Integrated Circuits & Systems

Size: px
Start display at page:

Download "Integrated Circuits & Systems"

Transcription

1 Federal University of Santa atarina enter for Technology omputer Science & Electronics Engineering Integrated ircuits & Systems INE 5442 Lecture 16 MOS ombinational ircuits - 2 guntzel@inf.ufsc.br

2 Pass Transistor Logic Primary inputs may drive gate terminals of transistor as well as source-drain terminals 0 F =. Ensures a low impedance path to supply rail when =0 (this is a static gate!) Target: Fewer transistors per logic function than complementary MOS (lower capacitance) asic problem: NMOS transistors are not effective at passing 1 s. Reduced noise margins Static power dissipation Slide 17.2

3 Pass Transistor Logic 3.0 In V x = V DD V Tn Voltage [V] Out x Due to the body effect, Vx does not achieve V DD Message: do not cascade pass transistors Time [ns] Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.3

4 Pass Transistor Logic: Simulation 1 File passtrans1.cir ( ) Vdd Vdd a MN2 MP1 MN1 out L x Slide 17.4

5 Pass Transistor Logic: Simulation 1 Resulting Simulation Waveforms Slide 17.5

6 Pass Transistor Logic: Simulation 2 reate a file passtrans2.cir by modifying file passtrans1.cir Vdd a b MP1 Vdd MN2 MN3 MN1 out L x y Slide 17.6

7 Pass Transistor Logic: Simulation 2 Resulting Simulation Waveforms Slide 17.7

8 Pass Transistor Logic Design Guidelines Vdd Vdd a MN1 Vx=Vdd-V Tn1 MN2 out Vdd a MN1 b MN2 out Vy=Vdd-V Tn1 Vy=Vdd-V Tn1 -V Tn2 Slide 17.8

9 Pass Transistor Logic Example 1: 2:1 multiplexer Simplified behavior: = if = 1 sel sel Y 0 1 Y Slide 17.9

10 Pass Transistor Logic pplication: FPG LUT S0 S1 S2 S3 F S4 S5 S6 S7 Slide 17.10

11 Pass Transistor Logic Example 2: random function (4 input variables) buffer F E1 0 0 E1 F 0 1 E1 1 0 E1 E2 1 1 E2 F = E2 + E1 + E1 N transistors No static power consumption Slide 17.11

12 Example 3: XOR MOS ombinational ircuits Pass Transistor Logic s a controlled inverter X X Y X Y Y X Y X Y = X Y + X Y Only 4 transistors! However, it suffers from signal degradation Slide 17.12

13 omplementary Pass Transistor Logic (PL or DPL) Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.13

14 Pass Transistor Logic Level-Restoring V DD Level Restorer M r V DD M 2 M n X Out M 1 Source: Rabaey; handrakasan; Nikolic, 2003 dvantage: Full Swing Restorer adds capacitance, takes away pull down current at X Ratio problem Slide 17.14

15 Pass Transistor Logic Restorer sizing V o l t a g e [V] W / L r =1.75/0.25 W / L r =1.50/0.25 W / L r =1.0/0.25 W / L r =1.25/0.25 Upper limit on restorer size Pass-transistor pull-down can have several transistors in stack Time [ps] Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.15

16 Transmission Gate Simplified behavior: = if = 1 circuit Symbolic representation Requires an inverter to generate Number of transistors: 2+2=4 Slide 17.16

17 Transmission Gate Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.17

18 Transmission Gate: Simulation 1 File tg-drenofixo.cir ( ) Vdd a Vdd Vdd MN1 MP1 out a MP1 b MP1 x MN1 L MN1 Slide 17.18

19 Transmission Gate: Simulation 1 Resulting Simulation Waveforms b a x out Slide 17.19

20 Transmission Gate: Simulation 2 Modify file tg-drenofixo.cir to create file tg-drenopulso.cir as shown below Vdd Vdd Vdd a MP1 b MN1 MP1 out MN1 MP1 Gnd x MN1 L Slide 17.20

21 Transmission Gate: Simulation 2 Resulting Simulation Waveforms b a x tp=~26ps out Slide 17.21

22 Transmission Gate Multiplexer - Layout V DD S S GND Source: Rabaey; handrakasan; Nikolic, 2003 In 1 S S In 2 Slide 17.22

