EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong.

Size: px
Start display at page:

Download "EEE3410 Microcontroller Applications Department of Electrical Engineering. Lecture 10. Analogue Interfacing. Vocational Training Council, Hong Kong."

Transcription

1 Department of Electrical Engineering Lecture 10 Analogue Interfacing 1

2 In this Lecture. Interface 8051 with the following Input/Output Devices Transducer/Sensors Analogue-to-Digital Conversion (ADC) Digital-to-Analogue Conversion (DAC) 2

3 Transducer/sensors Digital computer/microcontrollers use binary values, but in the physical world most things is in analog nature (continuous). Data (such as temperature, pressure, humidity, velocity, voltage) are analog data. A device called transducer is used to convert the physical quantity to electrical signals (i.e. voltage, current). Transducer are also referred to as sensors. Sensors for temperature, velocity, pressure, light, and many other natural quantities can produce an output voltage (or current) which the value is proportional to the quantity being measured. Then an analog-to-digital converter is used to translate the analog voltage to digital numbers so that microcontroller can read and process them. 3

4 Temperature sensors (Thermistor( Thermistor) Temperature can be converted to electrical signals by thermistor. Thermistor is a kind of resistor responds to temperature change by changing its resistance. But its response is not linear, as seen in the Table 10.1 below. Table 10.1 Temperature ( C) Thermistor Resistance (kω)

5 Temperature sensors (LM34 and LM35) EEE3410 Microcontroller Applications LM34 series are precision integrated-circuit temperature sensors whose output voltage is linearly proportional to Fahrenheit temperature. LM35 series are precision integrated-circuit temperature sensors whose output voltage is linearly proportional to Celsius temperature. They require no external calibration since it is internally calibrated. Their output voltage changes 10mV for each degree of temperature change. Table 10.2 Item LM34 LM34C LM35 LM35C LM35D Temperature Range -50 F to +300 F -40 F to +230 F -55 C to +150 C -40 C to +110 C 0 C to +100 C Accuracy +3.0 F +3.0 F +1.5 C +1.5 C +2.0 C Output 10 mv/f 10 mv/f 10 mv/ C 10 mv/ C 10 mv/ C 5

6 Analog-to to-digital converter (ADC ) Need to have some means to convert them into digital signal so that computers can handle Analog-to-digital converter (ADC) is a device which can convert analogue voltage to digital numbers so that microcontrollers can handle and process the data. ADC are the most widely used devices for data acquisition ADC has n-bit resolution, where n can be 8, 12, 16 or even 24 bits. The higher-resolution ADC provides a smaller step size. Step size is the smallest change that can be recognized by ADC. 6

7 Analog-to to-digital converter (ADC ) An ADC has a resolution of 8 bits, the range is divided into 2^8=256 steps (from 0 255). But there are 255 quantization levels. Step Size Vcc = 2 n 1 Vcc is the reference voltage of ADC Table 10.3 : Resolution versus Step Size for ADC (if Vcc = 5V) n-bit Number of steps 2^8 = 256 2^10 = ^12 = ^16 = Step Size (mv) 5/255 = /1023 = /4095 = /65535 =

8 ADC0804 Chip (Free Running Mode) +5V 20 10k POT 10k Vin(+) Vin( ) A GND Vref/2 CLK R CLK in 150 pf ADC Figure 10.1 CS RD D GND 0804 D0 D1 D2 D3 D4 D5 D6 D7 WR INTR To LEDs Normally open START 8

9 ADC0804 Chip CS Active low input used to activate the ADC0804 chip. RD (data enable) Active low input used to get converted data out of the ADC0804 chip. When CS = 0, if a high-to-low pulse is applied to the RD pin, the 8-bit digital output shows up at the D0-D7 data pins. WR (start conversion) Active low input used to inform the ADC0804 to start the conversion process. If CS = 0 when WR makes a low-to-high transition, the ADC0804 starts converting the analog input value of Vin to an 8-bit digital number. When the data conversion is complete, the INTR pin is forced low by the ADC

10 ADC0804 Chip CLK IN and CLK R Connect to external capacitor and resistor for self-clocking, f = 1/(1.1RC). The clock affect the conversion time and this time cannot be faster than 110µs. INTR (end of conversion) This is an active low output pin. When the conversion is finished, it goes low to signal the CPU that the converted data is ready to be picked up. After INTR goes low, we make CS = 0 and send a high-to-low pulse to the RD pin to get the data out of the ADC0804 chip. Vin (+) and Vin ( ) These are the differential analog inputs where Vin = Vin (+) Vin ( ). Often the Vin ( ) pin is connected to ground and the Vin (+) pin is used as the analog input to be converted to digital. 10

