Community College of Allegheny County Unit 7 Page #1. Analog to Digital

Size: px
Start display at page:

Download "Community College of Allegheny County Unit 7 Page #1. Analog to Digital"

Transcription

1 Community College of Allegheny County Unit 7 Page #1 Analog to Digital "Engineers can't focus just on technology; they need to develop their professional skills-things like presenting yourself, speaking in front of a large group and working within a technology team." Laura Harmon, recent grad & system engineer at Lockhead Martin (eetimes 8/14/99) Revised: Dan Wolf, 4/17/2018

2 Community College of Allegheny County Unit 7 Page #2 OBJECTIVES: Understanding of A/D Resolution, offset and slope. Experience and understanding of the AD590 temperature sensor. Use of the Arduino analog inputs. DELIVERABLES THAT YOU MUST SUBMIT 1. Experiment #1 Graph and Table #1 2. Experiment #2 Graph and Table #2 3. Practice Problems On-Line Reading Material: Required: a) b) Explanation for three types of ADC: Optional: a) Everything you wanted to know about A-D Convertors: b) c) 13/practical-considerations-adc-circuits/ INTRODUCTION TO THE ARDUINO ANALOG TO DIGITAL CONVERTOR: The Arduino has six different Analog Inputs, numbered A0 to A5. Each has a 10-bit converter with a +5V reference voltage so the resolution is: Volt Resolution = 5Volt or Volt 2 10 Resolution = 5Volt = 4.88mV 1023 This means that an analog voltage between 0 and +5V will be measured in 1023 steps of 4.88mV. It takes about 100mS ( second) to read an analog input, so the maximum sample rate is about 10K times per second.

3 Community College of Allegheny County Unit 7 Page #3 INTRODUCTION TO THE AD590 TEMPERATURE SENSOR: The AD590 is a 2-terminal integrated circuit temperature transducer that produces an output current proportional to absolute temperature. For supply voltages between 4 V and 30 V, the device acts as a high impedance, constant current regulator passing 1μA per degree K. In order to convert the (1μA per degree K) constant current to a voltage for the ADC, we will add a 1K resister as follows: +5V 1uA / degk AD590 Temperature sensor 1mV / degk 1K ohm 77degF = 25degC = 298uA 70degF = 21degC = uA è 1K ohm load 70degF = 21degC = mV Outputs 1mV per C At 25 C (298 K or 77 F), the AD590 sensor will output 298uA though the 1K resister. According to ohm s law, 298uA though a 1K ohm resister provides a voltage of: Voltage = I R = ohms = 0.298V = 298mV And each additional K increase or decrease will result in a corresponding 1uA change in output current from the AD590 producing a corresponding 1mV change in voltage. Note that a single degree Kelvin is equal in magnitude to a degree Celsius so we can also say for each degree Celsius we will see a 1mV change in output voltage. Figure #3 shows some key values of temperature, voltage and current for this circuit. EQUIPMENT REQUIRED: 1. Arduino Uno, power supply, cable, and USB Hub KΩ, 10-turn potentiometer 3. +5V Power supply 4. AD590 Temperature Sensor Ω resister

4 Community College of Allegheny County Unit 7 Page #4 Experiment #1 A/D Verification: 1. Figure #1 shows an Arduino microcontroller connected to a 10Kohm, 10-turn potentiometer. This will allow us to vary the Arduino analog input voltage from zero to 10 Volts while monitoring the conversion process on the computer monitor. 2. Using your class notes, design the interfaces between the different components and create a detailed (and neat) schematic which includes everything needed to build the circuit. 3. Construct the circuit and attach a voltmeter or Oscilloscope to monitor the analog input voltage. Use a fixed +5V power supply and set the potentiometer to a midpoint. When complete, ask the instructor to review your schematic before applying power. 4. See Figure #4. Upload the Arduino with the program named: AnalogInput_CCAC.ino 5. Start the Arduino Serial Monitor: Tools Serial Monitor so that you can monitor the output of the Arduino A/D conversion. Note: Make sure that you do not apply more than 5.0V to the Analog input of the Arduino. An excess voltage will damage the Arduino. 6. Apply power and test the circuit. Set the potentiometer so that the analog input is just about 4.88mV. The Serial Monitor should indicate a RAW A/D count of 1 and a voltage level of 4.88mV. If necessary, adjust the potentiometer so that the Serial Monitor shows a RAW A/D value of 1 and an output voltage of 4.88mV (Vin may not equal Voutput). Record the data on Table #1. 7. Complete the rest of Table #1. Pick your own values for the rows with blank RAW A/D cells. After each voltage change, observe how constant the output voltage is. Does it drift? Why? When you are done, use Excel to graph the data with the RAW A/D value on the X-axis and the input voltage on the Y-axis. Compute and record the slope of this data (Y=MX+B) on the back of the graph.

