator. Once the input on Pin 2 is triggered, the output on Pin 2 will go high for a period of time determined by R and C according to the equation: t = 1.1 RC Where R1 and R2 are in ohms and C is the value of the capacitor in farads. c) Bistable mode or Schmitt trigger: As per Figure #3, the 555 can operate as a flip-flop. Uses include bounce-free latched switches. INTRODUCTION TO PULSE-WIDTH MODULATION (PWM): Pulse-width modulation (PWM) uses digital pulses to generate an analog voltage. A digital output pin may be either high (+5 V) or low (0 V). But what if you switched the pin rapidly between high and low so that it was high half the time and low half the time? As per Figure #5, the average voltage over time would be halfway between 0 and 5 V (2.5 V). PWM emits a burst of ones and zeros whose ratio is proportional to the duty value you specify. The proportion of ones to zeros in PWM is called the duty cycle. The duty cycle controls the analog voltage in a very direct way; the higher the duty cycle the higher the voltage. Duty Cycle is the proportion of ones to zeros output by the PWM command. To determine the proportional PWM output voltage, use this formula: Duty Cycle = Time High per pulse cycle Time per pulse cycle Proportional (Average) Output Voltage = Duty Cycle 5Volts For example, if the duty cycle is 50%, 0.50 x 5V = 2.5V; the PWM will output a train of pulses whose average voltage is 2.5V.

4 Community College of Allegheny County Unit 4 Page #4 Although we could slow down a motor by wiring it in series to a variable resister using a constant power supply, this approach wastes the power being dropped across the resister. PWM has the advantage in that no power is being wasted across such a resister.

5 Community College of Allegheny County Unit 4 Page #5 Experiment #1 - Astable (free-running) Timer: 1. Figure #2 shows a typical 555 Astable circuit. EQUIPMENT REQUIRED: CCAC 555 Timer Lab box or the following: a. LED and 330Ω load resister b. R1 = 2000Ω (you may substitute a 10K pot) c. R2 = 2000Ω (you may substitute a 10K pot) d. C = 1uF e. 10nF capacitor f. +5 Volt power supply 2. Connect the circuit shown in Figure #2 and add the LED and 330Ω resister to the output on Pin 3. Calculate the expected frequency, period, time high and time low then update Table #1. Ask the instructor to check the circuit before you apply power! 3. Use the oscilloscope to monitor the output on Pin 3. Assuming that the oscilloscope confirms the expected frequency value, does the LED light? Explain? 4. Use Graph #1 to sketch this waveform and include the voltage level, period and frequency. Update Table #1 5. Calculate new values for R1, R2, and C which will allow you to see the LED blink (i.e. about once per second). Test with the new components and then update Table #1. R1 R2 Calculated 2K 2K 1uF Measured 2K 2K 1uF Calculated Measured Calculated Measured Table #1 C F Period Thigh Tlow Duty Cycle

6 Community College of Allegheny County Unit 4 Page #6 Experiment #2 - Monostable Timer: 1. Figure #3 shows a typical 555 Monostable circuit. EQUIPMENT REQUIRED: a. Misc. wire b. LED and 330Ω load resister c. R = 10000Ω (ok to substitute a 10K potentiometer) d. C = 100uF e. 10nF capacitor f. +5 Volt power supply 2. Connect the circuit shown in Figure #3. Add the LED and 330Ω resister to the output on Pin 3 and a switch to the trigger input on Pin 2. Calculate the expected pulse time and update Table #2. Ask the instructor to check the circuit before you apply power! 3. Use the oscilloscope to monitor the output on Pin 3 and update Table #2. 4. Use Graph #1 to sketch this waveform showing the voltage level and pulse period and then pdate Table #2. 5. Calculate new values for R and C for a different time period. Test with the new components and then update Table #2. Calculated 10K 100uF Measured 10K 100uF Calculated Measured Calculated Measured Table #2 R C Pulse Period