23 Transmission Gate XOR version 1 s a controlled inverter = + Requires twice as transistors as the pass transistor-based one, but still a small amount (8) More robust than the the pass transistor-based version Slide 17.23

24 Transmission Gate XOR version 2 Requires only 6 transistors if =1, F= (M1 & M2 act as an inverter) if =0, F= M = + M1 F M3/M4 Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.24

25 Delay in Transmission Gate Networks In V 1 V i-1 V i V i+1 V n-1 V n (a) In R eq R V eq R eq R 1 V i V i+1 V eq n-1 V n m (b) R eq R eq R eq R eq R eq R eq In Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.25

26 Delay Optimization Slide 17.26

27 Transmission Gate Full dder Similar delays for sum and carry Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.27

28 ell Design MOS ombinational ircuits Standard ells General purpose logic an be synthesized Same height, varying width Datapath ells For regular, structured designs (arithmetic) Includes some wiring in the cell Fixed height and width Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.28

29 Standard ell Methodology (1980 s) Routing channel V DD signals GND Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.29

30 Standard ell Methodology (1980 s) Mirrored ell No Routing channels V DD V DD M2 M3 Source: Rabaey; handrakasan; Nikolic, 2003 Mirrored ell Slide GND GND

31 Standard ells N Well V DD ell height 12 metal tracks Metal track is approx. 3λ + 3λ Pitch = repetitive distance between objects ell height is 12 pitch 2λ In Out ell boundary GND Rails ~10λ Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.31

32 Standard ells MOS ombinational ircuits With minimal diffusion routing V DD With silicided diffusion V DD In Out In Out Source: Rabaey; handrakasan; Nikolic, 2003 GND Slide GND

33 Standard ells MOS ombinational ircuits V DD 2-input NND gate Out GND Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.33

34 Sticks Diagram MOS ombinational ircuits ontains no dimensions Represents relative positions of transistors Inverter V DD NND2 V DD Out Out GND In GND Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.34

35 Sticks Diagram j Logic Graph X PUN X = ( + ) X i V DD i j GND PDN Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.35

36 Two Versions of ( + ) V DD V DD X X GND GND Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.36

37 onsistent Euler Path X X i V DD j GND Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.37

38 OI22 Logic Graph X PUN D D X = (+) (+D) X V DD D D GND PDN Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.38

39 Multi-Fingered Transistors One finger Two fingers (folded) Less diffusion capacitance Source: Rabaey; handrakasan; Nikolic, 2003 Slide 17.39

40 MOS ombinational References ircuits 1. REY, J; HNDRKSN,.; NIKOLI,. Digital Integrated ircuits: a design perspective. 2 nd Edition. Prentice Hall, ISN: WESTE, Neil; HRRIS, David. MOS VLSI Design: a circuits and systems perspective. ddison-wesley, 4 th Edition, ISN Slide 17.40

VLSI Design. Static CMOS Logic

VLSI Design. Static CMOS Logic VLSI esign Static MOS Logic [dapted from Rabaey s igital Integrated ircuits, 2002, J. Rabaey et al.] EE4121 Static MOS Logic.1 ZLM Review: MOS Process at a Glance efine active areas Etch and fill trenches

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

EE241 - Spring 2002 Advanced Digital Integrated Circuits

EE241 - Spring 2002 Advanced Digital Integrated Circuits EE241 - Spring 2002 dvanced Digital Integrated Circuits Lecture 7 MOS Logic Styles nnouncements Homework #1 due 2/19 1 Reading Chapter 7 in the text by K. ernstein ackground material from Rabaey References»

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Ratioed Logic Introduction Digital IC EE141 2 Ratioed Logic design Basic concept Resistive load Depletion

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Announcements. Advanced Digital Integrated Circuits. Quiz #3 today Homework #4 posted This lecture until 4pm

Announcements. Advanced Digital Integrated Circuits. Quiz #3 today Homework #4 posted This lecture until 4pm EE241 - Spring 2011 dvanced Digital Integrated Circuits Lecture 20: High-Performance Logic Styles nnouncements Quiz #3 today Homework #4 posted This lecture until 4pm Reading: Chapter 8 in the owhill text

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 6 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI 1 Contents Array subsystems Gate arrays technology Sea-of-gates Standard cell Macrocell