11 ADC0804 Chip V CC This is the +5V power supply. It is also used as a reference voltage when the Vref/2 (pin 9) input is open. Vref/2 Input voltage pin used for the reference voltage. If this pin is open, the analog input voltage for the the ADC is ranged from 0 to 5 volts. Table 10.4 Vref/2 (V) Vin (V) Step Size (mv) Not connected 0 to 5 5/255 = to 4 4/255 = to 3 3/255 = to /255 = to 2 2/255 = to 1 1/255 =

12 ADC0804 Chip D0 D7 D0 D7 are the digital data output pins. These are the tri-state buffered and the converted data is accessed only when CS = 0 and RD is forced low. The output voltage: D out = Vin Step size Analog Ground and Digital Ground Analog ground is connected to the ground of the analog signal while digital ground is connected to the ground of the Vcc pin. 12

13 Signal control on ADC Make CS = 0 and send a L-to-H pulse to pin WR to start the conversion. 2. Keep monitoring the INTR pin. If INTR is low, the conversion is finished and we can go to the next step. If INTR is high, keep polling until it goes low. 3. After the INTR has become low, we make CS = 0 and send a H-to-L pulse to the RD pin to get the data out of the ADC0804 IC chip. 13

14 The timing diagram of ADC0804 CS WR D0 D7 Data out INTR RD Start conversion End conversion Figure 10.2 Read it Note: CS is set to low for both RD and WR pulses 14

15 Testing the ADC ADC V P2.5 P2.6 RD WR V CC CLK R CLK IN P1.0 P1.7 D0 : : : : : D7 V in (+) V in ( ) A GND Vref/2 D GND 10k POT P2.7 INTR CS Figure

16 Example 10-1 EEE3410 Microcontroller Applications Write a program to monitor the INTR pin and bring the digital input value into register A. Then call a subroutine to display the input value on a 7-segment display. Do this continuously. ; P2.6 = WR (Start conversion needs a L-to-H pulse) ; P2.7 = INTR (When low, end-of-conversion) ; P2.5 = RD (H-to-L will read the data from ADC chip) ; P1.0 P1.7 = D0 D7 of the ADC0804 ; MOV P1, #0FFH ; make P1=input BACK: CLR P2.6 ; WR=0 SETB P2.6 ; WR=1 L-to-H to start conversion HERE: JB P2.7, HERE ; wait for end of conversion CLR P2.5 ; conversion finished, enable RD MOV A, P1 ; read the data ACALL DATA_DISPLAY ; display the data SETB P2.5 ; make RD=1 for next round SJMP BACK 16

17 Referred to Example 10.1, the digital values output from the ADC0804 correspond to the analogue voltage inputs. It is calculated by: Step Size Vcc = 2 n Step Size = = = V Analogue input voltage V in (V) Digital Value Output D out 0/ = 0 0.5/ = / = / = / =

18 Example of ADC Application Temperature detection A temperature sensor (LM34 or LM35) is interfaced to the 8051 via an ADC (ADC0804) The output voltage from the LM34/LM35 is linearly proportional to the measuring temperature The ADC0804 converts the output voltages from the LM34/LM35 into digital signals, which correspond to the measured temperature. They are then handled by the

19 Interfacing with the LM35 (Temperature Sensor) 8051 ADC V XTAL1 XTAL2 P2.5 P2.6 P1.0 RD WR D0 V CC CLK R CLK IN LM35 D Q Q D Q Q P1.7 P2.7 D7 INTR V in (+) V in ( ) A GND Vref/2 D GND CS Set to 1.28V Clock freq 4 Figure

20 Example 10.2 ADC Application EEE3410 Microcontroller Applications The ADC0804 converts the output voltages from the LM35 into digital signals, which correspond to the measured temperature. Step size of the ADC0804 = (1.28)x(2)/255 = V Clock input to the ADC0804 = clock frequency 4 If the following data of LM35 are given the temperature range of the temperature sensor LM35 is -55 C to 150 C and its output scale is 10mV/ C, and the output value of the ADC0804 is 00H when the LM35 senses -55 C then the value output from the ADC0804 for a measuring temperature 100 C is: (100 ( 55)) x.01 D out = = = 155 or 9BH

21 Digital-to to-analog (DAC) Conversion The digital-to-analog converter (DAC) is a device widely used to convert digital values to analog signals. It does the reverse operation of an ADC The resolution of DAC depends on the no. of binary bits input to it. The common ones are 8, 10 and 12 bits. An 8-input DAC provides 256 discrete voltages (or current) levels of output. (The 12-bit DAC gives 4096 discrete levels). Digital inputs D0 DAC Analog output (Voltage or current) D7 Figure

