Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Save this PDF as:

Size: px
Start display at page:

Download "Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc."

Transcription

1 Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker

2 Chapter 27 Optical Instruments

3 Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying Glass The Compound Microscope Telescopes Lens Aberrations

4 27-1 The Human Eye and the Camera Light passes through the cornea of the human eye and is focused by the lens on the retina. The ciliary muscles change the shape of the lens, so it can focus at different distances. The vitreous and aqueous humors are transparent. Rods and cones on the retina convert the light into electrical impulses, which travel down the optic nerve to the brain.

5 27-1 The Human Eye and the Camera The eye produces a real, inverted image on the retina. Why don t things look upside down to us? The brain adjusts the image to appear properly.

6 27-1 The Human Eye and the Camera The ciliary muscles adjust the shape of the lens to accommodate near and far vision.

7 27-1 The Human Eye and the Camera The near point is the closest point to the eye that the lens is able to focus. For those with normal vision, it is about 25 cm from the eye, but increases with age as the lens becomes less flexible. The far point is the farthest point at which the eye can focus; it is infinitely far away, if vision is normal.

8 27-1 The Human Eye and the Camera The simplest camera consists of a lens and film in a light-tight box:

9 27-1 The Human Eye and the Camera The camera lens cannot change shape; it moves closer to or farther away from the film in order to focus. The f-number characterizes the size of the aperture: The combination of f-number and shutter speed determines the amount of light that reaches the film.

10 27-2 Lenses in Combination and Corrective Optics In a two-lens system, the image produced by the first lens serves as the object for the second lens.

11 27-2 Lenses in Combination and Corrective Optics To find the image formed by a combination of lenses, consider each lens in turn, starting with the one closest to the object. The total magnification is the product of the magnifications of each lens.

12 27-2 Lenses in Combination and Corrective Optics A nearsighted person has a far point that is a finite distance away; objects farther away will appear blurry. This is due to the lens focusing too strongly, so the image is formed in front of the retina.

13 27-2 Lenses in Combination and Corrective Optics To correct this, a diverging lens is used. Its focal length is such that a distant object forms an image at the far point:

14 27-2 Lenses in Combination and Corrective Optics The strength of corrective lenses is usually quoted as refractive power, which is the inverse of the focal length:

15 27-2 Lenses in Combination and Corrective Optics A person who is farsighted can see distant objects clearly, but cannot focus on close objects the near point is too far away. The lens of the eye is not strong enough, and the image focus is behind the retina.

16 27-2 Lenses in Combination and Corrective Optics To correct farsightedness, a converging lens is used to augment the converging power of the eye. The final image is past the near point:

17 27-3 The Magnifying Glass A magnifying glass is a simple convex lens. Working in conjunction with the eye, it makes objects appear bigger because it makes them appear closer. Similar to a corrective lens for farsightedness, it brings the near point closer to the eye.

18 27-3 The Magnifying Glass The angular size of an object is the angle it subtends on the retina, and depends both on the size of the object and its distance from the eye.

19 27-3 The Magnifying Glass This angle, assuming it is small, is given by the height of the object divided by its distance from the eye. If the object is moved closer to the eye, its angular size increases. If it is placed at the near point, its size is:

20 27-3 The Magnifying Glass Now, place a converging lens whose focal length is less than N very close to the eye, and place the object at the focal point of the lens. This gives the object a larger angular size.

21 27-3 The Magnifying Glass The angular magnification is then given by:

22 27-3 The Magnifying Glass The magnification can be maximized by having the image at the near point:

23 27-4 The Compound Microscope A compound microscope has, in its simplest form, two converging lenses. One, the eyepiece, is close to the eye, while the objective is close to the object.

24 27-4 The Compound Microscope The object is placed near the focal point of the objective lens, giving a magnification of: The image formed is at the focal point of the eyepiece, which produces an image at infinity:

25 27-4 The Compound Microscope The total magnification is given above, and is the product of the magnification of each lens.

26 27-5 Telescopes Telescopes are similar to microscopes in that they have an objective and an eyepiece. However, the objects observed are essentially at infinity, so the light will be focused at the focal point of the objective. The objects themselves are very large, but their angular size is very small due to their great distance.

27 27-5 Telescopes The image formed by the objective is at the focal point of the eyepiece.

28 27-5 Telescopes The total magnification of the telescope is the product of the magnification of each lens, and is: Telescopes using lenses are called refractors; the first telescopes made were of this type.

29 27-5 Telescopes It is desirable to have the objective of a telescope be as large as possible, so that it may collect as much light as possible. Each doubling of the diameter of the objective gives four times as much light. Very large lenses are difficult to handle; they are thick and heavy, must have two precision surfaces, and absorb more of the light the thicker they are.

