BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP BASICS IN LIGHT MICROSCOPY

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP BASICS IN LIGHT MICROSCOPY"

Transcription

1 BASICS IN LIGHT MICROSCOPY INTERNAL COURSE TH JANUARY

2 OVERVIEW 1. Motivation 2. Basic in optics 3. How microscope works 4. Illumination and resolution 5. Microscope optics 6. Contrasting methods -2-

3 MOTIVATION Why do we need microscopy? Main issues of microscopy -3-

4 -4- The name: Microscopy greek mikros= small skopein= to observe Observation of small objects

5 -5- HUMAN EYE Normal viewing distance mm Angular resolution a min 1 Spatial resolution h min 80 mm Nodal distance -17 mm Average retinal cell distance 1.5 mm Spectral range 400 nm nm Can resolve contrast about 5% High dynamic range 10 decades Max sensitivity at 505 nm (night, rods) Max sensitivity at 555 nm (day, cones) More sensitive to color than to intensity Most perfect sensor for light detection up to now

6 MAIN ISSUES OF MICROSCOPY low contrast low resolution low magnification

7 MAIN ISSUES OF MICROSCOPY Contrast Magnification Resolution Only fulfillment of these three conditions allows translation of information as accurately as possible from object into an image which represents that object.

8 IMAGE FORMATION Light is the messenger and transports the object information from the specimen through the microscope Light translates the object information into a microscopic image of the specimen The observer observes the microscopic image of the specimen not the specimen itself! Only best management of the light allows translation of information as accurately as possible from object into an image which represents that object!

9 MAGNIFYING GLASS a 2 a 1 virtual image object 250 mm f Magnifier increases the angular size of the object M=a 2 /a 1 Magnification is defined by focal distance of lens M=250/f Maximum magnification of magnifying glass is 10x-20x

10 GEOMETRICAL OPTICS THIN LENS Principal plane Focal length f optical axis Focal point Characterization of a lens: Focal length: f=50 mm=0.05 m Power: 1/f =20 m -1 = 20 dioptre

11 GEOMETRICAL OPTICS THIN LENS Principal plane Focal length f optical axis Focal point Working principle of lenses: Refraction Curvature

12 LENS MAKER FORMULA curvature r 2 1 f = n 1 n m 1 1 r 1 1 r 2 focal point curvature r 1 focal length Factors that determine the focal length of a lens index of refraction index of refraction of the medium radius of the front surface radius of the back surface Material Index Vacuum Air at STP Water at 20 C 1.33 Fluorite Fused quartz 1.46 Glycerine Typical crown glass 1.52 Crown glasses Spectacle crown, C Material Index Flint glasses Heavy flint glass 1.65 Sapphire 1.77 Rare earth flint Lanthanum flint Arsenic trisulfide glass 2.04 Diamond hbase/tables/indrf.html#c1

13 SIMPLE LENS TYPES

14 GEOMETRICAL OPTICS THIN LENS- IMAGE FORMATION Principal plane -f f 1 f = 1 s s 1 s 0 object optical axis s 1 image s 0 = 5.35 cm s 1 = 14.1 cm f = 3.8 cm 1 s0 = 0.19 cm 1 1 s1 = 0.07 cm 1 1 f = 0.26 cm 1 1 cm

15 GEOMETRICAL OPTICS THIN LENS- VIRTUAL IMAGE FORMATION Principal plane -f f optical axis object image

16 GEOMETRICAL OPTICS TELESCOPE -f 1 l 1 f 1 =-f 2 l 2 f 2 optical axis d=f 1 +f 2 M = f 2 f 1

17 HOW MICROSCOPE WORKS Compound microscope Convergent and infinite beam paths Components of microscope

18 COMPOUND MICROSCOPE CONVERGENT BEAM PATH Sample is placed in front of objective focal plane. Intermediate image is formed by objective and is observed through eyepiece.