22 DAC0808 Chip (MC1408) +5V V ref (e.g +5V) P2.5 P2.6 V CC V in (+) R ref1 I ref = V ref /(R ref1 +R ref2 ) = 2mA (Typical) P1.0 D0 V in ( ) I ref R ref 2 R DAC0808 Comp. I out + To Scope V out = 0 to 10V P1.7 D7 V ee 15V GND Figure

23 DAC0808 Chip (MC1408) Operating Principle In the DAC0808, the digital inputs are converted to corresponding current (I out ). Then by connecting a resistor to the I ou t pin, the current will further convert to voltage level. The total current provided by the output I out pin is a function of the reference current (I ref ) and is follows: I out = I ref Converting I out to voltage (V out ) 2 D + 4 D + 8 D D D D Connect the output pin I out to a output standard resistor and hence convert this current to a voltage. + D 256 D Output voltage, V out = I out x R o 23

24 Example 10.3 Assume that Ro = 5kΩ,, R ref1 = 1k Ω, R ref2 = 1.5k Ω and using a standard 5V supply connected to V ref(+), calculate V out for the following binary inputs. (a) (99H) (b) (C8H) Solution: (a) 99H = I ref = = 2mA I out = ( 2mA) = mA 256 V out = ( 1.195mA)(5000kΩ) = V (b) C8H = I out = ( 2 ma ) = ma 256 V out = ( 1.562mA)(5000kΩ) = V 24

25 Example 10.4 In order to generate a star-step ramp, set up the circuit as in Figure 10.6 and connect the output to an oscilloscope. Then write a program to send data to the DAC at port 1 to generate a stair-step ramp. Solution: ORG 0H CLR A AGAIN: MOV P1, A ; send data to DAC INC A ; count from 0 to FFH ACALL DELAY ; let DAC work and recover SJMP AGAIN END 25

26 Example 10.5 Use the circuit in Figure 10.6, write a program to generate a sine wave of full-scale 10V output. If the output is connected to a CRO, draw the display on the CRO screen. Solution: Assume 10V full-scale voltage for the DAC output. V out = [5 + (5 sin θ)] V A table is drawn up to list the magnitude of the sine of angles between 0 and 360 degrees. The table values are integer numbers representing the voltage magnitude for the sine θ. Table 10.5 gives the angles, the sine values, the voltage magnitudes and the integer values representing the voltage magnitude for each angle (with 30 interval). 26

27 Table 10.5 Angle vs Voltage Magnitude for Sine Wave Angle θ (degree) Sine θ Vout 5V + (5sin θ ) Voltage Values sent to DAC

28 Program Generating a Sine Wave ORG 0H AGAIN: MOV DPTR, #TABLE MOV R2, #COUNT BACK: CLR A MOVC A,@A+DPTR MOV P1,A INC DPTR DJNZ R2, BACK SJMP AGAIN ; ORG 300 TABLE: DB 128, 192, 238, 255, 238, 192 DB 128, 64, 17, 0, 17, 64, 128 ; ; To get a better looking sine wave, regenerate the look-up table for 2-degree angles END 28

29 Display on the Generating Sine Wave on CRO Volts Degrees 29

30 Read reference The 8051 Microcontroller and Embedded Systems - Using Assembly and C, Mazidi Chapter 13 P.373 P

31 Review Questions 1. In the ADC0804, the INTR signal is an (input, output) 2. In the ADC0804, to begin conversion, send a(n) pulse to pin. 3. Which pin of the ADC0804 indicates end-of-conversion? 4. In a ADC, input is (digital, analog) and output is (digital, analog). 5. Find the step size for an ADC0804 chip if V ref /2 =1.9V. 6. With V ref /2 =0.64V, find the Vin for the D7 D0 = output. 7. In a DAC, input is (digital, analog) and output is (digital, analog). 8. DAC0808 is a9n) -bit D-to-A converter. 9. The output of DAC0808 is in (current, voltage). 10. Find the I out for the digital input to DAC0808. Assume I ref = 2mA. 11. To get a smaller step, we need a DAC with (more, fewer) digital inputs. 12. The LM35 provides mv for each degree of (Fahrenheit, Celsius). 31

32 Department of Electrical Engineering END of Lecture 10 Analogue Interfacing 32

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control EEE34 Microcontroller Applications Department of Electrical Engineering Lecture Motor Control Week 3 EEE34 Microcontroller Applications In this Lecture. Interface 85 with the following output Devices Optoisolator

More information

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing Module 13: Interfacing ADC Introduction ADC Programming DAC Programming Sensor Interfacing Introduction ADC Devices o Analog-to-digital converters (ADC) are among the most widely used devices for data