5 Community College of Allegheny County Unit 7 Page #5 8. On the same graph, plot the line for the perfect A/D conversion where: X = RAW A/D Value = 1 and Y = 4.88mV X = RAW A/D Value = 1023 and Y = Volts Compute and record the slope of this data (Y=MX+B) on the back of the graph. The offset and slope of these two plots may not be equal. What does this mean? 9. If you were reading a wheatstone bridge/strain gauge, how would the Arduino offset and slope error affect the strain gauge measurements? 10. Submit your graph and Table #1 as your documentation for this experiment. Voltmeter / Oscilloscope Input Voltage Vin Table #1 Serial Monitor RAW A/D Value Output in mv Voutput (Offset Error) Voltage Difference Vin Voutput

6 Community College of Allegheny County Unit 7 Page #6 Experiment #2 Temperature Measurement: 1. Figure #2 uses an AD590 temperature sensor as the input to the Arduino. The AD590 generates 298uA through the 1K resister at 25 C (77 F) resulting in 298mV applied to the Arduino input. Every C above or below will result in a 1mV increase or decrease in voltage. Figure #3 shows a group of useful values. 2. Based on the 1K ohm resister value, the equation to convert the AD590 output (in mv) to degrees F is: Y = MX + B degf = 1.8 mv Modify the circuit to include the AD590 as per Figure #2 and ask the instructor to review it before you apply power. 4. Test with a couple of different temperatures and record the results in Table #2. Plot them on an Excel graph and see how close them are to the equation provided above. Remember that you may have experienced an A/D converter offset in the experiment above and the offset may still exist. Voltmeter / Oscilloscope Input Voltage Vin Serial Monitor RAW A/D Value Table #2 Output in mv Voutput Actual Temperature F Computed Temperature TF = 1.8 * Voutput

7 Community College of Allegheny County Unit 7 Page #7 Optional Experiment #1: 1. Remove the wire to the Arduino analog input so the input is left floating. Observe the values on the Serial Monitor. What is happening? Optional Experiment #2: 1. The equation for the AD590 output-to- F calculation is given above, including the values for the slope and offset (M and B). Calculate the values for the slope and offset and show all of your calculations. You may find that building a voltage ( K versus F versus C versus mv) table first in MS- Excel might clarify the concepts and calculations. Note that the AD590 data sheet specifies that it outputs 1uA per K so you have to switch the units to C and F in order to explain the full equation.

8 Community College of Allegheny County Unit 7 Page #8 Figure #1 Arduino Analog-to-Digital +5V Arduino MicroController 10K 10-turn Potentiometer Analog In A0 Gnd USB Laptop

9 Community College of Allegheny County Unit 7 Page #9 Figure #2 AD590 Temperature Sensor +5V AD590 Temperature sensor Arduino MicroController Analog In A0 1K ohm 77degF = 25degC = 298uA 70degF = 21degC = uA è 1K ohm load 70degF = 21degC = mV Outputs 1mV per C Gnd USB Laptop AD590

10 Community College of Allegheny County Unit 7 Page #10 AD590 Output Current in Amps AD590 mv output with 1K ohm Resister Figure #3 AD590 Temperature Table Degree Celsius Degree Fahrenheit Degree Kelvin Calculated F = 1.8(mV)