More information

Synthesis of Combinational Logic

Synthesis of Combinational Logic Synthesis of ombinational Logic 6.4 Gates F = xor Handouts: Lecture Slides, PS3, Lab2 6.4 - Spring 2 2/2/ L5 Logic Synthesis Review: K-map Minimization ) opy truth table into K-Map 2) Identify subcubes,

More information

EEC 118 Lecture #12: Dynamic Logic

EEC 118 Lecture #12: Dynamic Logic EEC 118 Lecture #12: Dynamic Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Today: Alternative MOS Logic Styles Dynamic MOS Logic Circuits: Rabaey

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 9: Pass Transistor Logic 1 Motivation In the previous lectures, we learned about Standard CMOS Digital Logic design. CMOS

More information

EE434 ASIC & Digital Systems

EE434 ASIC & Digital Systems EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Lecture 4 More on CMOS Gates Ref: Textbook chapter

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance EE241 - Spring 2006 dvanced Digital Integrated Circuits Lecture 7: Logic Families for Performance Notes Hw 1 due tomorrow Feedback on projects will be sent out by the end of the weekend Some thoughts on

More information

COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES

COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES COMPREHENSIVE ANALYSIS OF ENHANCED CARRY-LOOK AHEAD ADDER USING DIFFERENT LOGIC STYLES PSowmya #1, Pia Sarah George #2, Samyuktha T #3, Nikita Grover #4, Mrs Manurathi *1 # BTech,Electronics and Communication,Karunya

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

A High Speed Low Power Adder in Multi Output Domino Logic

A High Speed Low Power Adder in Multi Output Domino Logic Journal From the SelectedWorks of Kirat Pal Singh Winter November 28, 2014 High Speed Low Power dder in Multi Output Domino Logic Neeraj Jain, NIIST, hopal, India Puran Gour, NIIST, hopal, India rahmi

More information

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS SURVEY ND EVLUTION OF LOW-POWER FULL-DDER CELLS hmed Sayed and Hussain l-saad Department of Electrical & Computer Engineering University of California Davis, C, U.S.. STRCT In this paper, we survey various

More information

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 1 2 3 4 5 6 7 8 9 10 Sum 30 10 25 10 30 40 10 15 15 15 200 1. (30 points) Misc, Short questions (a) (2 points) Postponing the introduction of signals

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

A Literature Survey on Low PDP Adder Circuits

A Literature Survey on Low PDP Adder Circuits Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Introduction to CMOS VLSI Design (E158) Lecture 9: Cell Design

Introduction to CMOS VLSI Design (E158) Lecture 9: Cell Design Harris Introduction to CMOS VLSI Design (E158) Lecture 9: Cell Design David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH E158 Lecture

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates pass transistor logic Improved Device Models Review from Last Time The key patents that revolutionized

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology

Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology Kyung Ki Kim a) and Yong-Bin Kim b) Department of Electrical and Computer Engineering, Northeastern University, Boston, MA

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Lecture 9: Cell Design Issues

Lecture 9: Cell Design Issues Lecture 9: Cell Design Issues MAH, AEN EE271 Lecture 9 1 Overview Reading W&E 6.3 to 6.3.6 - FPGA, Gate Array, and Std Cell design W&E 5.3 - Cell design Introduction This lecture will look at some of the

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates Review from Last Time The key patents that revolutionized the electronics field: Jack Kilby (34 years old

More information

Sophisticated design of low power high speed full adder by using SR-CPL and Transmission Gate logic

Sophisticated design of low power high speed full adder by using SR-CPL and Transmission Gate logic Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Sophisticated

More information

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 11: Combinational Static Logic. Prof. Payman Zarkesh-Ha EE520 VLSI esign Lecture 11: ombinational Static Logic Prof. Payman Zarkesh-Ha Office: EE ldg. 230 Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 eview of Last

More information

Dynamic Logic. Domino logic P-E logic NORA logic 2-phase logic Multiple O/P domino logic Cascode logic 11/28/2012 1

Dynamic Logic. Domino logic P-E logic NORA logic 2-phase logic Multiple O/P domino logic Cascode logic 11/28/2012 1 Dynamic Logic Dynamic Circuits will be introduced and their performance in terms of power, area, delay, energy and AT 2 will be reviewed. We will review the following logic families: Domino logic P-E logic

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION Mr. Snehal Kumbhalkar 1, Mr. Sanjay Tembhurne 2 Department of Electronics and Communication Engineering GHRAET, Nagpur, Maharashtra,