More information

The University of Texas at Arlington Lecture 10 ADC and DAC

The University of Texas at Arlington Lecture 10 ADC and DAC The University of Texas at Arlington Lecture 10 ADC and DAC CSE 3442/5442 Measuring Physical Quantities (Digital) computers use discrete values, and use these to emulate continuous values if needed. In

More information

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2

Dedan Kimathi University of technology. Department of Electrical and Electronic Engineering. EEE2406: Instrumentation. Lab 2 Dedan Kimathi University of technology Department of Electrical and Electronic Engineering EEE2406: Instrumentation Lab 2 Title: Analogue to Digital Conversion October 2, 2015 1 Analogue to Digital Conversion

More information

PART 1: DESCRIPTION OF THE DIGITAL CONTROL SYSTEM

PART 1: DESCRIPTION OF THE DIGITAL CONTROL SYSTEM ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 433 CONTROL SYSTEMS ANALYSIS AND DESIGN LABORATORY EXPERIENCES INTRODUCTION TO DIGITAL CONTROL PART 1: DESCRIPTION OF THE DIGITAL CONTROL SYSTEM 1. INTRODUCTION

More information

Embedded Control. Week 3 (7/13/11)

Embedded Control. Week 3 (7/13/11) Embedded Control Week 3 (7/13/11) Week 3 15:00 Lecture Overview of analog signals Digital-to-analog conversion Analog-to-digital conversion 16:00 Lab NXT analog IO Overview of Analog Signals Continuous

More information

Lecture 6: Digital/Analog Techniques

Lecture 6: Digital/Analog Techniques Lecture 6: Digital/Analog Techniques The electronics signals that we ve looked at so far have been analog that means the information is continuous. A voltage of 5.3V represents different information that

More information

BASIC Stamp I Application Notes

BASIC Stamp I Application Notes 22: Interfacing a 2-bit ADC BASIC Stamp I Application Notes Introduction. This application note shows how to interface the LTC298 analog-to-digital converter (ADC) to the BASIC Stamp. Background. Many

More information

CHAPTER ELEVEN - Interfacing With the Analog World

CHAPTER ELEVEN - Interfacing With the Analog World CHAPTER ELEVEN - Interfacing With the Analog World 11.1 (a) Analog output = (K) x (digital input) (b) Smallest change that can occur in the analog output as a result of a change in the digital input. (c)

More information

ANGULAR POSITION CONTROL OF DC MOTOR USING SHORTEST PATH ALGORITHM

ANGULAR POSITION CONTROL OF DC MOTOR USING SHORTEST PATH ALGORITHM EE 712 Embedded Systems Design, Lab Project Report, EE Dept. IIT Bombay, April 2006. ANGULAR POSITION CONTROL OF DC MOTOR USING SHORTEST PATH ALGORITHM Group Number: 17 Rupesh Sonu Kakade (05323014)

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion 02534567998 6 4 2 3 4 5 6 ANALOG to DIGITAL CONVERSION Analog variation (Continuous, smooth variation) Digitized Variation (Discrete set of points) N2 N1 Digitization applied

More information

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FSR 4 V 8 ref 7 V 8 ref Analog Input

More information

6-Bit A/D converter (parallel outputs)

6-Bit A/D converter (parallel outputs) DESCRIPTION The is a low cost, complete successive-approximation analog-to-digital (A/D) converter, fabricated using Bipolar/I L technology. With an external reference voltage, the will accept input voltages

More information

Real Time Embedded Systems. Lecture 1 January 17, 2012

Real Time Embedded Systems.  Lecture 1 January 17, 2012 Analog Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 1 January 17, 2012 Topic Section Topic Where in the books Catsoulis chapter/page Simon chapter/page Zilog UM197 (ZNEO Z16F Series

More information

AppKit: Using the LTC bit Analog-to-Digital Converter

AppKit: Using the LTC bit Analog-to-Digital Converter AppKit: Using the LTC1298 12-bit Analog-to-Digital Converter This AppKit shows how to use the Linear Technology LTC 1298 12-bit ADC chip with PIC microcontrollers and the Parallax BASIC Stamp single-board

More information

MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL. EXPERIMENT 7: Analog-to-Digital Conversion. Research Assistant Müzeyyen KARAMANOĞLU

MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL. EXPERIMENT 7: Analog-to-Digital Conversion. Research Assistant Müzeyyen KARAMANOĞLU MARMARA UNIVERSITY CSE315 DIGITAL DESIGN LABORATORY MANUAL EXPERIMENT 7: Analog-to-Digital Conversion Research Assistant Müzeyyen KARAMANOĞLU Electrical&Electronics Engineering Department Marmara University