11 Community College of Allegheny County Unit 7 Page #11 Figure #4 AnalogInput_CCAC.ino - Arduino Software /* Analog Input - Demonstrates analog input by reading an analog value on analog pin 0 The circuit: Potentiometer attached to analog input 0 center pin of the potentiometer to the analog pin one side pin (either one) to ground the other side pin to +5V Created by Dan Wolf, Updated on 3/23/2017 */ const int OUTPUT_PIN_LOW = 4; //this output will go high when the voltage exceeds the lower threshold const int OUTPUT_PIN_HIGH = 5; //this output will go high when the voltage exceeds the upper threshold const float OUTPUT_PIN_LOW_THRESHOLD = 1.0; //this is the low threshold in volts const float OUTPUT_PIN_HIGH_THRESHOLD = 3.0; //this is the high threshold in volts int sensorpin = A0; // select the input pin for the potentiometer int sensorvalue = 0; // variable to store the value coming from the sensor const byte numchar_in_load = 10; char AD_Reading_Str[numChar_in_Load]; char AD_Voltage_Str[numChar_in_Load]; float fad_voltage; void setup() { Serial.begin(9600); // set up Serial library at 9600 bps Serial.println("\n Arduino Analog-to_Digital - vmarch_23_2017"); Serial.println("Uses analog input A0 \n"); pinmode(output_pin_low, OUTPUT); //LED for low status pinmode(output_pin_high, OUTPUT); //LED for high status } void loop() { // read the value from the sensor: sensorvalue = analogread(sensorpin); fad_voltage = sensorvalue * ; //convert to voltage (5V / 1023 = ) dtostrf(sensorvalue, 5, 0, AD_Reading_Str); // convert the float value to a string value dtostrf(fad_voltage, 7, 5, AD_Voltage_Str); // convert the float value to a string value Serial.print("Raw A-D Value: "); Serial.print(AD_Reading_Str); // display the RAW A-D Value Serial.print(" ");

12 Community College of Allegheny County Unit 7 Page #12 Serial.print("A-D Voltage: "); Serial.print(AD_Voltage_Str); // display the analog input voltage Serial.print(" Volts \n"); if (fad_voltage > OUTPUT_PIN_LOW_THRESHOLD) { digitalwrite(output_pin_low, HIGH); //indicate voltage is higher then the low limit } else { digitalwrite(output_pin_low, LOW); //indicate voltage is lower then the low limit } if (fad_voltage > OUTPUT_PIN_HIGH_THRESHOLD) { digitalwrite(output_pin_high, HIGH); //indicate voltage is higher then the high limit } else { digitalwrite(output_pin_high, LOW); //indicate voltage is lower then the high limit } } delay(2000);

13 Community College of Allegheny County Unit 7 Page #13 PRACTICE PROBLEMS: 1. You are working with a 0 to +10volt, 14-bit ADC. a. What is the smallest voltage that it will be able to measure? b. What will be the RAW A-D output value when a 15mV signal is applied to the input? 2. Refer to the Linear Technology LTC1604 ADC Converter datasheet that is on the course website and answer the following questions: a. How many bits is this converter? b. What is its input voltage range? c. How many samples per second can it accept? 3. We have an RPM sensor that must be connected to the Arduino 10-bit ADC. The RPM sensor has a range of 0 to 8K RPM via a voltage range of 0 to +5volts. a. What is the expected input voltage to the ADC at 3K RPM? b. What is the RPM resolution for this application?

INA169 Breakout Board Hookup Guide

INA169 Breakout Board Hookup Guide Page 1 of 10 INA169 Breakout Board Hookup Guide CONTRIBUTORS: SHAWNHYMEL Introduction Have a project where you want to measure the current draw? Need to carefully monitor low current through an LED? The

More information

Community College of Allegheny County Unit 4 Page #1. Timers and PWM Motor Control

Community College of Allegheny County Unit 4 Page #1. Timers and PWM Motor Control Community College of Allegheny County Unit 4 Page #1 Timers and PWM Motor Control Revised: Dan Wolf, 3/1/2018 Community College of Allegheny County Unit 4 Page #2 OBJECTIVES: Timers: Astable and Mono-Stable

More information

Community College of Allegheny County Unit 8 Page #1. Op-Amps

Community College of Allegheny County Unit 8 Page #1. Op-Amps Community College of Allegheny County Unit 8 Page #1 Op-s "You will say that I am always conjuring up awful difficulties & consequences my answer to this is it is an important part of the duty of an engineer"

More information

SEN Description. Features. MG-811 Specifications

SEN Description. Features. MG-811 Specifications Description SEN-000007 MG-811 CO2 Sensor Module This sensor module has an MG-811 onboard as the sensor component. There is an onboard signal conditioning circuit for amplifying output signal and an onboard

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 7: IR SENSORS AND DISTANCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce

More information

1 PART A : MAKING THE DIGITAL THERMOMETER 1. There are three parts to this exercise, which takes two 3-hour laboratory sessions.