19 DISADVANTAGE OF A CONVERGENT BEAM PATH Convergent beam Beam is focused differently More aberrations Parallel beam Beam is only shifted Less aberration Presence of parallel light beam is microscope light path is important for modern light microscope (for filters, and other optical elements)

20 COMPOUND MICROSCOPE INFINITY-CORRECTED BEAM PATH The sample is placed in the focal plane of the objective. Parallel light beams are focused by the tube lens. The intermediate image is observed through the eyepiece.

21 OBJECTIVE Objective are constructed of several high quality lenses. For infinity corrected objective the specimen is in the focal plane For not infinity corrected objectives the specimen is in front of the focal plane

22 EYEPIECE The eyepiece acts as a magnifier of the intermediate image

23 CAMERA AS IMAGE DETECTOR When the camera is used, the intermediate image is directly projected on the camera chip (additionally an intermediate magnifier might be used).

24 MAIN MICROSCOPE COMPONENTS Hal lamp condenser Hg lamp field diaphragm (t) aperture diaphragm (t) eyepiece objective filter cube turret focus camera field diaphragm (f) aperture diaphragm (f) stage DIC slider

25 ANATOMY OF MICROSCOPE Two independent illumination paths: Transmission Fluorescence Components for contrasting methods: DIC Dark field Phase contrast

26 HOW MICROSCOPE WORKS SUMMARY Magnifying glass has a limited magnification of 10x-20x Compound microscope makes two stage magnification initial magnification with objective further magnification with eyepiece Compound microscope beam path designs finite old microscopes infinity corrected modern microscopes There are several microscope types inverted upright

27 ILLUMINATION AND RESOLUTION Koehler illumination Diffraction of light Numerical aperture Resolution

28 REQUIREMENTS FOR ILLUMINATION Uniform over whole field of view Has all angles accepted by objective Allows optimize image brightness/contrast Allows continuous change of intensity Allows continuous change of field of view Change in illumination and imaging parts do not effect each other Realized in Kohler illumination

29 ROLE OF CONDENSER IN IMAGE FORMATION NA tot =NA obj +NA cond

30 COLLECTOR AND CONDENSER Collector gathers light from light source Condenser directs light onto the specimen

31 CONJUGATED PLANES IN OPTICAL MICROSCOPY Image forming light path (Observed with eyepiece) 1. Variable field diaphragm 2. Specimen plane 3. Intermediate image plane 4. Image plane (camera, retina) Illumination light path (Observed with Bertrand lens) 1. Lamp (filament, arc) 2. Condenser aperture diaphragm 3. Objective rear (back) focal plane 4. Eyepoint (exit pupil of microscope) Conjugated = imaged onto each other Has one diaphragm in every path If light at given plane is focused in one path, it is parallel in other path

32 LIGHT-WAVE THEORY YOUNG: DOUBLE SLIT EXPERIMENT Huygens-Fresnel Principle Each point of a wavefront can be seen as seed point for a new (circular) wave. Richard Feynman: [N]o-one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them.

33 RAYLEIGH-SOMMERFIELD DIFFRACTION Analytical solutions: Fraunhofer: small aperture, far-field Kirchhoff-Fresnel: small angle, paraxial

34 INTERFERENCE OF TWO POINT SOURCES 2 f 2 x 1 2 v 2 f 2 t x f ( x, t) a exp 2 i t k 2 2 wavenumber angular frequency phase velocity v / k f ( x, t) a exp[ i( kx t)] f ( x) a exp[ ikx)] waves in phase f ( x) cos( kx) i sin( k x) f ( y) coskrs i sin( k rs ) coskrs i sin( k rs ) coskr i sin kr S n S n 2 2 r S y d r S ( a y) d 2

35 20 mm INTERFERENCE CIRCULAR WAVE Wavelength: 500 nm y r = A 0 cos k r r = ( x 2 + y 2 ) k = 2π λ d / mm Superposition of circular waves k:=wavenumber

36 INTERFERENCE OF TWO POINT SOURCES 200 mm 4 I x / mm I = I kdsinθ

37 INTERFERENCE MULTIPLE POINT SOURCES /d /d /d /d x / mm I = I 0 sin 2 N( φ 2 ) sin 2 ( φ 2 ) φ = k d sinθ

38 d / mm DIIFRACTION SINGLE SLIT Intensity 0 I = I 0 sin( Φ 2 ) Φ 2 2

39 d / mm d / mm d / mm DIFFRACTION SINGLE SLIT 400 nm nm 600 nm Intensity Intensity mm Intensity 0