7 Community College of Allegheny County Unit 4 Page #7 Experiment #3 555 Pulse Width Modulation: 1. Figure #4 shows a 555 circuit that will generate a PWM duty cycle that will control the brightness of an LED or the speed of a small motor. Figure #5 shows the PWM waveforms that you would expect to see for different power levels. You will need the following parts: a) 555 timer IC b) R1 = 10K variable resistor c) C1 = 10nF capacitor d) C2 = 1uF capacitor e) LED and 330Ω load resister 2. Connect the circuit shown in Figure #4 and add an LED and 330Ω resister to the output on Pins 7 and 8. Ask the instructor to check the circuit before you apply power! 6. Test the circuit while changing the variable resister: use both an oscilloscope and a volt meter to monitor the PWM output to the LED. 7. Use Graph #2 to sketch at least two duty cycles (slow and fast) and include the peak voltage level, proportional PWM output voltage and duty cycle. 8. Figure #6 shows a modified 555 circuit which will drive a bigger motor. This is being shown for information only and you are not asked to build it. Peak Voltage Table #3 Duty Cycle Calculated PWM Voltage Measured PWM Voltage (Volt Meter) Slow Calculated n/a Slow Measured Fast Calculated n/a Fast Measured Calculated n/a Measured Experiment #4 Arduino Pulse Width Modulation:

8 Community College of Allegheny County Unit 4 Page #8 1. The 555 timer works fine but it requires the assembly of discrete components on a printed circuit board. Using today s technology, engineers would more likely use a microcontroller to perform PWM. In this experiment, you will see how easy it is to use the Arduino to generate a PWM motor signal. You will need the following parts: a. Arduino Uno microcontroller, power supply, cable, and USB Hub. b. AdaFruit Motor Shield v2.3 c. Small 12Volt Dc motor 2. Connect the circuit shown in Figure #7 and #8. Ask the instructor to check the circuit before you apply power! 3. Start the Arduino software: a) Start the Arduino interface by clicking on the file named: DCMotorTest_CCAC.ino b) Specify the correct Arduino serial port from the menu bar: Tools Port COMx (Arduino/Genuine Uno c) Start the serial monitor from the menu bar: Tools Serial Monitor d) Upload the load cell software to the Arduino using the menu bar: Sketch Upload e) Observe that the Serial Monitor window is displaying the startup message. 4. In Mode 1, the motor will ramp up and down in forward then again in reverse. You may change the mode by reassigning the value of intselect_mode which is located near the top of the software file (and then uploading). The other options are shown in the code. 5. Test the circuit while using an oscilloscope and volt meter to monitor the PWM output to the motor. 6. In this experiment, you have seen that PMW can be implemented rather quickly in software with a microcontroller which is also likely to be doing other tasks as well. If you are interested in software and want to explore in more detail, the Arduino supports the use of the AnalogWrite() function to do PWM and is explained here: and Figure 1 The 555 Timer

9 Community College of Allegheny County Unit 4 Page #9 Figure Astable (Free-running) Timer

10 Community College of Allegheny County Unit 4 Page #10 Figure Monostable Timer +5V 1K ohm Figure Timer PWM LED Brightness K +5V LED C1 C2

11 Community College of Allegheny County Unit 4 Page #11 Figure 5 PWM Waveforms Figure Timer PWM Motor Control

12 Community College of Allegheny County Unit 4 Page #12 Figure 7 Arduino PWM Motor Control M1 Adafruit Motor Shield v2.3 M M1 Computer USB Arduino Uno External Power Supply Connect a DC motor to motor port 1 - it does not matter which wire goes into which terminal block as motors are bi-directional. Connect to the top two terminal ports, do not connect to the middle pin (GND) See the next photo for the red and blue wire example. Figure 8 Arduino Motor Shield Connections M1 Motor wires Monitor here for excessive heat.

