# Chapter 2 - Geometric Optics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 David J. Starling Penn State Hazleton PHYS 214

2 The human eye is a visual system that collects light and forms an image on the retina.

3 The human eye is a visual system that collects light and forms an image on the retina. The lens changes shape to to image objects at different distances.

4 Without a visual system, light spreads out in all directions.

5 Without a visual system, light spreads out in all directions. Wavefronts propagate spherically from the source unless blocked or collected and imaged with a lens or mirror.

6 An image is a reproduction of an object in the form of light.

7 An image is a reproduction of an object in the form of light. A real image faithfully reproduces the object without a visual system.

8 An image is a reproduction of an object in the form of light. A real image faithfully reproduces the object without a visual system. A virtual image requires a visual system to reproduce the object.

9 Plane (flat) mirrors form virtual images.

10 Plane (flat) mirrors form virtual images. Using the eye to form the real image, the object appears to be on the opposite side of the mirror. (note: i = p)

11 We often draw objects (O) and images (I) as arrows.

12 We often draw objects (O) and images (I) as arrows. magnification: the size of the arrow inversion: direction of arrow location: distance from mirror (p > 0 and i < 0)

13 Spherical mirrors make the rays diverge either more quickly or more slowly compared to a plane mirror.

14 Spherical mirrors make the rays diverge either more quickly or more slowly compared to a plane mirror. The radius of curvature of the mirror r determines how the virtual image will form.

15 A concave mirror caves in toward the object and forms a virtual image that is magnified but appears far away.

16 A concave mirror caves in toward the object and forms a virtual image that is magnified but appears far away. C is the center of curvature. Distances are measured from the face of the mirror with p > 0 and i < 0.

17 A convex mirror bends away from the object and forms a virtual image that is shrunk but appears closer.

18 A convex mirror bends away from the object and forms a virtual image that is shrunk but appears closer. This gives the viewer a larger field of view and is how rear-view and side-view mirrors for cars are made.

19 Spherical mirrors have a focus at a distance f = ±r/2.

20 Spherical mirrors have a focus at a distance f = ±r/2. A concave mirror focuses parallel rays to a point. A convex mirror produces a virtual focus.

21 Convex mirrors always form virtual images (the rays always diverge). But a concave mirror can form a real image.

22 Convex mirrors always form virtual images (the rays always diverge). But a concave mirror can form a real image. How can we predict the location and size of the image?

23 For a mirror or lens, the focal length, image and object distances are related by: 1 p + 1 i = 1 f (1)

24 For a mirror or lens, the focal length, image and object distances are related by: 1 p + 1 i = 1 f (1) From this, we can predict i given f and p [i = fp/(p f )].

25 The magnification is the ratio of the image size to the object size: m = h h

26 The magnification is the ratio of the image size to the object size: m = h h Using similar triangles, we find that m = i/p.

27 There are four rays that can be used to locate the image.

28 There are four rays that can be used to locate the image. Incoming parallel ray reflects through focus.

29 There are four rays that can be used to locate the image. Incoming parallel ray reflects through focus. Incoming focal ray reflect parallel.

30 There are four rays that can be used to locate the image. Incoming parallel ray reflects through focus. Incoming focal ray reflect parallel. Incoming central ray reflects on itself.

31 There are four rays that can be used to locate the image. Incoming parallel ray reflects through focus. Incoming focal ray reflect parallel. Incoming central ray reflects on itself. Incoming centered ray reflects symmetrically.

32 Lecture Question 2.1 An object is placed at the center of curvature of a concave spherical mirror. Which of the following descriptions best describes the image produced in this situation? (a) upright, larger, real (b) inverted, same size, real (c) upright, larger, virtual (d) inverted, smaller, real (e) inverted, larger, virtual

33 A lens is a transparent object used to shape light.

34 A lens is a transparent object used to shape light. The material and shape of the object determine how it behaves.

35 Consider a simplified lens with only one refracting surface.

36 Consider a simplified lens with only one refracting surface. This system is governed by n 1 p + n 2 i = n 2 n 1 r (2)

37 There are other possible geometries:

38 There are other possible geometries: n 1 p + n 2 i = n 2 n 1 r

39 The lens maker s equation determines the focal length given the lens s physical properties. 1 f ( 1 = (n 1) 1 ) r 1 r 2 (3)

40 The lens maker s equation determines the focal length given the lens s physical properties. 1 f ( 1 = (n 1) 1 ) r 1 r 2 (3) Here, the radii are r 1 and r 2 and index of refraction is n.