40 d / mm d / mm d / mm d / mm DIFFRACTION SINGLE SLIT slit: 20 µm slit: 10 µm slit: 5 µm slit: 0.1 µm 500 nm Intensity Intensity Intensity Intensity

41 d / mm LIGHT-WAVE THEORY FAR FIELD DIFFRACTION Parallel light Observation plane distance R R>1.3 m aperture 100 µm J. Fraunhofer ( ) Slit Circular aperture I = I 0 J 1 ( Φ 2 ) Φ 4 2 Intensity I = I 0 sin( Φ 2 ) Φ Airy disk Φ = k a sinθ sinθ min = 1.22 λ a

42 DIFFRACTION OF LIGHT A parallel beam falls on the screen with pinholes. Secondary spherical waves are formed on each pinhole. Interference results in several plane waves

43 DIFFRACTION ORDERS d = 2 1 st order (d = 5 ) for small enough structures a first diffraction maxima is perpendicular to the direct light d = 1 1 st order (d = 1.5 ) 0 +1 d sina m Direction of diffraction maxima depends on wavelength and period Bigger period results in smaller diffraction angle Bigger wavelength results in bigger diffraction angle

44 NUMERICAL APERTURE OF OBJECTIVE NA nsina 0 a 0 n 1!! n The NA defines how much light (brightness) and how many diffraction orders (resolution) are captured by the objective.

45 ROLE OF IMMERSION NA=nsina Refractive indices: Air Water Glycerol Oil Immersion media increase the NA of an objective or a condenser by bringing the beams with higher incidence angle into the light path

46 DIFFRACTION LIMITED RESOLUTION d = λ 2 (n sin θ) NA = (n sin θ) Ernst Abbe According to Abbe, a detail with a particular spacing in the specimen is resolved when the numerical aperture (NA) of the objective lens is large enough to capture the first-order diffraction pattern produced by the detail at the wavelength employed. In order to fulfill Abbe's requirements, the angular aperture of the objective must be large enough to admit both the zeroth and first order light waves

47 DEPTH OF FIELD Magnification Numerical Aperture Depth of Field (mm) Image Depth (mm) 4x x x x x x d tot = λ n NA 2 + n M NA e Diffraction limited depth of field Detection system - 47-

48 MODULATION/CONTRAST - 48-

49 SPECTRAL TECHNIQUES Fourier transform Jean Baptiste Fourier ( ): (Almost) every periodic function g(x) can be described as a sum of harmonic sinusoids. Non periodic functions can also be decribed as sums of sine and cosine functions (Fourier integral; infinitely many densley spaced frequencies) Signal Processing Discrete Fourier Transform (DFT); fast algorithm Fast Fourier Transform (FFT) Discrete Cosine Transformation (DCT)

50 FOURIER ANALYSIS/SYNTHESIS A 1.0 A A A f x = a 0 2 k=1 (a k cos kπt + b k sin(k π t)

51 FOURIER ANALYSIS/SYNTHESIS f x = a 0 2 k=1 (a k cos kπt + b k sin(k π t)

52 Amplitude FREQUENCY SPECTRUM f x = a 0 2 k=1 (a k cos kπt + b k sin(k π t)

53 FAST FOURIER TRANSFORMATION (FFT)

54 INVERSE FFT HIGH FREQUENCIES

55 INVERSE FFT LOW FREQUENCIES

56 MICROSCOPE OPTICS Aberrations in optics Objective engravings Choice of magnification

57 OPTICAL ABERRATIONS Astigmatism (tangential and meridianal focus are different) Coma (image of dot is not symmetric) Distortion (parallel lines are not parallel in image) Curvature of the field (image of plane is not flat) Chromatic (different focus for different wavelength) Spherical (different focus for on and off axis beams) It is desired to minimize aberrations by proper use of objectives with good aberration correction