More information

High Performance Low-Power Signed Multiplier

High Performance Low-Power Signed Multiplier High Performance Low-Power Signed Multiplier Amir R. Attarha Mehrdad Nourani VLSI Circuits & Systems Laboratory Department of Electrical and Computer Engineering University of Tehran, IRAN Email: attarha@khorshid.ece.ut.ac.ir

More information

Low power 18T pass transistor logic ripple carry adder

Low power 18T pass transistor logic ripple carry adder LETTER IEICE Electronics Express, Vol.12, No.6, 1 12 Low power 18T pass transistor logic ripple carry adder Veeraiyah Thangasamy 1, Noor Ain Kamsani 1a), Mohd Nizar Hamidon 1, Shaiful Jahari Hashim 1,

More information

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams EE 330 Lecture 5 Other Logic Styles Improved evice Models Stick iagrams Review from Last Time MOS Transistor Qualitative iscussion of n-channel Operation ulk Source Gate rain rain Gate n-channel MOSFET

More information

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh ECE 471/571 Combinatorial Circuits Lecture-7 Gurjeet Singh Propagation Delay of CMOS Gates Propagation delay of Four input NAND Gate Disadvantages of Complementary CMOS Design Increase in complexity Larger

More information

Pardeep Kumar, Susmita Mishra, Amrita Singh

Pardeep Kumar, Susmita Mishra, Amrita Singh Study of Existing Full Adders and To Design a LPFA (Low Power Full Adder) Pardeep Kumar, Susmita Mishra, Amrita Singh 1 Department of ECE, B.M.S.E.C, Muktsar, 2,3 Asstt. Professor, B.M.S.E.C, Muktsar Abstract

More information

A new 6-T multiplexer based full-adder for low power and leakage current optimization

A new 6-T multiplexer based full-adder for low power and leakage current optimization A new 6-T multiplexer based full-adder for low power and leakage current optimization G. Ramana Murthy a), C. Senthilpari, P. Velrajkumar, and T. S. Lim Faculty of Engineering and Technology, Multimedia

More information

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 87 CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 6.1 INTRODUCTION In this approach, the four types of full adders conventional, 16T, 14T and 10T have been analyzed in terms of

More information

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES Basil George 200831005 Nikhil Soni 200830014 Abstract Full adders are important components in applications such as digital

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R R 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

EE 330 Lecture 42. Other Logic Styles Digital Building Blocks

EE 330 Lecture 42. Other Logic Styles Digital Building Blocks EE 330 Lecture 42 Other Logic Styles Digital Building Blocks Logic Styles Static CMOS Complex Logic Gates Pass Transistor Logic (PTL) Pseudo NMOS Dynamic Logic Domino Zipper Static CMOS Widely used Attractive

More information

Power Optimization of FPGA Interconnect Via Circuit and CAD Techniques

Power Optimization of FPGA Interconnect Via Circuit and CAD Techniques Power Optimization of FPGA Interconnect Via Circuit and CAD Techniques Safeen Huda and Jason Anderson International Symposium on Physical Design Santa Rosa, CA, April 6, 2016 1 Motivation FPGA power increasingly

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

2-Bit Magnitude Comparator Design Using Different Logic Styles

2-Bit Magnitude Comparator Design Using Different Logic Styles International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 1 ǁ January. 2013 ǁ PP.13-24 2-Bit Magnitude Comparator Design Using Different Logic

More information

EE141-Spring 2007 Digital Integrated Circuits

EE141-Spring 2007 Digital Integrated Circuits EE141-Spring 2007 Digital Integrated Circuits Lecture 22 I/O, Power Distribution dders 1 nnouncements Homework 9 has been posted Due Tu. pr. 24, 5pm Project Phase 4 (Final) Report due Mo. pr. 30, noon

More information

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System

IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System IC Layout Design of 4-bit Universal Shift Register using Electric VLSI Design System 1 Raj Kumar Mistri, 2 Rahul Ranjan, 1,2 Assistant Professor, RTC Institute of Technology, Anandi, Ranchi, Jharkhand,

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 24: Peripheral Memory Circuits

CMPEN 411 VLSI Digital Circuits Spring Lecture 24: Peripheral Memory Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 24: Peripheral Memory Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