More information

ADC Resolution: Myth and Reality

ADC Resolution: Myth and Reality ADC Resolution: Myth and Reality Mitch Ferguson, Applications Engineering Manager Class ID: CC19I Renesas Electronics America Inc. Mr. Mitch Ferguson Applications Engineering Manager Specializes support

More information

EEE312: Electrical measurement & instrumentation

EEE312: Electrical measurement & instrumentation University of Turkish Aeronautical Association Faculty of Engineering EEE department EEE312: Electrical measurement & instrumentation Digital Electronic meters BY Ankara March 2017 1 Introduction The digital

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Data Conversion and Lab Lab 3 Spring Analog to Digital Converter

Data Conversion and Lab Lab 3 Spring Analog to Digital Converter Analog to Digital Converter Lab Report Objectives See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate an

More information

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital

More information

Software Programmable Gain Amplifier AD526

Software Programmable Gain Amplifier AD526 a FEATURES Digitally Programmable Binary Gains from to 6 Two-Chip Cascade Mode Achieves Binary Gain from to 256 Gain Error: 0.0% Max, Gain =, 2, 4 (C Grade) 0.02% Max, Gain = 8, 6 (C Grade) 0.5 ppm/ C

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L3: Signal processing (selected slides) Semiconductor devices Apart from resistors and capacitors, electronic circuits often contain nonlinear devices: transistors and diodes. The

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

L9: Analog Building Blocks (OpAmps,, A/D, D/A) L9: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Dave Wentzloff Introduction to Operational Amplifiers DC Model Typically very high input resistance ~ 300KΩ v id in a v id out High DC gain

More information

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics:

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: Links between Digital and Analogue Serial vs Parallel links Flow control

More information

P a g e 1. Introduction

P a g e 1. Introduction P a g e 1 Introduction 1. Signals in digital form are more convenient than analog form for processing and control operation. 2. Real world signals originated from temperature, pressure, flow rate, force

More information

ADC Bit µp Compatible A/D Converter

ADC Bit µp Compatible A/D Converter ADC1001 10-Bit µp Compatible A/D Converter General Description The ADC1001 is a CMOS, 10-bit successive approximation A/D converter. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family.

More information

LM12L Bit + Sign Data Acquisition System with Self-Calibration

LM12L Bit + Sign Data Acquisition System with Self-Calibration LM12L458 12-Bit + Sign Data Acquisition System with Self-Calibration General Description The LM12L458 is a highly integrated 3.3V Data Acquisition System. It combines a fully-differential self-calibrating

More information

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale UNIT III Data Acquisition & Microcontroller System Mr. Manoj Rajale Syllabus Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Sampling Frequency, Aliasing, Sample and hold

More information

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC)

ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) ANALOG TO DIGITAL (ADC) and DIGITAL TO ANALOG CONVERTERS (DAC) Connecting digital circuitry to sensor devices

More information

Outline. Analog/Digital Conversion

Outline. Analog/Digital Conversion Analog/Digital Conversion The real world is analog. Interfacing a microprocessor-based system to real-world devices often requires conversion between the microprocessor s digital representation of values

More information

Sampling and Quantization

Sampling and Quantization University of Saskatchewan EE Electrical Engineering Laboratory Sampling and Quantization Safety The voltages used in this experiment are less than V and normally do not present a risk of shock. However,

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

TS100. RTD - PT100 - Temperature Sensor. March, 2017

TS100. RTD - PT100 - Temperature Sensor. March, 2017 RTD - PT100 - Temperature Sensor March, 2017 Contents 1 Overview 2 2 Get readings from TS100 2 2.1 Use the MCU SPI to read from TS100............................. 3 2.2 Connect the SPI with just two wires...............................

More information

Ch 5 Hardware Components for Automation

Ch 5 Hardware Components for Automation Ch 5 Hardware Components for Automation Sections: 1. Sensors 2. Actuators 3. Analog-to-Digital Conversion 4. Digital-to-Analog Conversion 5. Input/Output Devices for Discrete Data Computer-Process Interface

More information

Chapter 5: Signal conversion

Chapter 5: Signal conversion Chapter 5: Signal conversion Learning Objectives: At the end of this topic you will be able to: explain the need for signal conversion between analogue and digital form in communications and microprocessors

More information

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

Quad 12-Bit Digital-to-Analog Converter (Serial Interface) Quad 1-Bit Digital-to-Analog Converter (Serial Interface) FEATURES COMPLETE QUAD DAC INCLUDES INTERNAL REFERENCES AND OUTPUT AMPLIFIERS GUARANTEED SPECIFICATIONS OVER TEMPERATURE GUARANTEED MONOTONIC OVER