58 SPHERICAL ABERRATION Use cover slip 0.17 mm thick or Use objective with correction ring Avoid refraction index mismatch of immersion and mounting media

59 CHROMATIC ABERRATION - 59-

60 OBJECTIVE TYPES Objective Type Spherical Aberration Chromatic Aberration Field Curvature Achromat 1 Color 2 Colors No Plan Achromat 1 Color 2 Colors Yes Fluorite 2-3 Colors 2-3 Colors No Plan Fluorite 3-4 Colors 2-4 Colors Yes Plan Apochromat 3-4 Colors 4-5 Colors Yes

61 WORKING DISTANCE AND PARFOCAL LENGTH Parfocal distance Distance from objective shoulder till specimen plane 45 mm for most manufactures, 60 mm for Nikon CFI 60 Working distance Distance from front edge of objective till cover slip Varies from several mm till several hundreds micrometers. Special long working distance objective are available.

62 OBJECTIVES WITH CORRECTION COLLARS NEOFLUAR optics is less color corrected than APOCHROMAT Range of cover glass thickness W W Glyc Oil Ph = phase contrast (3 specifies matching condenser) Different immersion media under various cover glass conditions

63 TOTAL MICROSCOPE MAGNIFICATION Defined by magnification of objective, eyepiece and intermediate magnification M tot =M obj x M int x M eyepiece Objective magnification defined by focal lengths of tube lens and objectives M obj =f tl /f obj Tube lens has a standardized value for specific manufacture Zeiss, Leica, Olympus 165 mm, Nikon 200 mm Typical magnification rangies: M obj : 2x 100x M int : 1.5x 2.5x M obj : 10x 25x

64 USEFUL MAGNIFICATION RANGE Microscope resolution is limited by NA and wavelength. Enlargement of image does not necessarily resolve new features. Excessively large magnification is called empty magnification. (The Airy disk on retina/camera should not exceed two cell/pixel sizes). Useful magnification = x NA of objective M obj M eyepiece NA obj M tot M useful Magnification 10x 10x low 40x 10x ok 100x 10x ok 100x 15x empty - 64

65 LIGHT BUDGET IN MICROSCOPE Microscope has a lot of components in light path Microscope optics (T=0.8) Dichroic mirror (T=0.8) Filters (T=0.8) Objective, eyepiece (T=0.9) Objective collects light only within NA (T=0.3) Typically only 10% of light arrives to CCD. Use optics with antireflection coatings Use high quality filters, dichroics Use clean optics Image brightness (transmission) ~ (NA/M) 2 Image brightness (fluorescence) ~ NA 4 /M 2 Use high NA objectives Do not use unnecessary high magnification

66 MICROSCOPE OPTICS SUMMARY Correct choice of microscope optics is the key to successful imaging Pay attention to the engravings on objective and eyepiece Optical aberrations can be minimized use well corrected optics or use green filter use cover slip 0.17 mm thick match refractive index of immersion media and specimen Choose magnification carefully excessive magnification does not reveal new details moreover it deceases the brightness of the image

67 CONTRASTING METHODS Dark field Phase contrast DIC PlasDIC

68 AMPLITUDE AND PHASE SPECIMENS Amplitude specimen changes the intensity of incident light Phase specimen changes the phase of incident light Most unstained biological specimens are phase ones

69 EXAMPLES OF CONTRASTING METHODS Dark field Bone thin section Phase contrast HEK cells DIC Neurons PlasDIC HEK cells

70 DARKFIELD CONTRAST 5 iris diaphragm 4 - objective 3 - sample 2 - condenser 1 - phase stop A - low NA objective B - high NA objective with iris Required: special condenser, sometimes immersion oil Principle: direct light is rejected or blocked, only scattered light is observed Disadvantage: low resolution

71 INTERFERENCE Addition of waves Amplitude of the resulting wave depends on the pahse relation of two waves Extreme cases: destructive interference (res. amplitude =0) positive interference With interference a phase difference can be turned into an amplitude difference Interference is the basic principle of Phase contrast and DIC.