CMOS Circuits CONCORDIA VLSI DESIGN LAB

CMOS Circuits CONCORDIA VLSI DESIGN LAB CMOS Circuits 1 Combination and Sequential 2 Static Combinational Network CMOS Circuits Pull-up network-pmos Pull-down network-nmos Networks are complementary to each other When the circuit is dormant,

More information

ISSN:

ISSN: 343 Comparison of different design techniques of XOR & AND gate using EDA simulation tool RAZIA SULTANA 1, * JAGANNATH SAMANTA 1 M.TECH-STUDENT, ECE, Haldia Institute of Technology, Haldia, INDIA ECE,

More information

Layout - Line of Diffusion. Where are we? Line of Diffusion in General. Line of Diffusion in General. Stick Diagrams. Line of Diffusion in General

Layout - Line of Diffusion. Where are we? Line of Diffusion in General. Line of Diffusion in General. Stick Diagrams. Line of Diffusion in General Where are we? Lots of Layout issues Line of diffusion style Power pitch it-slice pitch Routing strategies Transistor sizing Wire sizing Layout - Line of Diffusion Very common layout method Start with a

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Previously: Two XOR Gates. Pass Transistor Logic. Cascaded Pass Gates

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Previously: Two XOR Gates. Pass Transistor Logic. Cascaded Pass Gates ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lecture Outline! Pass Transistor Logic! Performance Lec 15: March 2, 2017 Combination Logic: Pass Transistor Logic, and Performance 2 Previously:

More information

CHAPTER 3 NEW SLEEPY- PASS GATE

CHAPTER 3 NEW SLEEPY- PASS GATE 56 CHAPTER 3 NEW SLEEPY- PASS GATE 3.1 INTRODUCTION A circuit level design technique is presented in this chapter to reduce the overall leakage power in conventional CMOS cells. The new leakage po leepy-

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

An energy efficient full adder cell for low voltage

An energy efficient full adder cell for low voltage An energy efficient full adder cell for low voltage Keivan Navi 1a), Mehrdad Maeen 2, and Omid Hashemipour 1 1 Faculty of Electrical and Computer Engineering of Shahid Beheshti University, GC, Tehran,

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

VLSI Logic Structures

VLSI Logic Structures VLSI Logic Structures Ratioed Logic Pass-Transistor Logic Dynamic CMOS Domino Logic Zipper CMOS Spring 25 John. Chandy inary Multiplication + x Multiplicand Multiplier Partial products Result Spring 25

More information

A Study on Super Threshold FinFET Current Mode Logic Circuits

A Study on Super Threshold FinFET Current Mode Logic Circuits XUQING ZHNG et al: STUDY ON SUPER THRESHOLD FINFET CURRENT MODE LOGIC CIRCUITS Study on Super Threshold FinFET Current Mode Logic rcuits Xuqiang ZHNG, Jianping HU *, Xia ZHNG Faculty of Information Science

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM Semiconductor Memory Classification Lecture 12 Memory Circuits RWM NVRWM ROM Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Reading: Weste Ch 8.3.1-8.3.2, Rabaey

More information

A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer

A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer A Low Power and Area Efficient Full Adder Design Using GDI Multiplexer G.Bramhini M.Tech (VLSI), Vidya Jyothi Institute of Technology. G.Ravi Kumar, M.Tech Assistant Professor, Vidya Jyothi Institute of

More information

UNIT-II LOW POWER VLSI DESIGN APPROACHES

UNIT-II LOW POWER VLSI DESIGN APPROACHES UNIT-II LOW POWER VLSI DESIGN APPROACHES Low power Design through Voltage Scaling: The switching power dissipation in CMOS digital integrated circuits is a strong function of the power supply voltage.

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume. 1, Issue 5, September 2014, PP 30-42 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org

More information

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 44 Digital Circuits Other Logic Styles Dynamic Logic Circuits Course Evaluation Reminder - ll Electronic http://bit.ly/isustudentevals Review from Last Time Power Dissipation in Logic Circuits

More information

Circuit level, 32 nm, 1-bit MOSSI-ULP adder: power, PDP and area efficient base cell for unsigned multiplier

Circuit level, 32 nm, 1-bit MOSSI-ULP adder: power, PDP and area efficient base cell for unsigned multiplier LETTER IEICE Electronics Express, Vol.11, No.6, 1 7 Circuit level, 32 nm, 1-bit MOSSI-ULP adder: power, PDP and area efficient base cell for unsigned multiplier S. Vijayakumar 1a) and Reeba Korah 2b) 1