41 The focal point can be found using parallel rays.

42 The focal point can be found using parallel rays. A convex lens has a real focal point, but a concave lens has a virtual focal point.

43 Converging lenses have positive focal lengths, but diverging lenses have negative focal lengths.

44 Converging lenses have positive focal lengths, but diverging lenses have negative focal lengths. This is important in applications of the thin lens equation ( 1 p + 1 i = 1 f ).

45 Three rays (parallel, focal and central) can be used to find the image of an object with a thin lens.

46 Three rays (parallel, focal and central) can be used to find the image of an object with a thin lens. Parallel ray: moves parallel to the central axis, then passes through the focal point Focal ray: reversed (first through the focus, then parallel) Central ray: passes through the center of the lens unaffected.

47 When imaging with two lenses, apply the thin lens equation (a) on the first lens, ignoring lens two; (b) then on the second lens, ignoring lens one.

48 When imaging with two lenses, apply the thin lens equation (a) on the first lens, ignoring lens two; (b) then on the second lens, ignoring lens one.

49 When imaging with two lenses, apply the thin lens equation (a) on the first lens, ignoring lens two; (b) then on the second lens, ignoring lens one. The image of lens 1 is an object for lens 2.

50 The image of lens 1 can be past lens 2 entirely.

51 The image of lens 1 can be past lens 2 entirely. In this case, the object distance p 2 for lens 2 is negative.

52 There are many other arrangements.

53 When finding the resulting image, it s important to note whether the image is inverted or not by tracing the rays. There are many other arrangements.

54 Lecture Question 2.2 An object is located 25 cm to the left of a converging lens that has a focal length of 12 cm, producing a real image. If you wanted to produce a larger real image without changing the distance between the object and lens, you should replace the lens with a (a) 4 cm focal length diverging lens. (b) 4 cm focal length converging lens. (c) 12 cm focal length diverging lens. (d) 20 cm focal length converging lens. (e) 20 cm focal length diverging lens.

55 The near point P n of the eye is the closest distance the eye can bring into focus (about 25 cm).

56 The near point P n of the eye is the closest distance the eye can bring into focus (about 25 cm). However, using a magnifying glass, objects can be brought closer than 25 cm while appearing to be much father away.

57 The magnifying glass creates a virtual image outside the near point, allowing the eye to focus on the object despite its proximity.

58 The magnifying glass creates a virtual image outside the near point, allowing the eye to focus on the object despite its proximity. The magnification is approximately m θ = 25/f where the focal length is in centimeters.

59 The compound microscope uses two lenses to magnify an object.

60 The compound microscope uses two lenses to magnify an object. The overall magnification is given by the magnification of the two lenses: M = m ob m ey s 25 cm f ob f ey.

61 A telescope images very large objects at very large distances (opposite of a microscope).

62 A telescope images very large objects at very large distances (opposite of a microscope). Here, the magnification is just the ratio of the focal lengths, m = f ob /f ey.

63 Lecture Question 2.3 To see the rings of Saturn, you need to resolve close to 1 arcsec ( ) of angle. Since, the human eye can only resolve about 60 arcsec of angle ( ), a telescope must be used. If your telescope has a 1200 mm focal length objective lens, focal length eyepiece is required to see the rings of Saturn? (a) 80 mm (b) 48 mm (c) 20 mm (d) 19 mm (e) 17 mm

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

### Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

### 2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

### Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

### Physics 222, October 25

Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

### Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

### Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

### Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

### Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

### King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

### Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

### Waves & Oscillations

Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

### Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### Name: Lab Partner: Section:

Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

### NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

### Physics 132: Lecture Fundamentals of Physics II

Physics 132: Lecture Fundamentals of Physics II Mirrors Agenda for Today Concave Convex Mirror equation Curved mirrors A Spherical Mirror: section of a sphere. R light ray C Concave mirror principal axis

### General Physics II. Optical Instruments

General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

### Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

### Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

### Ch 24. Geometric Optics

text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

### LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

### Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

### Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

### Reflection and Refraction of Light

Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

### CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

### Chapter 18 Optical Elements

Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

### Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

### Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

### Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

### Physics II. Chapter 23. Spring 2018

Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

### Physics Worksheet. Topic -Light. Q1 If the radius of curvature of spherical mirror is 20 cm, what is its focal length.