72 PHASE CONTRAST MICROSCOPY

73 PHASE CONTRAST MICROSCOPY 9 - intermediate image 8 - tube lense 7 - indirect light 6 - direct light 5 - phase ring 4 - objective 3 - sample 2 - condenser 1 - phase stop Required: special objectives and special condensers. Principle: direct light is attenuated and its phase is shifted 90. Contrast formed due to interference between direct and scattered light. Disadvantages: relatively low resolution, halos

74 DIFFERENTIAL INTERFERENCE CONTRAST 9 - intermediate image 8 - tube lens 7 analyzer 7a - λ-plate 6 - Wollaston prism 5 objective 4 sample 3 condenser 2 Wollaston prism 1 - polariser Required: special accessories in light path (prisms, polarizers). Principle: specimen is sensed with two linear polarized slightly shifted (< ) light beams. Difference in optical path of the beams gives a contrast in image. Disadvantages: accessories are relatively expensive.

75 DIC IN DETAILS DIC prism split beam into two perpendicularly polarized. Shift between beams less that resolution of microscope. Beams measure difference in optical path in specimen. If retardation is not zero, they are interfere after being recombined on the second DIC prism.

76 PLASDIC Required: slit diaphragm, prism with polarizer, analyzer. Principle: A slit diaphragm creates a pair of non-polarized light beams that are /4 out-of-phase. The beams get polarized just before being recombined into a single beam in the DIC-prism. The analyzer (linear) sets a single polarization plane where the components of the beam can interfere.

77 CONTRASTING TECHNIQUES SUMMARY Dark field Fine structural features at, and even below, the resolution limit of a light microscope. Highly suitable for metallographic and crystallographic examinations with reflected light. Phase contrast Used for visualizing very fine structural features in tissues and single cells contained in very thin (< 5 µm), non-stained specimens. DIC Method shows optical path differences in the specimen in a relieflike fashion. The method is excellently suited for thick, non-stained specimens (> 5 µm). Can be used for optical sectioning. PlasDIC The same specimen as conventional DIC but in plastic dishes.

78 IMAGES ARE ARTEFACTS Two images of same object (sample) imaged with the same microscope/objective! Object Image of Object

79 MORE ABOUT LIGHT MICROSCOPY 1. Lecture Biomicroscopy I + II, Prof. Theo Lasser, EPFL 2. Books a) Digital microscopy, Sluder, G; Wolf, D.E., eds, Elsevier, 2003 b) Optics, 4th ed., Eugene Hecht, Addison-Wesley, Internet a) b) b) Web sites of microscope manufactures Leica Nikon Olympus Zeiss 4. BIOp EPFL, SV-AI 0241, Sv-AI

80 Acknowledgments These slides are based on a lecture given by Yuri Belyaev (Advanced Light Microscopy Facility, EMBL Heidelberg) during a practical course concerning basics of light microscopy. Thus a big thank to him for providing them and making them available also here at EPFL.

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Microscope anatomy, image formation and resolution

Microscope anatomy, image formation and resolution Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 0-471-25391-X Visit these websites:

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

Microscopy: Fundamental Principles and Practical Approaches

Microscopy: Fundamental Principles and Practical Approaches Microscopy: Fundamental Principles and Practical Approaches Simon Atkinson Online Resource: http://micro.magnet.fsu.edu/primer/index.html Book: Murphy, D.B. Fundamentals of Light Microscopy and Electronic

More information

Education in Microscopy and Digital Imaging

Education in Microscopy and Digital Imaging Contact Us Carl Zeiss Education in Microscopy and Digital Imaging ZEISS Home Products Solutions Support Online Shop ZEISS International ZEISS Campus Home Interactive Tutorials Basic Microscopy Spectral

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:... Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type)

Properties of optical instruments. Visual optical systems part 2: focal visual instruments (microscope type) Properties of optical instruments Visual optical systems part 2: focal visual instruments (microscope type) Examples of focal visual instruments magnifying glass Eyepieces Measuring microscopes from the