1 PART A : MAKING THE DIGITAL THERMOMETER 1. There are three parts to this exercise, which takes two 3-hour laboratory sessions. 1 PART A : MAKING THE DIGITAL THERMOMETER 1 October 24, 2016 Digital Thermometry Experiment designed by Peter Crew, Navot Arad and Dr Alston J. Misquitta There are three parts to this exercise, which takes

More information

TWEAK THE ARDUINO LOGO

TWEAK THE ARDUINO LOGO TWEAK THE ARDUINO LOGO Using serial communication, you'll use your Arduino to control a program on your computer Discover : serial communication with a computer program, Processing Time : 45 minutes Level

More information

OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES

OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES Community College of Allegheny County Unit 1 Page 1 OSCILLOSCOPES, MULTIMETERS, & STRAIN GAGES The Overweight Sub That Cost Billions: After Spain invested $2.7 billion in a program for diesel-electric

More information

Arduino: Sensors for Fun and Non Profit

Arduino: Sensors for Fun and Non Profit Arduino: Sensors for Fun and Non Profit Slides and Programs: http://pamplin.com/dms/ Nicholas Webb DMS: @NickWebb 1 Arduino: Sensors for Fun and Non Profit Slides and Programs: http://pamplin.com/dms/

More information

Arduino Sensor Beginners Guide

Arduino Sensor Beginners Guide Arduino Sensor Beginners Guide So you want to learn arduino. Good for you. Arduino is an easy to use, cheap, versatile and powerful tool that can be used to make some very effective sensors. This guide

More information

.:Twisting:..:Potentiometers:.

.:Twisting:..:Potentiometers:. CIRC-08.:Twisting:..:Potentiometers:. WHAT WE RE DOING: Along with the digital pins, the also has 6 pins which can be used for analog input. These inputs take a voltage (from 0 to 5 volts) and convert

More information

You'll create a lamp that turns a light on and off when you touch a piece of conductive material

You'll create a lamp that turns a light on and off when you touch a piece of conductive material TOUCHY-FEELY LAMP You'll create a lamp that turns a light on and off when you touch a piece of conductive material Discover : installing third party libraries, creating a touch sensor Time : 5 minutes

More information

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment.

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment. Physics 222 Name: Exercise 6: Mr. Blinky This exercise is designed to help you wire a simple circuit based on the Arduino microprocessor, which is a particular brand of microprocessor that also includes

More information

EM Arduino 4-20mA Shield Documentation. Version 1.5.0

EM Arduino 4-20mA Shield Documentation. Version 1.5.0 EM Arduino 4-20mA Shield Documentation Version 1.5.0 Erdos Miller October 22, 2014 1 Contents 1 Power... 3 2 Connecting Sensors... 3 3 Scaling ADC Readings to Current in ma... 4 4 Using with a 3.3V Arduino...

More information

Disclaimer. Arduino Hands-On 2 CS5968 / ART4455 9/1/10. ! Many of these slides are mine. ! But, some are stolen from various places on the web

Disclaimer. Arduino Hands-On 2 CS5968 / ART4455 9/1/10. ! Many of these slides are mine. ! But, some are stolen from various places on the web Arduino Hands-On 2 CS5968 / ART4455 Disclaimer! Many of these slides are mine! But, some are stolen from various places on the web! todbot.com Bionic Arduino and Spooky Arduino class notes from Tod E.Kurt!

More information

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

LABORATORY 5 v3 OPERATIONAL AMPLIFIER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

More information

Lab assignment: Strain gauge

Lab assignment: Strain gauge Lab assignment: Strain gauge In this lab, you will make measurements of mechanical strain in small aluminum beams as you bend them. We will also work with our first integrated circuit component on the

More information

ESC 100: Exploring Engineering. Fall Lab 2: Calibrating An Infrared Distance Sensor

ESC 100: Exploring Engineering. Fall Lab 2: Calibrating An Infrared Distance Sensor ESC 100: Exploring Engineering Fall 2013 Lab 2: Calibrating An Infrared Distance Sensor Name Date Section/Professor Please indicate with whom you worked with on this Lab Exercise (if applicable): I affirm

More information

Experiment P-10 Ohm's Law

Experiment P-10 Ohm's Law 1 Experiment P-10 Ohm's Law Objectives To study the relationship between the voltage applied to a given resistor and the intensity of the current running through it. Modules and Sensors PC + NeuLog application

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

Lesson 3: Arduino. Goals

Lesson 3: Arduino. Goals Introduction: This project introduces you to the wonderful world of Arduino and how to program physical devices. In this lesson you will learn how to write code and make an LED flash. Goals 1 - Get to