13 Community College of Allegheny County Unit 4 Page #13 Figure #9 DCMotorTest_CCAC.ino - Arduino PWM Software #include <Mouse.h> /* This is a test sketch for the Adafruit assembled Motor Shield for Arduino v2 It won't work with v1.x motor shields! Only for the v2's with built in PWM control For use with the Adafruit Motor Shield v2 ----> Requires the Adafruit Motor Library to be installed: Adafruit_Motor_Shield_V2_Librarymaster BE CAREFUL OF THE MOTOR CURRENT!! 3.0A MAX BUT 2.0A REQUIRES A HEATSINK ON THE ARDUINO MAX MOTOR CURRENT SHOULD BE 1.2A PER MOTOR OR LESS!! SMALL MOTORS CAN PULL QUITE HIGH CURRENT LEVELS, ESPECIALLY AT STALL. */ */ #include <Wire.h> #include <Adafruit_MotorShield.h> #include "utility/adafruit_ms_pwmservodriver.h" // Create the motor shield object with the default I2C address Adafruit_MotorShield AFMS = Adafruit_MotorShield(); // Or, create it with a different I2C address (say for stacking) // Adafruit_MotorShield AFMS = Adafruit_MotorShield(0x61); // Select which 'port' M1, M2, M3 or M4. In this case, M1 Adafruit_DCMotor *mymotor = AFMS.getMotor(1); // You can also make another motor on port M2 //Adafruit_DCMotor *myothermotor = AFMS.getMotor(2); // Pick one of these to set the mode int iselect_mode = 1; // Varying forward and reverse // int iselect_mode = 2; // forward slow // int iselect_mode = 3; // forward fast // int iselect_mode = 4; // reverse slow // int iselect_mode = 5; // reverse fast void setup() { Serial.begin(9600); // set up Serial library at 9600 bps Serial.println("\nAdafruit Motorshield v2 - DC Motor Test - vjan_12_2017"); Serial.println("High motor current will burn out the Arduino, "); Serial.println("even for small motors or at stall conditions! \n"); AFMS.begin(); // create with the default frequency 1.6KHz //AFMS.begin(1000); // OR with a different frequency, say 1KHz // Set the speed to start, from 0 (off) to 255 (max speed) mymotor->setspeed(150); mymotor->run(forward); // turn on motor mymotor->run(release); void loop() { uint8_t i; delay(2000); switch (iselect_mode) {

14 Community College of Allegheny County Unit 4 Page #14 case 1: { Serial.print("Forward "); mymotor->run(forward); for (i = 0; i < 255; i++) { mymotor->setspeed(i); delay(10); for (i = 255; i!= 0; i--) { mymotor->setspeed(i); delay(10); Serial.print("Backward "); mymotor->run(backward); for (i = 0; i < 255; i++) { mymotor->setspeed(i); delay(10); for (i = 255; i!= 0; i--) { mymotor->setspeed(i); delay(10); Serial.print("Release "); mymotor->run(release); delay(1000); break; case 2: { Serial.print("Run Forward Slow \n"); mymotor->run(forward); mymotor->setspeed(50); delay(10000); Serial.print("Release \n"); mymotor->run(release); delay(5000); break; case 3: { Serial.print("Run Forward Fast \n"); mymotor->run(forward); mymotor->setspeed(100); delay(10000); Serial.print("Release \n");

15 Community College of Allegheny County Unit 4 Page #15 mymotor->run(release); delay(5000); break; case 4: { Serial.print("Run Reverse Slow \n"); mymotor->run(backward); mymotor->setspeed(100); delay(10000); Serial.print("Release \n"); mymotor->run(release); delay(5000); break; case 5: { Serial.print("Run Reverse Fast \n"); mymotor->run(backward); mymotor->setspeed(100); delay(10000); Serial.print("Release \n"); mymotor->run(release); delay(5000); break; default: { Serial.print("Invalid Mode Selected - Defaulting to Mode 1 \n\n"); iselect_mode = 1; break;

16 Community College of Allegheny County Unit 4 Page #16 Graph#1 Astable and Monostable Waveforms

17 Community College of Allegheny County Unit 4 Page #17 Graph#2 PWM Waveforms

18 Community College of Allegheny County Unit 4 Page #18 PRACTICE PROBLEMS: 1. Design a 555 mono-stable circuit which provides a 750mS pulse when the input is triggered by a SPST switch. 2. Design a 555 Astable circuit which provides an output signal of 500Hz. 3. Design a 555 Astable circuit which will provide a PWM output voltage of 3.0volts. The entire circuit should be powered by +5volt. Specify the time high, time low, and duty cycle for the output. 4. Research the internet for equations to calculate the Thigh and Tlow for an Astable timer. Apply the equations to Table #1 and compare the results to the measured values. 5. Modify Figure #3 to use the trigger switch configuration shown below. Explain why it will not work. +5V 1K ohm

Community College of Allegheny County Unit 7 Page #1. Analog to Digital

Community College of Allegheny County Unit 7 Page #1. Analog to Digital Community College of Allegheny County Unit 7 Page #1 Analog to Digital "Engineers can't focus just on technology; they need to develop their professional skills-things like presenting yourself, speaking

More information

t w = Continue to the next page, where you will draw a diagram of your design.

t w = Continue to the next page, where you will draw a diagram of your design. Name EET 1131 Lab #13 Multivibrators OBJECTIVES: 1. To design and test a monostable multivibrator (one-shot) using a 555 IC. 2. To analyze and test an astable multivibrator (oscillator) using a 555 IC.