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

ADC0844/ADC Bit µp Compatible A/D Converters with Multiplexer Options

ADC0844/ADC Bit µp Compatible A/D Converters with Multiplexer Options ADC0844/ADC0848 8-Bit µp Compatible A/D Converters with Multiplexer Options General Description The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A/D converters with versatile analog input

More information

Lecture 7: Analog Signals and Conversion

Lecture 7: Analog Signals and Conversion ECE342 Introduction to Embedded Systems Lecture 7: Analog Signals and Conversion Ying Tang Electrical and Computer Engineering Rowan University 1 Analog Signals Everywhere Everything is an analogy in the

More information

Data Converters. Lecture Fall2013 Page 1

Data Converters. Lecture Fall2013 Page 1 Data Converters Lecture Fall2013 Page 1 Lecture Fall2013 Page 2 Representing Real Numbers Limited # of Bits Many physically-based values are best represented with realnumbers as opposed to a discrete number

More information

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239).

DSP Project. Reminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). DSP Project eminder: Project proposal is due Friday, October 19, 2012 by 5pm in my office (Small 239). Budget: $150 for project. Free parts: Surplus parts from previous year s project are available on

More information

Automatic Railway Gate Control & Track Switching

Automatic Railway Gate Control & Track Switching Automatic Railway Gate Control & Track Switching ABSTRACT: Present project is designed using 8051 microcontroller to avoid railway accidents happening at unattended railway gates, if implemented in spirit.

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Materials in this lecture are courtesy of the following sources and are used with permission. Dave Wentzloff 1 Introduction to Operational

More information

BINARY AMPLITUDE SHIFT KEYING

BINARY AMPLITUDE SHIFT KEYING BINARY AMPLITUDE SHIFT KEYING AIM: To set up a circuit to generate Binary Amplitude Shift keying and to plot the output waveforms. COMPONENTS AND EQUIPMENTS REQUIRED: IC CD4016, IC 7474, Resistors, Zener

More information

arxiv:physics/ v1 [physics.ed-ph] 19 Oct 2004

arxiv:physics/ v1 [physics.ed-ph] 19 Oct 2004 I. SIMPLE 8085 µp COMPATIBLE I/O CARD with Arti Dwivedi Abstract A simple interfacing project with the 8085-microprocessor kits available in under graduate college labs has been discussed. The interface

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Data Converters Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Purpose To convert digital values to analog voltages V OUT Digital Value Reference Voltage Digital Value DAC Analog Voltage Analog Quantity:

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Dave Wentzloff 1 Introduction to Operational Amplifiers DC Model Typically very high input resistance ~ 300KΩ v id in a v id out v out High

More information

LM12454,LM12458,LM12H458

LM12454,LM12458,LM12H458 LM12454,LM12458,LM12H458 LM12454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System with Self-Calibration Literature Number: SNAS079A 12-Bit + Sign Data Acquisition System with Self-Calibration General

More information

Design of Frequency Characteristic Test Instrument Based on USB

Design of Frequency Characteristic Test Instrument Based on USB Design of Frequency Characteristic Test Instrument Based on USB Zhengling Wu, Nannan Zhang College of information and control engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, P.R. China.

More information

NI 6013/6014 Family Specifications

NI 6013/6014 Family Specifications NI 6013/6014 Family Specifications This document lists the I/O terminal summary and specifications for the NI 6013/6014 family of devices. This family includes the following devices: NI PCI-6013 NI PCI-6014

More information

I hope you have completed Part 2 of the Experiment and is ready for Part 3.

I hope you have completed Part 2 of the Experiment and is ready for Part 3. I hope you have completed Part 2 of the Experiment and is ready for Part 3. In part 3, you are going to use the FPGA to interface with the external world through a DAC and a ADC on the add-on card. You

More information

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14 Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) ECE3204 Lab 5 Objective The purpose of this lab is to design and test an active Butterworth

More information

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs)

ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) ELG4139: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FS 4 V 8 ref 7 V 8 ref Analog Input V

More information

ADC0801/ADC0802/ADC0803/ADC0804/ADC Bit µp Compatible A/D Converters

ADC0801/ADC0802/ADC0803/ADC0804/ADC Bit µp Compatible A/D Converters ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit µp Compatible A/D Converters General Description The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters

More information

ENGN Analogue Electronics Digital PC Oscilloscope

ENGN Analogue Electronics Digital PC Oscilloscope Faculty of Engineering and Information Technology Department of Engineering ENGN3227 - Analogue Electronics Digital PC Oscilloscope David Dries u2543318 Craig Gibbons u2543813 James Moran u4114563 Ranmadhu

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load.