More information

Basics of Light Microscopy and Metallography

Basics of Light Microscopy and Metallography ENGR45: Introduction to Materials Spring 2012 Laboratory 8 Basics of Light Microscopy and Metallography In this exercise you will: gain familiarity with the proper use of a research-grade light microscope

More information

Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 1: THE LIGHT MICROSCOPE

Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 1: THE LIGHT MICROSCOPE Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 1: THE LIGHT MICROSCOPE Prior to lab: 1) Read these instructions (p 1-6) 2) Go through the online tutorial, the microscopy pre-lab

More information

Basics of confocal imaging (part I)

Basics of confocal imaging (part I) Basics of confocal imaging (part I) Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Lateral resolution BioImaging &Optics Platform Light

More information

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process.

MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process. AP BIOLOGY Cells ACTIVITY #2 MICROSCOPE LAB OBJECTIVES 1. Demonstrate proper care and use of a compound microscope. 2. Identify the parts of the microscope and describe the function of each part. 3. Compare

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Geometrical Optics Optical systems

Geometrical Optics Optical systems Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term Microscopy Lecture 2: Optical System of the Microscopy II 212-1-22 Herbert Gross Winter term 212 www.iap.uni-jena.de Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer 1 15.1. Optical

More information

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 3: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl Lecture 3: Geometrical

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

More information

Chapter 1 Parts. Figure 1.1. Parts of a Compound Light Microscope

Chapter 1 Parts. Figure 1.1. Parts of a Compound Light Microscope Chapter 1 Parts Chapter 1 Parts Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound Light Microscope

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Microscope. Dr. Leena Barhate Department of Microbiology M.J.College, Jalgaon

Microscope. Dr. Leena Barhate Department of Microbiology M.J.College, Jalgaon Microscope Dr. Leena Barhate Department of Microbiology M.J.College, Jalgaon Acknowledgement http://www.cerebromente.org.br/n17/histor y/neurons1_i.htm Google Images http://science.howstuffworks.com/lightmicroscope1.htm

More information

The Wave Nature of Light

The Wave Nature of Light The Wave Nature of Light Physics 102 Lecture 7 4 April 2002 Pick up Grating & Foil & Pin 4 Apr 2002 Physics 102 Lecture 7 1 Light acts like a wave! Last week we saw that light travels from place to place

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

BASICS OF CONFOCAL IMAGING (PART I)

BASICS OF CONFOCAL IMAGING (PART I) BASICS OF CONFOCAL IMAGING (PART I) INTERNAL COURSE 2012 LIGHT MICROSCOPY Lateral resolution Transmission Fluorescence d min 1.22 NA obj NA cond 0 0 rairy 0.61 NAobj Ernst Abbe Lord Rayleigh Depth of field

More information

Introduction. Laboratory Equipment & Supplies. Model 1333PHi Shown (Phase Contrast) (2) Eyepieces (Eyecups installed) Diopter Adjustment Mechanism

Introduction. Laboratory Equipment & Supplies. Model 1333PHi Shown (Phase Contrast) (2) Eyepieces (Eyecups installed) Diopter Adjustment Mechanism Introduction With the invention of the microscope in the early 17th century, it was made possible to view objects which were too small for the human eye to see. As the microscope evolved, the structure

More information

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26. The Refraction of Light: Lenses and Optical Instruments Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

More information

EE-527: MicroFabrication

EE-527: MicroFabrication EE-57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser x-rays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

Instruction Manual T Binocular Acromat Research Scope T Trinocular Acromat Research Scope

Instruction Manual T Binocular Acromat Research Scope T Trinocular Acromat Research Scope Research Scope Instruction Manual T-29031 Binocular Acromat Research Scope T-29041 Trinocular Acromat Research Scope T-29032 Binocular Semi-Plan Research Scope T-29042 Trinocular Semi-Plan Research Scope

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

CHAPTER TWO METALLOGRAPHY & MICROSCOPY

CHAPTER TWO METALLOGRAPHY & MICROSCOPY CHAPTER TWO METALLOGRAPHY & MICROSCOPY 1. INTRODUCTION: Materials characterisation has two main aspects: Accurately measuring the physical, mechanical and chemical properties of materials Accurately measuring

More information

The microscope is useful in making observations and collecting data in scientific experiments. Microscopy involves three basic concepts:

The microscope is useful in making observations and collecting data in scientific experiments. Microscopy involves three basic concepts: AP BIOLOGY Chapter 6 NAME DATE Block MICROSCOPE LAB PART I: COMPOUND MICROSCOPE OBJECTIVES: After completing this exercise you should be able to: Demonstrate proper care and use of a compound microscope.