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms.

To design/build monostable multivibrators using 555 IC and verify their operation using measurements by observing waveforms. AIM: SUBJECT: ANALOG ELECTRONICS (2130902) EXPERIMENT NO. 09 DATE : TITLE: TO DESIGN/BUILD MONOSTABLE MULTIVIBRATORS USING 555 IC AND VERIFY THEIR OPERATION USING MEASUREMENTS BY OBSERVING WAVEFORMS. DOC.

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment.

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment. Physics 222 Name: Exercise 6: Mr. Blinky This exercise is designed to help you wire a simple circuit based on the Arduino microprocessor, which is a particular brand of microprocessor that also includes

More information

FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Astable Learning Outcomes You should be able to: demonstrate knowledge and understanding of the

More information

Police Siren Circuit using NE555 Timer

Police Siren Circuit using NE555 Timer Police Siren Circuit using NE555 Timer Multivibrator: Multivibrator discover their own space in lots of applications as they are among the most broadly used circuits. The application can be anyone either

More information

OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

OBJECTIVE The purpose of this exercise is to design and build a pulse generator. ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

FACTFILE: GCSE Technology and Design

FACTFILE: GCSE Technology and Design FACTFILE: GCSE Technology and Design OPTION A: ELECTRONIC AND MICROELECTRONIC CONTROL SYSTEMS 2.14 Timers Monostable Learning Outcomes You should be able to: demonstrate knowledge and understanding of

More information

555 Timer and Its Application

555 Timer and Its Application ANALOG ELECTRONICS (AE) 555 Timer and Its Application 1 Prepared by: BE-EE Amish J. Tankariya SEMESTER-III SUBJECT- ANALOG ELECTRONICS (AE) GTU Subject Code :- 210902 2 OBJECTIVES 555 timer; What is the

More information

Class #6: Experiment The 555-Timer & Pulse Width Modulation

Class #6: Experiment The 555-Timer & Pulse Width Modulation Class #6: Experiment The 555-Timer & Pulse Width Modulation Purpose: In this experiment we look at the 555-timer, a device that uses digital devices and other electronic switching elements to generate

More information

Lab 2 Revisited Exercise

Lab 2 Revisited Exercise Lab 2 Revisited Exercise +15V 100k 1K 2N2222 Wire up led display Note the ground leads LED orientation 6.091 IAP 2008 Lecture 3 1 Comparator, Oscillator +5 +15 1k 2 V- 7 6 Vin 3 V+ 4 V o Notice that power

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

PreLab 6 PWM Design for H-bridge Driver (due Oct 23)

PreLab 6 PWM Design for H-bridge Driver (due Oct 23) GOAL PreLab 6 PWM Design for H-bridge Driver (due Oct 23) The overall goal of Lab6 is to demonstrate a DC motor controller that can adjust speed and direction. You will design the PWM waveform and digital

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Pulse Width Modulation and

Pulse Width Modulation and Pulse Width Modulation and analogwrite ( ); 28 Materials needed to wire one LED. Odyssey Board 1 dowel Socket block Wire clip (optional) 1 Female to Female (F/F) wire 1 F/F resistor wire LED Note: The

More information

Written by Hans Summers Wednesday, 15 November :53 - Last Updated Wednesday, 15 November :07

Written by Hans Summers Wednesday, 15 November :53 - Last Updated Wednesday, 15 November :07 This is a phantastron divider based on the HP522 frequency counter circuit diagram. The input is a 2100Hz 15V peak-peak signal from my 2.1kHz oscillator project. Please take a look at the crystal oscillator

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

CHAPTER 4: 555 TIMER. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 4: 555 TIMER. Dr. Wan Mahani Hafizah binti Wan Mahmud CHAPTE 4: 555 TIME Dr. Wan Mahani Hafizah binti Wan Mahmud 555 TIME Introduction Pin configuration Basic architecture and operation Astable Operation Monostable Operation Timer in Triggering Circuits 555