Physics Worksheet Topic -Light Q1 If the radius of curvature of spherical mirror is 20 cm, what is its focal length. (Ans: 10 cm) Q2 Calculate the radius of curvature of spherical mirror whose focal length

### mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

### Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

### Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

### Physics 132: Lecture Fundamentals of Physics II

Physics 132: Lecture Fundamentals of Physics II Mirrors Agenda for Today Concave Convex Mirror equation Curved Mirrors A Spherical Mirror: section of a sphere. R light ray C Concave mirror principal axis

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### Determination of Focal Length of A Converging Lens and Mirror

Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

### Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures! Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on!

### Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

### Chapter 36. Image Formation

Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

### Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive

Comparison between mirror lenses and refractive lenses Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative Convex Focal Length Negative Focal Length Positive Image location

### Lab 11: Lenses and Ray Tracing

Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

### 28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

### Chapter 36. Image Formation

Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

### Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

### Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

### Phy 212: General Physics II

Phy 212: General Physics II Chapter 34: Images Lecture Notes Geometrical (Ray) Optics Geometrical Optics is an approximate treatment o light waves as straight lines (rays) or the description o image ormation

### Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

### Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

### Unit 5.B Geometric Optics

Unit 5.B Geometric Optics Early Booklet E.C.: + 1 Unit 5.B Hwk. Pts.: / 18 Unit 5.B Lab Pts.: / 25 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Geometric Optics 1. Convex surfaces

### Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

### Class-X Assignment (Chapter-10) Light-Reflection & Refraction

Class-X Assignment (Chapter-10) Light-Reflection & Refraction Q 1. How does light enable us to see an object? Q 2. What is a concave mirror? Q 3. What is the relationship between focal length and radius

### Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

### Physics 1C. Lecture 25B

Physics 1C Lecture 25B "More than 50 years ago, Austrian researcher Ivo Kohler gave people goggles thats severely distorted their vision: The lenses turned the world upside down. After several weeks, subjects

### INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK 1. Q. A small candle 2.5cm in size is placed at 27 cm in front of concave mirror of radius

### Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

### GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

### PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

### Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

### Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

### Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

### 2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

### Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

### 9. THINK A concave mirror has a positive value of focal length.

9. THINK A concave mirror has a positive value o ocal length. EXPRESS For spherical mirrors, the ocal length is related to the radius o curvature r by r/2. The object distance p, the image distance i,

### BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

### E X P E R I M E N T 12

E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

### University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

### Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

### Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

### Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

### LAB 12 Reflection and Refraction

Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

### REFLECTION THROUGH LENS

REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

### 19. Ray Optics. S. G. Rajeev. April 2, 2009

9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.

### Experiment 3: Reflection

Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

### Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

### Part 1 Investigating Snell s Law

Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

### 12:40-2:40 3:00-4:00 PM

Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

### Optics: Lenses & Mirrors

Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

### !"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

### Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

### Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

### Academic Year: 2017/2018 Term 3 Physics - Grade 10 Revision sheet Chapter 13: section 1,2,3 / Chapter 14: section 1 pages: ( ),( )

Academic Year: 2017/2018 Term 3 Physics - Grade 10 Revision sheet Chapter 13: section 1,2,3 / Chapter 14: section 1 pages: (442-462),(482-487) Spherical curved mirrors : a mirror that has the shape of

### 30 Lenses. Lenses change the paths of light.

Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

### 30 Lenses. Lenses change the paths of light.

Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

### PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

### Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website:

Lecture 25 Chapter 23 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

### Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

Lenses Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Focusing power of the lens is function of radius of curvature of each surface and index of refraction of lens.

### There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

### CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

### WAVES: REFLECTION QUESTIONS

WAVES: REFLECTION QUESTIONS Concave and convex mirrors (2017;1) Sarah placed a candle in front of a concave mirror. Draw two rays from the candle (object) to locate the position of the image. Draw and

### Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

### 19. Ray Optics. S. G. Rajeev. April 2, 2009

9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.