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load. Lab Experiments L Power diode V g C Power MOSFET Load Boost converter (Experiment 2) V ref PWM chip UC3525A Gate driver TSC427 Control circuit (Experiment 1) Adjust duty cycle D The UC3525 PWM Control

More information

CAV444 C/V transmitter IC with adjustable output voltage for capacitive input signals

CAV444 C/V transmitter IC with adjustable output voltage for capacitive input signals PRINCIPLE FUNCTION Capacitance/Voltage converter IC with an adjustable, differential output and temperature detection V = V % CC ± Measurment capacitor (8 pf bis. nf) CAV V OUT =, ±,V Temperature 8mV/

More information

Laboratory Experiments in Instrumentation and Control

Laboratory Experiments in Instrumentation and Control Session 9 Laboratory Experiments in Instrumentation and Control Ray Bachnak Texas A&M UniversityCorpus Christi Abstract Most engineering and engineering technology curricula include courses that use laboratory

More information

A-D and D-A Converters

A-D and D-A Converters Chapter 5 A-D and D-A Converters (No mathematical derivations) 04 Hours 08 Marks When digital devices are to be interfaced with analog devices (or vice a versa), Digital to Analog converter and Analog

More information

2.7 V to 5.5 V, 400 ksps 8-/10-Bit Sampling ADC AD7813

2.7 V to 5.5 V, 400 ksps 8-/10-Bit Sampling ADC AD7813 a FEATURES 8-/10-Bit ADC with 2.3 s Conversion Time On-Chip Track and Hold Operating Supply Range: 2.7 V to 5.5 V Specifications at 2.7 V 3.6 V and 5 V 10% 8-Bit Parallel Interface 8-Bit + 2-Bit Read Power

More information

MT1531 Series. CMOS, Programmable Linear Hall Effect Sensor. Features. Applications. 1 / 15

MT1531 Series. CMOS, Programmable Linear Hall Effect Sensor. Features. Applications.  1 / 15 Features Specified Operating Voltage Range Single supply voltage 4.5-5.5V Functions up to 7.0V Specified Operating Temperature Range From 40C up to 150C Linear Output with High Accuracy 12-bit Ratiometric

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS CIRCUIT II EKT 214 Semester II (2012/2013) EXPERIMENT # 3 OP-AMP (DIFFERENTIATOR & INTEGRATOR) Analog Electronics II (EKT214) 2012/2013 EXPERIMENT 3 Op-Amp

More information

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital

More information

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800)

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800) Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) 1) Do you have a four channel part? Not at this time, but we have plans to do a multichannel product Q4 97. We also have 4 digital output lines which can

More information

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION Microcomputer system design requires

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 esson 19 Analog Interfacing Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would be able

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

Lab Exercise 6: Digital/Analog conversion

Lab Exercise 6: Digital/Analog conversion Lab Exercise 6: Digital/Analog conversion Introduction In this lab exercise, you will study circuits for analog-to-digital and digital-to-analog conversion Preparation Before arriving at the lab, you should

More information

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer ADC0808/ADC0809 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital

More information

Design and Implementation of Microcontroller Based Programmable Power Changeover

Design and Implementation of Microcontroller Based Programmable Power Changeover Abstract Design and Implementation of Microcontroller Based Programmable Power Changeover Obasi, Chijioke Chukwuemeka 1* Olufemi Babajide Odeyinde 1 John Junior Agidani 2 Victor Onyedikachi Ibiam 1 Ubadike,

More information

ENGR 210 Lab 12: Analog to Digital Conversion

ENGR 210 Lab 12: Analog to Digital Conversion ENGR 210 Lab 12: Analog to Digital Conversion In this lab you will investigate the operation and quantization effects of an A/D and D/A converter. A. BACKGROUND 1. LED Displays We have been using LEDs

More information

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC ENGR 210 Lab 8 RC Oscillators and Measurements Purpose: In the previous lab you measured the exponential response of RC circuits. Typically, the exponential time response of a circuit becomes important

More information

Tel: Fax:

Tel: Fax: B Tel: 78.39.4700 Fax: 78.46.33 SPECIFICATIONS (T A = +5 C, V+ = +5 V, V = V or 5 V, all voltages measured with respect to digital common, unless otherwise noted) AD57J AD57K AD57S Model Min Typ Max Min

More information

NI 6023E/6024E/6025E Family Specifications

NI 6023E/6024E/6025E Family Specifications NI 6023E/6024E/6025E Family Specifications This document lists the I/O terminal summary and specifications for the devices that make up the NI 6023E/6024E/6025E family of devices. This family includes

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

Data acquisition and instrumentation. Data acquisition

Data acquisition and instrumentation. Data acquisition Data acquisition and instrumentation START Lecture Sam Sadeghi Data acquisition 1 Humanistic Intelligence Body as a transducer,, data acquisition and signal processing machine Analysis of physiological