More information

The Motor sketch. One Direction ON-OFF DC Motor

The Motor sketch. One Direction ON-OFF DC Motor One Direction ON-OFF DC Motor The DC motor in your Arduino kit is the most basic of electric motors and is used in all types of hobby electronics. When current is passed through, it spins continuously

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 4 TITLE : 555 TIMERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

More information

Application Note AN 102: Arduino I2C Interface to K 30 Sensor

Application Note AN 102: Arduino I2C Interface to K 30 Sensor Application Note AN 102: Arduino I2C Interface to K 30 Sensor Introduction The Arduino UNO, MEGA 1280 or MEGA 2560 are ideal microcontrollers for operating SenseAir s K 30 CO2 sensor. The connection to

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

More information

Experiment EB2: IC Multivibrator Circuits

Experiment EB2: IC Multivibrator Circuits EEE1026 Electronics II: Experiment Instruction Learning Outcomes Experiment EB2: IC Multivibrator Circuits LO1: Explain the principles and operation of amplifiers and switching circuits LO2: Analyze high

More information

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS OBJECTIVES In this experiment you will Explore the use of a popular IC chip and its applications. Become more

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

PWM CONTROL USING ARDUINO. Learn to Control DC Motor Speed and LED Brightness

PWM CONTROL USING ARDUINO. Learn to Control DC Motor Speed and LED Brightness PWM CONTROL USING ARDUINO Learn to Control DC Motor Speed and LED Brightness In this article we explain how to do PWM (Pulse Width Modulation) control using arduino. If you are new to electronics, we have

More information

Coding with Arduino to operate the prosthetic arm

Coding with Arduino to operate the prosthetic arm Setup Board Install FTDI Drivers This is so that your RedBoard will be able to communicate with your computer. If you have Windows 8 or above you might already have the drivers. 1. Download the FTDI driver

More information

PreLab 7: LED Blinker (Due Oct 30)

PreLab 7: LED Blinker (Due Oct 30) GOAL PreLab 7: LED Blinker (Due Oct 30) The overall goal of Lab 7 is to demonstrate a two-led blinker with adjustable frequency. This is a two-week lab. The first week involves designing and testing a

More information

SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT

SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT Course ENGT 3260 Microcontrollers Summer III 2015 Instructor: Dr. Maged Mikhail Project Report Submitted By: Nicole Kirch 7/10/2015

More information

PRESENTATION ON 555 TIMER A Practical Approach

PRESENTATION ON 555 TIMER A Practical Approach PRESENTATION ON 555 TIMER A Practical Approach By Nagaraj Vannal Assistant Professor School of Electronics Engineering, K.L.E Technological University, Hubballi-31 nagaraj_vannal@bvb.edu 555 Timer The

More information

Tektronix Courseware. Academic Labs. Sample Labs from Popular Electrical and Electronics Engineering Curriculum

Tektronix Courseware. Academic Labs. Sample Labs from Popular Electrical and Electronics Engineering Curriculum Tektronix Courseware Academic Labs Sample Labs from Popular Electrical and Electronics Engineering Curriculum March 3, 2014 HalfWaveRectifier -- Overview OBJECTIVES After performing this lab exercise,

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

Draw in the space below a possible arrangement for the resistor and capacitor. encapsulated components

Draw in the space below a possible arrangement for the resistor and capacitor. encapsulated components 1). An encapsulated component is known to consist of a resistor and a capacitor. It has two input terminals and two output terminals. A 5V, 1kHz square wave signal is connected to the input terminals and

More information

LM555 and LM556 Timer Circuits

LM555 and LM556 Timer Circuits LM555 and LM556 Timer Circuits LM555 TIMER INTERNAL CIRCUIT BLOCK DIAGRAM "RESET" And "CONTROL" Input Terminal Notes Most of the circuits at this web site that use the LM555 and LM556 timer chips do not

More information

PHYS225 Lecture 18. Electronic Circuits

PHYS225 Lecture 18. Electronic Circuits PHYS225 Lecture 18 Electronic Circuits Oscillators and Timers Oscillators & Timers Produce timing signals to initiate measurement Periodic or single pulse Periodic output at known (controlled) frequency

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Multivibrators (Astable and Monostable) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS

EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS EG572EX: ELECTRONIC CIRCUITS I 555 TIMERS Prepared By: Ajay Kumar Kadel, Kathmandu Engineering College 1) PIN DESCRIPTIONS Fig.1 555 timer Pin Configurations Pin 1 (Ground):- All voltages are measured

More information

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Subject Code: 1620408 Experiment-1 Aim: To obtain the characteristics of field effect transistor (FET). Theory: The Field Effect

More information

Laboratory Final Design Project. PWM DC Motor Speed Control

Laboratory Final Design Project. PWM DC Motor Speed Control Laboratory Final Design Project PWM DC Motor Speed Control Bowen Wang, Siyang Xia, Renhao Xie, E E 331 Lab, Winter 2013 TABLE OF CONTENTS Purpose of project, features, ratings.

More information

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

ZSCT1555 PRECISION SINGLE CELL TIMER ISSUE 2 - MAY 1998 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM

ZSCT1555 PRECISION SINGLE CELL TIMER ISSUE 2 - MAY 1998 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM PRECISION SINGLE CELL TIMER ZSCT555 ISSUE 2 - MAY 998 DEVICE DESCRIPTION These devices are precision timing circuits for generation of accurate time delays or oscillation. Advanced circuit design means

More information

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O)

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) PH-315 Portland State University MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) ABSTRACT A microcontroller is an integrated circuit containing a processor and programmable read-only memory, 1 which is

More information

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O)

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) PH-315 Portland State University MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) ABSTRACT A microcontroller is an integrated circuit containing a processor and programmable read-only memory, 1 which is

More information

Touchless Control: Hand Motion Triggered Light Timer

Touchless Control: Hand Motion Triggered Light Timer Touchless Control: Hand Motion Triggered Light Timer 6.101 Final Project Report Justin Graves Spring 2018 1 Introduction Often times when you enter a new room you are troubled with finding the light switch

More information

Getting to know the 555

Getting to know the 555 Getting to know the 555 Created by Dave Astels Last updated on 2018-04-10 09:32:58 PM UTC Guide Contents Guide Contents Overview Background Voltage dividers RC Circuits The basics RS FlipFlop Transistor

More information

Monitoring Temperature using LM35 and Arduino UNO

Monitoring Temperature using LM35 and Arduino UNO Sharif University of Technology Microprocessor Arduino UNO Project Monitoring Temperature using LM35 and Arduino UNO Authors: Sadegh Saberian 92106226 Armin Vakil 92110419 Ainaz Hajimoradlou 92106142 Supervisor:

More information

Lab 12: Timing sequencer (Version 1.3)

Lab 12: Timing sequencer (Version 1.3) Lab 12: Timing sequencer (Version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

Electronic Instrumentation

Electronic Instrumentation 5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

More information

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Exercise 5-1: Familiarization with Lab Box Contents Objective: To review the items required for working

More information

Ocean Controls KT-5198 Dual Bidirectional DC Motor Speed Controller

Ocean Controls KT-5198 Dual Bidirectional DC Motor Speed Controller Ocean Controls KT-5198 Dual Bidirectional DC Motor Speed Controller Microcontroller Based Controls 2 DC Motors 0-5V Analog, 1-2mS pulse or Serial Inputs for Motor Speed 10KHz, 1.25KHz or 156Hz selectable

More information

Adafruit 16-Channel Servo Driver with Arduino

Adafruit 16-Channel Servo Driver with Arduino Adafruit 16-Channel Servo Driver with Arduino Created by Bill Earl Last updated on 2015-09-29 06:19:37 PM EDT Guide Contents Guide Contents Overview Assembly Install the Servo Headers Solder all pins Add

More information

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1 HAW-Arduino Sensors and Arduino 14.10.2010 F. Schubert HAW - Arduino 1 Content of the USB-Stick PDF-File of this script Arduino-software Source-codes Helpful links 14.10.2010 HAW - Arduino 2 Report for

More information

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Task: -Construct successively all schematic diagrams and describe your findings. -Describe also the differences between the previous electrical diagram. Construct this electrical circuit and describe

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

Arduino Lesson 1. Blink. Created by Simon Monk

Arduino Lesson 1. Blink. Created by Simon Monk Arduino Lesson 1. Blink Created by Simon Monk Guide Contents Guide Contents Overview Parts Part Qty The 'L' LED Loading the 'Blink' Example Saving a Copy of 'Blink' Uploading Blink to the Board How 'Blink'