More information

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Differential Interference Contrast (DIC) Verses Dark Field and Phase Contrast Microscopy. E. D. Salmon University of North Carolina at Chapel Hill

Differential Interference Contrast (DIC) Verses Dark Field and Phase Contrast Microscopy. E. D. Salmon University of North Carolina at Chapel Hill Differential Interference Contrast (DIC) Verses Dark Field and Phase Contrast Microscopy E. D. Salmon University of North Carolina at Chapel Hill How Does Contrast in DIC Differ from Phase and Pol? n e

More information

Microscopy. Danil Hammoudi.MD

Microscopy. Danil Hammoudi.MD Microscopy Danil Hammoudi.MD Care and Handling of the Microscope: A microscope is a delicate piece of equipment and should be treated with care. Use two hands when carrying the microscope. Place one hand

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Chapter 3 Optical Systems

Chapter 3 Optical Systems Chapter 3 Optical Systems The Human Eye [Reading Assignment, Hecht 5.7.1-5.7.3; see also Smith Chapter 5] retina aqueous vitreous fovea-macula cornea lens blind spot optic nerve iris cornea f b aqueous

More information

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

SECTION 1 QUESTIONS NKB.CO.IN

SECTION 1 QUESTIONS NKB.CO.IN OPTICS SECTION 1 QUESTIONS 1. A diverging beam of light falls on a plane mirror. The image formed by the mirror is a) real, erect b) virtual, inverted c) virtual, erect d) real, inverted. In a pond water

More information

ANSWER KEY Lab 2 (IGB): Bright Field and Fluorescence Optical Microscopy and Sectioning

ANSWER KEY Lab 2 (IGB): Bright Field and Fluorescence Optical Microscopy and Sectioning Phys598BP Spring 2016 University of Illinois at Urbana-Champaign ANSWER KEY Lab 2 (IGB): Bright Field and Fluorescence Optical Microscopy and Sectioning Location: IGB Core Microscopy Facility Microscope:

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

Good Practice Guide No. 39. Dimensional Measurement using Vision Systems. Tim Coveney. Issue 2

Good Practice Guide No. 39. Dimensional Measurement using Vision Systems. Tim Coveney. Issue 2 Good Practice Guide No. 39 Dimensional Measurement using Vision Systems Tim Coveney Issue 2 Measurement Good Practice Guide No. 39 Dimensional Measurement using Vision Systems Tim Coveney Engineering Measurement

More information

Reflectors vs. Refractors

Reflectors vs. Refractors 1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

More information

Köhler Illumination: A simple interpretation

Köhler Illumination: A simple interpretation Köhler Illumination: A simple interpretation 1 Ref: Proceedings of the Royal Microscopical Society, October 1983, vol. 28/4:189-192 PETER EVENNETT Department of Pure & Applied Biology, The University of

More information

Astronomical Cameras

Astronomical Cameras Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

More information

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET.

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Optics B Science Olympiad North Regional Tournament at the University of Florida 1 DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Part I: General Body Knowledge Questions 2 1) (3 PTS) For much of the

More information

A BRIEF INTRODUCTION TO MICROSCOPY The two key properties of a microscope that allow you to see microbes are resolution and magnification.