More information

Arduino Digital Out_QUICK RECAP

Arduino Digital Out_QUICK RECAP Arduino Digital Out_QUICK RECAP BLINK File> Examples>Digital>Blink int ledpin = 13; // LED connected to digital pin 13 // The setup() method runs once, when the sketch starts void setup() // initialize

More information

ANALOG TO DIGITAL CONVERTER ANALOG INPUT

ANALOG TO DIGITAL CONVERTER ANALOG INPUT ANALOG INPUT Analog input involves sensing an electrical signal from some source external to the computer. This signal is generated as a result of some changing physical phenomenon such as air pressure,

More information

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice ECEL 301 ECE Laboratory I Dr. A. Fontecchio Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice Goal Characterize critical parameters of the inverting or non-inverting opampbased amplifiers.

More information

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1 HAW-Arduino Sensors and Arduino 14.10.2010 F. Schubert HAW - Arduino 1 Content of the USB-Stick PDF-File of this script Arduino-software Source-codes Helpful links 14.10.2010 HAW - Arduino 2 Report for

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

Building a Microcontroller based potentiostat: A Inexpensive and. versatile platform for teaching electrochemistry and instrumentation.

Building a Microcontroller based potentiostat: A Inexpensive and. versatile platform for teaching electrochemistry and instrumentation. Supporting Information for Building a Microcontroller based potentiostat: A Inexpensive and versatile platform for teaching electrochemistry and instrumentation. Gabriel N. Meloni* Instituto de Química

More information

Part 1: DC Concepts and Measurement

Part 1: DC Concepts and Measurement EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 1 DC Concepts and Measurement: Ohm's Law, Voltage ad Current Introduction to Analog Discovery Scope Last week we introduced

More information

Arduino Intermediate Projects

Arduino Intermediate Projects Arduino Intermediate Projects Created as a companion manual to the Toronto Public Library Arduino Kits. Arduino Intermediate Projects Copyright 2018 Toronto Public Library. All rights reserved. Published

More information

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett

Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Arduino Microcontroller Processing for Everyone!: Third Edition / Steven F. Barrett Anatomy of a Program Programs written for a microcontroller have a fairly repeatable format. Slight variations exist

More information

ENGN/PHYS 207 Fall 2018 Assignment #5 Final Report Due Date: 5pm Wed Oct 31, 2018

ENGN/PHYS 207 Fall 2018 Assignment #5 Final Report Due Date: 5pm Wed Oct 31, 2018 ENGN/PHYS 207 Fall 2018 Assignment #5 Final Report Due Date: 5pm Wed Oct 31, 2018 Circuits You ll Build 1. Instrumentation Amplifier Circuit with reference offset voltage and user selected gain. 2. Strain

More information

Monitoring Temperature using LM35 and Arduino UNO

Monitoring Temperature using LM35 and Arduino UNO Sharif University of Technology Microprocessor Arduino UNO Project Monitoring Temperature using LM35 and Arduino UNO Authors: Sadegh Saberian 92106226 Armin Vakil 92110419 Ainaz Hajimoradlou 92106142 Supervisor:

More information

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech Computational Crafting with Arduino Christopher Michaud Marist School ECEP Programs, Georgia Tech Introduction What do you want to learn and do today? Goals with Arduino / Computational Crafting Purpose

More information

Introduction to. An Open-Source Prototyping Platform. Hans-Petter Halvorsen

Introduction to. An Open-Source Prototyping Platform. Hans-Petter Halvorsen Introduction to An Open-Source Prototyping Platform Hans-Petter Halvorsen Contents 1.Overview 2.Installation 3.Arduino Starter Kit 4.Arduino TinkerKit 5.Arduino Examples 6.LabVIEW Interface for Arduino

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

More information

Electronic Instrumentation Sensors and Actuators

Electronic Instrumentation Sensors and Actuators Electronic Instrumentation Sensors and Actuators * In this presentation definitions and examples from Wikipedia, HowStaffWorks and some other sources were used Lecturer: Dr. Samuel Kosolapov Items to be

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

Laboratory Exercise - Seven

Laboratory Exercise - Seven Basic D.C. AVIM 121 Lab 7 Page 1 of 9 rev. 08.09 Laboratory Exercise - Seven Objectives Determine milliammeter equivalent resistance. Calculate and apply meter shunts and multipliers. Determine voltmeter

More information

Sensor-Emulator-EVM. System Reference Guide. by Art Kay High-Precision Linear Products SBOA102A