More information

ELEC2 (JUN15ELEC201) General Certificate of Education Advanced Subsidiary Examination June Further Electronics TOTAL. Time allowed 1 hour

ELEC2 (JUN15ELEC201) General Certificate of Education Advanced Subsidiary Examination June Further Electronics TOTAL. Time allowed 1 hour Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Electronics General Certificate of Education Advanced Subsidiary Examination

More information

INTRODUCTION to MICRO-CONTROLLERS

INTRODUCTION to MICRO-CONTROLLERS PH-315 Portland State University INTRODUCTION to MICRO-CONTROLLERS Bret Comnes, Dan Lankow, and Andres La Rosa 1. ABSTRACT A microcontroller is an integrated circuit containing a processor and programmable

More information

Community College of Allegheny County Unit 8 Page #1. Op-Amps

Community College of Allegheny County Unit 8 Page #1. Op-Amps Community College of Allegheny County Unit 8 Page #1 Op-s "You will say that I am always conjuring up awful difficulties & consequences my answer to this is it is an important part of the duty of an engineer"

More information

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC ENGR 210 Lab 8 RC Oscillators and Measurements Purpose: In the previous lab you measured the exponential response of RC circuits. Typically, the exponential time response of a circuit becomes important

More information

OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES

OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES Community College of Allegheny County Unit 1 Page 1 OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES The Overweight Sub That Cost Billions: After Spain invested $2.7 billion in a program for diesel-electric

More information

User Guide for the e NABLE Hand Test Rig

User Guide for the e NABLE Hand Test Rig User Guide for the e NABLE Hand Test Rig by Shannon Barry, Samantha Mason, Tia Parks, Charles Rumfola, and David Schwartz Table of Contents Notes 2 Materials Needed 2 Option #1: Preparing the 80/20 3 Option

More information

transformer rectifiers

transformer rectifiers Power supply mini-project This week, we finish up 201 lab with a short mini-project. We will build a bipolar power supply and use it to power a simple amplifier circuit. 1. power supply block diagram Figure

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Lesson 3: Arduino. Goals

Lesson 3: Arduino. Goals Introduction: This project introduces you to the wonderful world of Arduino and how to program physical devices. In this lesson you will learn how to write code and make an LED flash. Goals 1 - Get to

More information

ARDUINO / GENUINO. start as professional

ARDUINO / GENUINO. start as professional ARDUINO / GENUINO start as professional . ARDUINO / GENUINO start as professional short course in a book MOHAMMED HAYYAN ALSIBAI SULASTRI ABDUL MANAP Publisher Universiti Malaysia Pahang Kuantan 2017 Copyright

More information

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load.

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load. Lab Experiments L Power diode V g C Power MOSFET Load Boost converter (Experiment 2) V ref PWM chip UC3525A Gate driver TSC427 Control circuit (Experiment 1) Adjust duty cycle D The UC3525 PWM Control

More information

T6+ Analog I/O Section. Installation booklet for part numbers: 5/4-80A-115 5/4-90A-115 5/4-80A /4-90A-1224

T6+ Analog I/O Section. Installation booklet for part numbers: 5/4-80A-115 5/4-90A-115 5/4-80A /4-90A-1224 T and T+ are trade names of Trol Systems Inc. TSI reserves the right to make changes to the information contained in this manual without notice. publication /4A115MAN- rev:1 2001 TSI All rights reserved

More information

Welcome to Arduino Day 2016

Welcome to Arduino Day 2016 Welcome to Arduino Day 2016 An Intro to Arduino From Zero to Hero in an Hour! Paul Court (aka @Courty) Welcome to the SLMS Arduino Day 2016 Arduino / Genuino?! What?? Part 1 Intro Quick Look at the Uno

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING Aim: 1. LINEAR WAVE SHAPING i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

Rodni What will yours be?