A BRIEF INTRODUCTION TO MICROSCOPY The two key properties of a microscope that allow you to see microbes are resolution and magnification. A BRIEF INTRODUCTION TO MICROSCOPY The two key properties of a microscope that allow you to see microbes are resolution and magnification. Magnification refers to the enlargement of the specimen when seen

More information

Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Early Telescopes & Geometrical Optics. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Early Telescopes & Geometrical Optics C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. 1 1.2. Image Formation Fig. 1. Snell s law indicates the bending of light at the interface of two

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

a) (6) How much time in milliseconds does the signal require to travel from the satellite to the dish antenna?

a) (6) How much time in milliseconds does the signal require to travel from the satellite to the dish antenna? General Physics II Exam 3 - Chs. 22 25 - EM Waves & Optics April, 203 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results with correct units

More information

OPELCO OPtical ELements COrporation LB Objective Series for Biological Use

OPELCO OPtical ELements COrporation  LB Objective Series for Biological Use LB Objective Series for Biological Use 105 Executive Drive Suite 100 Dulles, VA 20166-9558 Tel: (703) 471-0080 S PLAN APOCHROMAT OBJECTIVES These objectives compensate for three wavelength of chromatic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

More information

Transmission Electron Microscopy 9. The Instrument. Outline

Transmission Electron Microscopy 9. The Instrument. Outline Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation

More information

Marine Invertebrate Zoology Microscope Introduction

Marine Invertebrate Zoology Microscope Introduction Marine Invertebrate Zoology Microscope Introduction Introduction A laboratory tool that has become almost synonymous with biology is the microscope. As an extension of your eyes, the microscope is one

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Optical design of a high resolution vision lens

Optical design of a high resolution vision lens Optical design of a high resolution vision lens Paul Claassen, optical designer, paul.claassen@sioux.eu Marnix Tas, optical specialist, marnix.tas@sioux.eu Prof L.Beckmann, l.beckmann@hccnet.nl Summary:

More information

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

More information

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures! Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on!

More information

An Indian Journal FULL PAPER. Trade Science Inc. Parameters design of optical system in transmitive star simulator ABSTRACT KEYWORDS

An Indian Journal FULL PAPER. Trade Science Inc. Parameters design of optical system in transmitive star simulator ABSTRACT KEYWORDS [Type text] [Type text] [Type text] ISSN : 0974-7435 Volume 10 Issue 23 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(23), 2014 [14257-14264] Parameters design of optical system in transmitive

More information

Question 1: Define the principal focus of a concave mirror. Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting from

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

The Formation of an Aerial Image, part 3

The Formation of an Aerial Image, part 3 T h e L i t h o g r a p h y T u t o r (July 1993) The Formation of an Aerial Image, part 3 Chris A. Mack, FINLE Technologies, Austin, Texas In the last two issues, we described how a projection system

More information

Modulation Transfer Function

Modulation Transfer Function Modulation Transfer Function The resolution and performance of an optical microscope can be characterized by a quantity known as the modulation transfer function (MTF), which is a measurement of the microscope's

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

Εισαγωγική στην Οπτική Απεικόνιση

Εισαγωγική στην Οπτική Απεικόνιση Εισαγωγική στην Οπτική Απεικόνιση Δημήτριος Τζεράνης, Ph.D. Εμβιομηχανική και Βιοϊατρική Τεχνολογία Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Χειμερινό Εξάμηνο 2015 Light: A type of EM Radiation EM radiation:

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

More information

MICROSCOPY FOR THE DEVELOPMENTAL BIOLOGY STUDENT...

MICROSCOPY FOR THE DEVELOPMENTAL BIOLOGY STUDENT... MICROSCOPY FOR THE DEVELOPMENTAL BIOLOGY STUDENT... You will be using two configurations of microscope during the course of the semester to observe specimens and record your results: compound microscopes

More information

Reflection and Refraction of Light

Reflection and Refraction of Light Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information

Test procedures Page: 1 of 5

Test procedures Page: 1 of 5 Test procedures Page: 1 of 5 1 Scope This part of document establishes uniform requirements for measuring the numerical aperture of optical fibre, thereby assisting in the inspection of fibres and cables

More information

Properties of optical instruments

Properties of optical instruments Properties of optical instruments Visual optical systems part 1: afocal systems (telescope type) A basic optical description of the eye Power: 60 diopters (at rest) Equivalent to a single spherical surface,

More information