30 27-5 Telescopes Therefore, large telescopes are now made as reflectors the objective is a mirror rather than a lens. The mirror has only one surface, can be made very thin, and reflects almost all the light that hits it.

31 27-6 Lens Aberrations Spherical aberration occurs when light striking the lens far from the axis does not focus properly. It can be fixed by grinding the lens to a precision, non-spherical shape.

32 27-6 Lens Aberrations Chromatic aberration occurs when different colors of light focus at different points.

33 27-6 Lens Aberrations Chromatic aberration can be improved by combining two or more lenses that tend to cancel each other s aberrations. This only works perfectly for a single wavelength, however.

34 Summary of Chapter 27 The human eye is focused by the ciliary muscles, which change the shape of the lens. A camera is focused by changing the distance from the lens to the film. The near point is the closest point at which the eye can focus, typically 25 cm. The far point is the farthest point at which the eye can focus, typically at infinity. f-number of a lens:

35 Summary of Chapter 27 In lens combinations, the image formed by one lens serves as the object for the next. Nearsightedness occurs when the image is focused in front of the retina, causing the far point to be closer than infinity. It can be corrected with a diverging lens. Farsightedness occurs when the image is focused behind the retina, causing the near point to be more than 25 cm from the eye. It can be corrected by a converging lens.

36 Summary of Chapter 27 Refractive power of a lens in diopters, when the focal length is in meters: A magnifying glass is a converging lens. Its magnification is given by:

37 Summary of Chapter 27 A compound microscope uses two lenses, the objective and the eyepiece, to form an image of a small object placed close to the focal point of the objective. Its magnification is given by:

38 Summary of Chapter 27 A refracting telescope also uses two lenses to form an image of a very distant object. Its magnification is given by: The length of the telescope will be: A telescope having a mirror instead of a lens as the objective is called a reflecting telescope.

39 Summary of Chapter 27 Lens aberrations can distort images. Spherical aberration occurs because off-axis rays do not focus at the focal point. It can be corrected by precision shaping of the lens. Chromatic aberration occurs because different frequencies of light have different indices of refraction. It can be corrected by using multiple lenses in an achromatic lens system.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

Physics 1202: Lecture 19 Today s Agenda

Physics 1202: Lecture 19 Today s Agenda Announcements: Team problems today Team 12: Kervell Baird, Matthew George, Derek Schultz Team 13: Paxton Stowik, Stacey Ann Burke Team 14: Gregory Desautels, Benjamin

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

Chapter 25 Optical Instruments

Chapter 25 Optical Instruments Units of Chapter 25 Cameras, Film, and Digital The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of

Chapter 36. Image Formation

Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

Chapter 36. Image Formation

Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

Chapter 25: Applied Optics. PHY2054: Chapter 25

Chapter 25: Applied Optics PHY2054: Chapter 25 1 Operation of the Eye 24 mm PHY2054: Chapter 25 2 Essential parts of the eye Cornea transparent outer structure Pupil opening for light Lens partially focuses

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

Chapter 25. Optical Instruments

Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

30 Lenses. Lenses change the paths of light.

Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

30 Lenses. Lenses change the paths of light.

Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

The eye & corrective lenses

Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

General Physics II. Optical Instruments

General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C Cameras and the Human Eye CAMERAS A typical camera uses a converging lens to focus a real (inverted) image onto photographic film (or in a digital camera the image is on a CCD chip). Light goes

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles

Physics 02: Lecture 9 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9, Slide 3 Cases for Converging Lenses Object Past 2F Image Inverted Reduced Real Object Between F & 2F Image Inverted Enlarged

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

PHY132 Introduction to Physics II Class 7 Outline:

Ch. 24 PHY132 Introduction to Physics II Class 7 Outline: Lenses in Combination The Camera Vision Magnifiers Class 7 Preclass Quiz on MasteringPhysics This was due this morning at 8:00am 662 students submitted

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

Physics 1C. Lecture 25B

Physics 1C Lecture 25B "More than 50 years ago, Austrian researcher Ivo Kohler gave people goggles thats severely distorted their vision: The lenses turned the world upside down. After several weeks, subjects

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

Unit 3: Energy On the Move

14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

Life Science Chapter 2 Study Guide

Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

Chapter 36. Image Formation

Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

PHY 1160C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 13, 15, 20, 25, 27

PHY 60C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 3, 5, 20, 25, 27 26.2 A pin-hole camera is used to take a photograph of a student who is.8 m tall. The student stands 2.7 m in front

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

Physics 208 Spring 2008 Lab 2: Lenses and the eye

Name Section Physics 208 Spring 2008 Lab 2: Lenses and the eye Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

sclera pupil What happens to light that enters the eye?

Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

Physics 222, October 25

Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) Lecture Notes Lecture 036: Application of Lenses - the Human Eye SteveSekula, 1 December 2010 (created 30 November 2010) Goals of this lecture no tags conclude the discussion

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS SIMPLE MICROSCOPE A simple microscope consists of a single convex lens of a short focal length. The object

Applications of Optics

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

25 cm. 60 cm. 50 cm. 40 cm.

Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

Chapter 18 Optical Elements

Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

Refraction, Lenses, and Prisms

CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

Optics: Lenses & Mirrors

Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

Optical Systems. The normal eye

Optical Systems The normal eye The ciliary muscles can adjust the shape of the lens of the human eye. As the eye attempts to see objects at different distances, the muscles will adjust the focal length

OPTICAL SYSTEMS OBJECTIVES

101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

CHAPTER 34. Optical Images

CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Signed in as RONALD GILMAN, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

The Optics of Mirrors

Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

Physics 1230: Light and Color

Physics 1230: Light and Color Exam 4 cancelled: Exam extra credit assignment will be due Wed. at 5PM Extra credit to improve exam scores! HW9: Due today, Monday, 5PM FCQ at end of lecture. Lecture 13:

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

Where should the fisherman aim? The fish is not moving.

Where should the fisherman aim? The fish is not moving. When a wave hits a boundary it can Reflect Refract Reflect and Refract Be Absorbed Refraction The change in speed and direction of a wave Due to

Unit 2: Optics Part 2

Unit 2: Optics Part 2 Refraction of Visible Light 1. Bent-stick effect: When light passes from one medium to another (for example, when a beam of light passes through air and into water, or vice versa),

Exam 3--PHYS 151--S15

Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

Unit 3: Chapter 6. Refraction

Unit 3: Chapter 6 Refraction Refraction of Visible Light 2 Examples: 1. Bent-stick effect: When light passes from one medium to another (ex: from air into water), the change of speed causes it to change

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras

Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Guest Lecture, Jack again Lecture 23: More about

[ Summary. 3i = 1* 6i = 4J;

the projections at angle 2. We calculate the difference between the measured projections at angle 2 (6 and 14) and the projections based on the previous esti mate (top row: 2>\ + 6\ = 10; same for bottom

Physics of the Eye *

OpenStax-CNX module: m42482 1 Physics of the Eye * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the image formation by

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

Ch 24. Geometric Optics

text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

Optical systems WikiOptics

Optical systems 2012. 6. 26 1 Contents 1. Eyeglasses 2. The magnifying glass 3. Eyepieces 4. The compound microscope 5. The telescope 6. The Camera Source 1) Optics Hecht, Eugene, 1989, Addison-Wesley

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

Aberrations, Camera, Eye

Aberrations, Camera, Eye This is a question that we probably can't answer. If the Invisible Man is also blind because no light is being absorbed by his retinas, then when we die and become spirits that

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

Lecture 15 Chap. 6 Optical Instruments. Single lens instruments Eyeglasses Magnifying glass. Two lens Telescope & binoculars Microscope

Lecture 15 Chap. 6 Optical Instruments Single lens instruments Eyeglasses Magnifying glass Two lens Telescope & binoculars Microscope The projector Projection lens Field lens October 12, 2010 all these

Physics 1230 Homework 8 Due Friday June 24, 2016

At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010

Introduction Most of the subject material in this lab can be found in Chapter 25 of Serway and Faughn. In this lab, you will make images of images using lenses and the optical bench (Experiment A). IT

Grade 8. Light and Optics. Unit exam

Grade 8 Light and Optics Unit exam Unit C - Light and Optics 1. Over the years many scientists have contributed to our understanding of light. All the properties listed below about light are correct except:

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

!"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

INSTRUCTORS GUIDE FOR THE HUMAN EYE AND VISION

INSTRUCTORS GUIDE FOR THE HUMAN EYE AND VISION Modern Miracle Medical Machines Dyan McBride Based on similar lessons developed by the Hartmut Wiesner & Physics Education Group, LMU Munich Our most important

5. GEOMETRIC OPTICS Readings: Hecht, Chapter 24 Introduction In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems

Information for Physics 1201 Midterm 2 Wednesday, March 27

My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 1201 Midterm 2 Wednesday, March 27 1) Format: 10 multiple choice questions (each worth 5 points) and

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

Chapter Content Mastery What is light? LESSON 1 Directions: Use the letters on the diagram to identify the parts of the wave listed below. Write the correct letters on the line provided. 1. amplitude 2.

Lenses. Images. Difference between Real and Virtual Images

Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20