Sensor-Emulator-EVM. System Reference Guide. by Art Kay High-Precision Linear Products SBOA102A by Art Kay High-Precision Linear Products Simplifies Development of Voltage Excited Bridge Sensor Signal Conditioning Systems Provides Eleven Different Emulated Sensor Output Conditions Provides Three

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

Lab Exercise 6: Digital/Analog conversion

Lab Exercise 6: Digital/Analog conversion Lab Exercise 6: Digital/Analog conversion Introduction In this lab exercise, you will study circuits for analog-to-digital and digital-to-analog conversion Preparation Before arriving at the lab, you should

More information

J. La Favre Using Arduino with Raspberry Pi February 7, 2018

J. La Favre Using Arduino with Raspberry Pi February 7, 2018 As you have already discovered, the Raspberry Pi is a very capable digital device. Nevertheless, it does have some weaknesses. For example, it does not produce a clean pulse width modulation output (unless

More information

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Exercise 5-1: Familiarization with Lab Box Contents Objective: To review the items required for working

More information

Arduino and Servo Motor

Arduino and Servo Motor Arduino and Servo Motor 1. Basics of the Arduino Board and Arduino a. Arduino is a mini computer that can input and output data using the digital and analog pins b. Arduino Shield: mounts on top of Arduino

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

DATASHEET. Amicrosystems AMI-AD1224 HIGH PRECISION CURRENT-TO-DIGITAL CONVERSION MODULE PRODUCT DESCRIPTION FEATURES

DATASHEET. Amicrosystems AMI-AD1224 HIGH PRECISION CURRENT-TO-DIGITAL CONVERSION MODULE PRODUCT DESCRIPTION FEATURES Amicrosystems DATASHEET AMI-AD1224 HIGH PRECISION CURRENT-TO-DIGITAL CONVERSION MODULE FEATURES Excellent long term bias stability 5ppm Extremely low nonlinearity 5ppm No latency, each conversion is accurate

More information

Single-channel power supply monitor with remote temperature sense, Part 1

Single-channel power supply monitor with remote temperature sense, Part 1 Single-channel power supply monitor with remote temperature sense, Part 1 Nathan Enger, Senior Applications Engineer, Linear Technology Corporation - June 03, 2016 Introduction Many applications with a

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

ET 438B Sequential Digital Control and Data Acquisition Laboratory 4 Analog Measurement and Digital Control Integration Using LabVIEW

ET 438B Sequential Digital Control and Data Acquisition Laboratory 4 Analog Measurement and Digital Control Integration Using LabVIEW ET 438B Sequential Digital Control and Data Acquisition Laboratory 4 Analog Measurement and Digital Control Integration Using LabVIEW Laboratory Learning Objectives 1. Identify the data acquisition card

More information

Model 176 and 178 DC Amplifiers

Model 176 and 178 DC Amplifiers Model 176 and 178 DC mplifiers Features*! Drifts to 100 MΩ! CMR: 120 db @! Gain Linearity of ±.005% *The key features of this amplifier series, listed above, do not necessarily apply

More information

Bridge Measurement Systems

Bridge Measurement Systems Section 5 Outline Introduction to Bridge Sensors Circuits for Bridge Sensors A real design: the ADS1232REF The ADS1232REF Firmware This presentation gives an overview of data acquisition for bridge sensors.

More information

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19 ENGR 40M Project 4: Electrocardiogram Prelab due 24 hours before your section, August 14 15 Lab due 11:59pm, Saturday, August 19 1 Introduction In this project, we will build an electrocardiogram (ECG

More information

Coding with Arduino to operate the prosthetic arm

Coding with Arduino to operate the prosthetic arm Setup Board Install FTDI Drivers This is so that your RedBoard will be able to communicate with your computer. If you have Windows 8 or above you might already have the drivers. 1. Download the FTDI driver

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

Lecture 4: Basic Electronics. Lecture 4 Brief Introduction to Electronics and the Arduino

Lecture 4: Basic Electronics. Lecture 4 Brief Introduction to Electronics and the Arduino Lecture 4: Basic Electronics Lecture 4 Page: 1 Brief Introduction to Electronics and the Arduino colintan@nus.edu.sg Lecture 4: Basic Electronics Page: 2 Objectives of this Lecture By the end of today

More information

WebSeminar: Signal Chain Overview

WebSeminar: Signal Chain Overview WebSeminar: December, 2005 Hello, and welcome to the Microchip Technology Web Seminar overview of signal chains. My name is Kevin Tretter and I am a Product Marketing Engineer within Microchip Technology

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong.

EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong. Department of Electrical Engineering Lecture 10 Analogue Interfacing 1 In this Lecture. Interface 8051 with the following Input/Output Devices Transducer/Sensors Analogue-to-Digital Conversion (ADC) Digital-to-Analogue

More information

EEC WINTER Instructor: Xiaoguang Leo" Liu. Application Note. Baseband Design. Duyen Tran ID#: Team DMK

EEC WINTER Instructor: Xiaoguang Leo Liu. Application Note. Baseband Design. Duyen Tran ID#: Team DMK EEC 134 --- WINTER 2016 Instructor: Xiaoguang Leo" Liu Application Note Baseband Design Duyen Tran ID#: 999246920 Team DMK 1 This application note provides the process to design the baseband of the radar

More information

Date Issued: 12/13/2016 iarmc.06: Draft 6. TEAM 1 - iarm CONTROLLER FUNCTIONAL REQUIREMENTS

Date Issued: 12/13/2016 iarmc.06: Draft 6. TEAM 1 - iarm CONTROLLER FUNCTIONAL REQUIREMENTS Date Issued: 12/13/2016 iarmc.06: Draft 6 TEAM 1 - iarm CONTROLLER FUNCTIONAL REQUIREMENTS 1 Purpose This document presents the functional requirements for an accompanying controller to maneuver the Intelligent

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT

SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT SCHOOL OF TECHNOLOGY AND PUBLIC MANAGEMENT ENGINEERING TECHNOLOGY DEPARTMENT Course ENGT 3260 Microcontrollers Summer III 2015 Instructor: Dr. Maged Mikhail Project Report Submitted By: Nicole Kirch 7/10/2015

More information

Page 1 of 6 A Historical Perspective From Aristotle to Hawking Force & Its Effects Measurement Limitations The Strain Gage Sensor Designs Measuring Circuits Application & Installation Process Pressure

More information

CPSC 226 Lab Four Spring 2018

CPSC 226 Lab Four Spring 2018 CPSC 226 Lab Four Spring 2018 Directions. This lab is a quick introduction to programming your Arduino to do some basic internal operations and arithmetic, perform character IO, read analog voltages, drive

More information

Application Note AN 102: Arduino I2C Interface to K 30 Sensor

Application Note AN 102: Arduino I2C Interface to K 30 Sensor Application Note AN 102: Arduino I2C Interface to K 30 Sensor Introduction The Arduino UNO, MEGA 1280 or MEGA 2560 are ideal microcontrollers for operating SenseAir s K 30 CO2 sensor. The connection to

More information

Introduction PNP C NPN C

Introduction PNP C NPN C Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

// Parts of a Multimeter

// Parts of a Multimeter Using a Multimeter // Parts of a Multimeter Often you will have to use a multimeter for troubleshooting a circuit, testing components, materials or the occasional worksheet. This section will cover how

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O)

MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) PH-315 Portland State University MICROCONTROLLERS BASIC INPUTS and OUTPUTS (I/O) ABSTRACT A microcontroller is an integrated circuit containing a processor and programmable read-only memory, 1 which is

More information

Attribution Thank you to Arduino and SparkFun for open source access to reference materials.

Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Contents Parts Reference... 1 Installing Arduino... 7 Unit 1: LEDs, Resistors, & Buttons... 7 1.1 Blink (Hello

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Basics before Migtrating to Arduino

Basics before Migtrating to Arduino Basics before Migtrating to Arduino Who is this for? Written by Storming Robots Last update: Oct 11 th, 2013 This document is meant for preparing students who have already good amount of programming knowledge,

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

Workshop 9: First steps in electronics

Workshop 9: First steps in electronics King s Maths School Robotics Club Workshop 9: First steps in electronics 1 Getting Started Make sure you have everything you need to complete this lab: Arduino for power supply breadboard black, red and

More information

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE LM2901 Quad Voltage Comparator 1 5/18/04 TABLE OF CONTENTS 1. Index of Figures....3 2. Index of Tables. 3 3. Introduction.. 4-5 4. Theory

More information

Calibration Coefficients and Thermistor Selection

Calibration Coefficients and Thermistor Selection Calibration Coefficients and Thermistor Selection March, 2017 Page 1 ABSTRACT Calibration coefficients for thermistors are determined by the Steinhart-Hart equation for a given thermistor, temperature