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI)

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) Mahendra Kumar Lariya 1, D. K. Mishra 2 1 M.Tech, Electronics and instrumentation Engineering, Shri G. S. Institute of Technology

More information

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Mahesh Yerragudi 1, Immanuel Phopakura 2 1 PG STUDENT, AVR & SVR Engineering College & Technology, Nandyal, AP,

More information

Implementation of Low Power High Speed Full Adder Using GDI Mux

Implementation of Low Power High Speed Full Adder Using GDI Mux Implementation of Low Power High Speed Full Adder Using GDI Mux Thanuja Kummuru M.Tech Student Department of ECE Audisankara College of Engineering and Technology. Abstract The binary adder is the critical

More information

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design International Conference on Multidisciplinary Research & Practice P a g e 625 Comparison of High Speed & Low Power Techniques & in Full Adder Design Shikha Sharma 1, ECE, Geetanjali Institute of Technical

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Circuits in CMOS VLSI. Darshana Sankhe

Circuits in CMOS VLSI. Darshana Sankhe Circuits in CMOS VLSI Darshana Sankhe Static CMOS Advantages: Static (robust) operation, low power, scalable with technology. Disadvantages: Large size: An N input gate requires 2N transistors. Large capacitance:

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 636 Low Power Consumption exemplified using XOR Gate via different logic styles Harshita Mittal, Shubham Budhiraja

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2016 Khanna Adapted from GATech ESE3060 Slides Lecture

More information

Design and Simulation of Novel Full Adder Cells using Modified GDI Cell

Design and Simulation of Novel Full Adder Cells using Modified GDI Cell Design and Simulation of Novel Full Adder Cells using Modified GDI Cell 1 John George Victor, 2 Dr M Sunil Prakash 1,2 Dept of ECE, MVGR College of Engineering, Vizianagaram, India IJECT Vo l 6, Is s u

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

Performance Analysis of High Speed Low Power Carry Look-Ahead Adder Using Different Logic Styles

Performance Analysis of High Speed Low Power Carry Look-Ahead Adder Using Different Logic Styles International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-2, Issue-6, Jan- 213 Performance Analysis of High Speed Low Power Carry Look-Ahead Adder Using Different Logic Styles

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R RW 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I.

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I. Comparison and analysis of sequential circuits using different logic styles Shofia Ram 1, Rooha Razmid Ahamed 2 1 M. Tech. Student, Dept of ECE, Rajagiri School of Engg and Technology, Cochin, Kerala 2

More information

Combinational Logic. Prof. MacDonald

Combinational Logic. Prof. MacDonald Combinational Logic Prof. MacDonald 2 Input NOR depletion NFET load l Pull Down Network can pull OUT down if either or both inputs are above Vih consequently the NOR function. l Depletion NFET could really

More information

Gdi Technique Based Carry Look Ahead Adder Design

Gdi Technique Based Carry Look Ahead Adder Design IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 01-09 e-issn: 2319 4200, p-issn No. : 2319 4197 Gdi Technique Based Carry Look Ahead Adder Design

More information

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits Research Journal of Applied Sciences, Engineering and Technology 5(10): 2991-2996, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: September 16, 2012 Accepted:

More information

FTL Based Carry Look ahead Adder Design Using Floating Gates

FTL Based Carry Look ahead Adder Design Using Floating Gates 0 International onference on ircuits, System and Simulation IPSIT vol.7 (0) (0) IASIT Press, Singapore FTL Based arry Look ahead Adder Design Using Floating Gates P.H.S.T.Murthy, K.haitanya, Malleswara

More information

Design of Low Power High Speed Hybrid Full Adder

Design of Low Power High Speed Hybrid Full Adder IJECT Vo l. 6, Is s u e 4, Oc t - De c 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Design of Low Power High Speed Hybrid Full Adder 1 P. Kiran Kumar, 2 P. Srikanth 1,2 Dept. of ECE, MVGR College

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Teaser. Pass Transistor Logic. Identify Function.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Teaser. Pass Transistor Logic. Identify Function. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lecture Outline! Pass Transistor Logic! Performance Lec 15: March 1, 2018 Combination Logic: Pass Transistor Logic, and Performance 2 Pass Transistor

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information