Rodni What will yours be? Rodni What will yours be? version 4 Welcome to Rodni, a modular animatronic animal of your own creation for learning how easy it is to enter the world of software programming and micro controllers. During

More information

02 Digital Input and Output

02 Digital Input and Output week 02 Digital Input and Output RGB LEDs fade with PWM 1 Microcontrollers utput ransducers actuators (e.g., motors, buzzers) Arduino nput ransducers sensors (e.g., switches, levers, sliders, etc.) Illustration

More information

System Board 6219 MAXREFDES89#: MAX14871 Full-Bridge DC Motor Driver MBED Shield

System Board 6219 MAXREFDES89#: MAX14871 Full-Bridge DC Motor Driver MBED Shield System Board 6219 MAXREFDES89#: MAX14871 Full-Bridge DC Motor Driver MBED Shield Introduction Brushed DC motors provide cost-effective, convenient motion in many applications ranging from electric toothbrushes

More information

J. La Favre Using Arduino with Raspberry Pi February 7, 2018

J. La Favre Using Arduino with Raspberry Pi February 7, 2018 As you have already discovered, the Raspberry Pi is a very capable digital device. Nevertheless, it does have some weaknesses. For example, it does not produce a clean pulse width modulation output (unless

More information

Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013

Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013 Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the

More information

AN2129 APPLICATION NOTE

AN2129 APPLICATION NOTE Introduction AN229 APPLICATION NOTE Thanks to the high efficiency and reliability, super high brightness LEDs are becoming more and more important when compared to conventional light sources. Although

More information

40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR

40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR 40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR The BIDIR-340-DR is a fully solid-state motor controller that allows you to control the speed and direction of a

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 7: IR SENSORS AND DISTANCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TRIGGER AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

Attribution Thank you to Arduino and SparkFun for open source access to reference materials.

Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Contents Parts Reference... 1 Installing Arduino... 7 Unit 1: LEDs, Resistors, & Buttons... 7 1.1 Blink (Hello

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE 9S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE In this sequence of three labs you will learn to use the 9S12 S hardware sybsystem. WEEK 1 PULSE WIDTH MODULATION

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction The primary goal of the one-unit EE110 course is to serve as a small window to allow the freshman

More information

Embedded Hardware Design Lab4

Embedded Hardware Design Lab4 Embedded Hardware Design Lab4 Objective: Controlling the speed of dc motor using light sensor (LDR). In this lab, we would want to control the speed of a DC motor with the help of light sensor. This would

More information

MODULE TITLE : OPERATIONAL AMPLIFIERS TOPIC TITLE : OSCILLATORS LESSON 2 : RELAXATION OSCILLATORS

MODULE TITLE : OPERATIONAL AMPLIFIERS TOPIC TITLE : OSCILLATORS LESSON 2 : RELAXATION OSCILLATORS MODULE ILE : OPEAIONAL AMPLIFIES OPIC ILE : OSCILLAOS LESSON : ELAXAION OSCILLAOS OA - - eesside University INODUCION he '555' timer is a very popular and 'user friendly' I.C. used to produce 'single shot'

More information

Comparators, positive feedback, and relaxation oscillators

Comparators, positive feedback, and relaxation oscillators Experiment 4 Introductory Electronics Laboratory Comparators, positive feedback, and relaxation oscillators THE SCHMITT TIGGE AND POSITIVE FEEDBACK 4-2 The op-amp as a comparator... 4-2 Using positive

More information

Appendix D2 Experiment EB2: IC Multivibrator Circuits. Lab Report (Submit your report on the same day immediately after the experiment)

Appendix D2 Experiment EB2: IC Multivibrator Circuits. Lab Report (Submit your report on the same day immediately after the experiment) EEE1026 Electronics II Appendix D2 : IC Multivibrator Circuits Lab Report (Submit your report on the same day immediately after the experiment) Name: Student I.D.: Date: Majoring: Group: Table No.: 4.

More information

MD04-24Volt 20Amp H Bridge Motor Drive

MD04-24Volt 20Amp H Bridge Motor Drive MD04-24Volt 20Amp H Bridge Motor Drive Overview The MD04 is a medium power motor driver, designed to supply power beyond that of any of the low power single chip H-Bridges that exist. Main features are

More information

Touch Potentiometer Hookup Guide

Touch Potentiometer Hookup Guide Page 1 of 14 Touch Potentiometer Hookup Guide Introduction The Touch Potentiometer, or Touch Pot for short, is an intelligent, linear capacitive touch sensor that implements potentiometer functionality

More information

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink By the end of this session: You will know how to use an Arduino

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information