More information

Introduction to the Op-Amp

Introduction to the Op-Amp Purpose: ENGR 210/EEAP 240 Lab 5 Introduction to the Op-Amp To become familiar with the operational amplifier (OP AMP), and gain experience using this device in electric circuits. Equipment Required: HP

More information

Nixie millivolt Meter Clock Add-on. Build Instructions, Schematic and Code

Nixie millivolt Meter Clock Add-on. Build Instructions, Schematic and Code Nixie millivolt Meter Clock Add-on Build Instructions, Schematic and Code I have been interested in the quirky side of electronics for as long as I can remember, but I don't know how Nixies evaded my eye

More information

Group 39. Jeff Mueller, EE Jon Graff, EE Thierry Alerte, CpE Jonathan Schooley, EE

Group 39. Jeff Mueller, EE Jon Graff, EE Thierry Alerte, CpE Jonathan Schooley, EE Group 39 Jeff Mueller, EE Jon Graff, EE Thierry Alerte, CpE Jonathan Schooley, EE Motivation Extra hand in the kitchen More time for family and friends Good for tailgating Better tasting food No CO - indoor/outdoor

More information

Interface MEMS 3-Axis Accelerometer to Microcontroller

Interface MEMS 3-Axis Accelerometer to Microcontroller 1 Background ME313 Project Assignment #1 Interface MEMS 3-Axis to Microcontroller Last Updated January 3, 2017. The objective of the ME313 project is to fabricate a digital controller for a fixed-pivot,

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already!

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already! introduction to Digital Electronics Install the Arduino IDE 1.8.5 on your laptop if you haven t already! Electronics can add interactivity! Any sufficiently advanced technology is indistinguishable from

More information

EARTH PEOPLE TECHNOLOGY. EPT-200TMP-TS-U2 Temperature Sensor Docking Board User Manual

EARTH PEOPLE TECHNOLOGY. EPT-200TMP-TS-U2 Temperature Sensor Docking Board User Manual EARTH PEOPLE TECHNOLOGY EPT-200TMP-TS-U2 Temperature Sensor Docking Board User Manual The EPT-200TMP-TS-U2 is a temperature sensor mounted on a docking board. The board is designed to fit onto the Arduino

More information

Lab: Blood Pressure. Goal: Design and test a bandpass filter that can isolate a blood pressure signal.

Lab: Blood Pressure. Goal: Design and test a bandpass filter that can isolate a blood pressure signal. Page /10 1 Lab: Blood Pressure Goal: Design and test a bandpass filter that can isolate a blood pressure signal. This week you will design and build a system to estimate your mean arterial pressure (blood

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

User Guide for the e NABLE Hand Test Rig

User Guide for the e NABLE Hand Test Rig User Guide for the e NABLE Hand Test Rig by Shannon Barry, Samantha Mason, Tia Parks, Charles Rumfola, and David Schwartz Table of Contents Notes 2 Materials Needed 2 Option #1: Preparing the 80/20 3 Option

More information

Written by Hans Summers Wednesday, 15 November :53 - Last Updated Wednesday, 15 November :07

Written by Hans Summers Wednesday, 15 November :53 - Last Updated Wednesday, 15 November :07 This is a phantastron divider based on the HP522 frequency counter circuit diagram. The input is a 2100Hz 15V peak-peak signal from my 2.1kHz oscillator project. Please take a look at the crystal oscillator

More information

Ballistocardiograph 1

Ballistocardiograph 1 3 Lab 9: Ballistocardiograph Goal: Build and test a ballistocardiograph from strain gauges, op-amps and second-order filters. Deliverables: A short lab report that includes 1. The Bode plots of the filter

More information

High Voltage Waveform Sensor

High Voltage Waveform Sensor High Voltage Waveform Sensor Computer Engineering Senior Project Nathan Stump Spring 2013 Statement of Purpose The purpose of this project was to build a system to measure the voltage waveform of a discharging

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information

Rodni What will yours be?

Rodni What will yours be? Rodni What will yours be? version 4 Welcome to Rodni, a modular animatronic animal of your own creation for learning how easy it is to enter the world of software programming and micro controllers. During

More information

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design 1 Lecture 14 Interface Electronics (Part 2) Interface Electronics (Part 2) 2 Linearizing Bridge Circuits (Sensor Tech Hand book) Precision Op amps, Auto Zero Op amps,

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information