More information

Input Drive Circuitry for SAR ADCs. Section 8

Input Drive Circuitry for SAR ADCs. Section 8 for SAR ADCs Section 8 SAR ADCs in particular have input stages that have a very dynamic behavior. Designing circuitry to drive these loads is an interesting challenge. We ve been looking at this for some

More information

L9: Analog Building Blocks (OpAmps, A/D, D/A)

L9: Analog Building Blocks (OpAmps, A/D, D/A) L9: Analog Building Blocks (OpAmps, A/D, D/A) Courtesy of Dave Wentzloff. Used with permission. 1 Introduction to Operational Amplifiers v id in DC Model a v id LM741 Pinout out 10 to 15V Typically very

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Why It s Needed Embedded systems often need to measure values of physical parameters These parameters are usually continuous (analog) and not in a digital form which computers

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion Florian Erdinger Lehrstuhl für Schaltungstechnik und Simulation Technische Informatik der Uni Heidelberg VLSI Design - Mixed Mode Simulation F. Erdinger, ZITI, Uni Heidelberg

More information

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC)

Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 1 Analog-to-Digital Converter (ADC) And Digital-to-Analog Converter (DAC) 2 1. DAC In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary

More information

DIGITAL TO ANALOG CONVERTER (DAC)

DIGITAL TO ANALOG CONVERTER (DAC) PH315 DIGITAL TO ANALOG CONVETE (DAC) Portland State University 1. PUPOSE: Construction of digitaltoanalogue converters using different techniques, namely the scaled resistors into summing junction, and

More information

IL8190 TECHNICAL DATA PRECISION AIR - CORE TACH / SPEEDO DRIVER WITH RETURN TO ZERO DESCRIPTION FEATURES

IL8190 TECHNICAL DATA PRECISION AIR - CORE TACH / SPEEDO DRIVER WITH RETURN TO ZERO DESCRIPTION FEATURES TECHNICAL DATA PRECISION AIR - CORE TACH / SPEEDO DRIVER WITH RETURN TO ZERO IL8190 DESCRIPTION The IL8190 is specifically designed for use with air core meter movements. The IC provides all the functions

More information

ADC0844/ADC Bit µp Compatible A/D Converters with Multiplexer Options

ADC0844/ADC Bit µp Compatible A/D Converters with Multiplexer Options ADC0844/ADC0848 8-Bit µp Compatible A/D Converters with Multiplexer Options General Description The ADC0844 and ADC0848 are CMOS 8-bit successive approximation A/D converters with versatile analog input

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2017 Lecture #5 Bekkeng, 30.01.2017 Content Aliasing Sampling Analog to Digital Conversion (ADC) Filtering Oversampling Triggering

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer

ADC0808/ADC Bit µp Compatible A/D Converters with 8-Channel Multiplexer 8-Bit µp Compatible A/D Converters with 8-Channel Multiplexer General Description The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter,

More information

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM a FEATURES Complete 8-Bit A/D Converter with Reference, Clock and Comparator 30 s Maximum Conversion Time Full 8- or 16-Bit Microprocessor Bus Interface Unipolar and Bipolar Inputs No Missing Codes Over

More information

Lecture Week 5. Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps

Lecture Week 5. Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps Lecture Week 5 Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps Quiz 2 Ohm s Law (20 pts.) Please clear desks and turn off phones and put them in back packs You

More information

MICROCONTROLLER PRODUCTS. AN428 Using the ADC and PWM of the 83C752/87C752. Author: Greg Goodhue December Philips Semiconductors

MICROCONTROLLER PRODUCTS. AN428 Using the ADC and PWM of the 83C752/87C752. Author: Greg Goodhue December Philips Semiconductors MICROCONTROLLER PRODUCTS Using the ADC and PWM of the 83C752/87C752 Author: Greg Goodhue December 1990 Philips Semiconductors The Philips 83C752/87C752 is a single-chip control-oriented microcontroller.

More information

Multiplexer Options, Voltage Reference, and Track/Hold Function

Multiplexer Options, Voltage Reference, and Track/Hold Function ADC08031/ADC08032/ADC08034/ADC08038 8-Bit High-Speed Serial I/O A/D Converters with Multiplexer Options, Voltage Reference, and Track/Hold Function General Description The ADC08031/ADC08032/ADC08034/ADC08038

More information

10-Bit µp-compatible D/A converter

10-Bit µp-compatible D/A converter DESCRIPTION The is a microprocessor-compatible monolithic 10-bit digital-to-analog converter subsystem. This device offers 10-bit resolution and ±0.1% accuracy and monotonicity guaranteed over full operating

More information