Where should the fisherman aim? The fish is not moving.

Size: px
Start display at page:

Download "Where should the fisherman aim? The fish is not moving."

Transcription

1 Where should the fisherman aim? The fish is not moving.

2 When a wave hits a boundary it can Reflect Refract Reflect and Refract Be Absorbed

3 Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection) Amount of bending is determined by Optical Density of the media

4 What do you think? Will a light wave travel faster or slower as it enters more dense media? Slower If the speed changes, will the frequency change? No, just the wavelength If the speed travels slower, what will happen to the wavelength? It will decrease What is the maximum speed? The speed of light

5 For refraction of light: the wave speed is always greatest in the medium least dense the wavelength is always greatest in the medium least dense the frequency of a wave does when crossing a boundary does not

6 For refraction of light: When light passes from a more optically dense medium into a less optically dense medium, it will bend the normal. Away When light passes from a less optically dense medium into a more optically dense medium, it will bend the normal. Towards

7 The normal line is drawn perpendicular to the boundary between the media θ i θ r = angle of incidence = angle of refraction

8 Diagrams of Refraction Less dense Incident Ray Normal θ i Boundary θ r Refracted Ray More dense

9 Diagrams of Refraction More dense Incident Ray Normal θ i Boundary θ r Refracted Ray Less dense

10 Memory trick AWAY FAST GAS TOWARDS SLOW SOLID

11 Review: When light passes from a more optically dense medium into a less optically dense medium, it will bend the normal. Away When light passes from a less optically dense medium into a more optically dense medium, it will bend the normal. Towards

12 Demo: Cornstarch Oil stirring rod Penny Stirring rod and letters

13 Incident Ray What do you think will happen to the light ray on the other side?

14 Light rays that strike the parallel sided glass figure perpendicular to the side will pass straight through the piece of glass without bending. Incident Ray Emergent Ray

15 What do you think will happen to the light ray on the other side? Incident Ray

16 Refraction Diagram WS

17 Aim in front He must aim at a position on the water below where the fish appears to be. Since light refracts away from the normal (water to air) as Arthur sights at the fish, the refracted ray when extended backwards passes over the head of where the fish actually is.

18 Mirages 18

19 Rainbows Interesting tidbit: Sun is behind you for you to see a rainbow 19

20 Rainbows are due to refraction and reflection in water droplets 20

21 How do we quantify optical density? We know light travels at 3 x 10 8 m/s in a vacuum We know as optically density of medium increases, light speed decreases

22 Optical Density Described by Index of Refraction n stands for the index A measure of the ratio of light speed traveling in a vacuum and light speed traveling in another medium

23 Index of Refraction n c v substance Where n = index of refraction c = speed of light in a vacuum v = velocity of light in medium

24 Index of Refraction What is n in a vacuum? n = exactly 1 in a perfect vacuum How do you think the speed of light changes in air? Very little. Speed in air = x 10 8 m/s. What would be n air n = in air not significant, so use n=1 for air n > 1 for all materials As density increases, what will happen to the index of refraction? It increases

25 Ex 1 The speed of light in a type of plastic is 2.00 x 10 8 m/s. What is the index of refraction for the plastic? n = c/v n = 3.00 x 10 8 m/s 2.00 x 10 8 m/s n = 1.5 Did light travel faster or slower upon entering the plastic? Slower How did the frequency change? It doesn t How would the wavelength change? It would decrease

26 Ex 2 What is the speed of light as it travels through water? n water = 1.33 n = c/v v sub = c/n v sub = 3.00 x 10 8 m/s 1.33 v sub = 2.26x 10 8 m/s

27 NO UNIT FOR Index of refraction. It is a ratio

28 Mirages 28

29 Rainbows Interesting tidbit: Sun is behind you for you to see a rainbow 29

30 Rainbows are due to refraction and reflection in water droplets 30

31

32 Google Image Result for bwbmp.gif

33

34 Refraction and Lenses

35 The most common application of refraction in science and technology is lenses. The kind of lenses we typically think of are made of glass or plastic. The basic rules of refraction still apply but due to the curved surface of the lenses, they create images.

36 real image inverted image on opposite side of lens from object where light rays actually converge ( cross ) can project on screen (Your retina is a screen ) virtual image upright image on the same side of lens as object where light rays appear to cross not projectable

37 REAL IMAGE FORMATION BY LENSES

38 VIRTUAL IMAGE FORMATION BY LENSES

39 Two main types of lenses Converging (convex) Diverging (concave) focal length (f) of a lens depends on: shape index of refraction

40 Converging Lenses = Convex Lenses thick in the center and thin at the edges focus light rays farsightedness (hyperopia) form virtual images (upright & enlarged) when object inside f aka magnifying Lenses Forms real images when object beyond f Object is here. This is the Front. f Eye here. Behind lens

41 Diverging Lenses = Concave Lenses thin in the center and thick at the edges spread out light rays for nearsightedness (myopia) virtual images only (where refracted rays appear to cross always upright and reduced aka reducing lenses Object is here. This is the Front. f Eye here. Behind lens

42

43 CONVEX LENSES Where is the object when the image is the same size? Where is the object when there is no image?

44 The eye contains a convex lens. This lens focuses images on the back wall of the eye known as the retina.

45 VISION PROBLEMS: MYOPIA is when image is formed in front of retina and is also known as nearsightedness and is corrected with a concave lens

46 Someone who is nearsighted can see near objects more clearly than far objects. The retina is too far from the lens and the eye muscles are unable to make the lens thin enough to compensate for this. Diverging glass lenses are used to extend the effective focal length of the eye lens.

47 VISION PROBLEMS: HYPEROPIA is when image is formed behind the retina and is also known as farsightedness and is corrected with a convex lens

48 Someone who is farsighted can see far objects more clearly than near objects. The retina is now too close to the lens. The lens would have to be considerable thickened to make up for this. A converging glass lens is used to shorten the effective focal length of the eye lens. Today s corrective lenses are carefully ground to help the individual eye but cruder lenses for many purposes were made for 300 years before the refractive behavior of light was fully understood.

49 VISION PROBLEMS: ASTIGMATISM is when the eye is shaped like a football rather than the normal eye that has a round shape similar to basketball. It causes certain amounts of distortion or pitched images because of the uneven bending of light rays entering the eye.

50 Lens Equation (1/f) = (1/d o ) + (1/d i ) f = focal length d o = object distance d i = image distance

51 Lens Magnification Equation M = -(d i / d o ) = (h i / h o ) M = magnification d i = image distance d o = object distance h i = image height h o = object height

52 f d i d o h i h o M Lens Sign Conventions + for Converging Lenses - for Diverging Lenses + for images on opposite side of lens from object (real) - for images on same side of lens as object (virtual) + always + if upright image - if inverted image + always + if virtual - if real image Magnitude of magnification <1 if smaller =1 if same size

53 Ex. 7 Camera lenses are described in terms of their focal length. A 50 mm lens has a focal length of 50 mm. Do cameras use converging or diverging lenses? What does d i represent? a. Where is the image (from the lens) of the above camera when it is focused on an object 3.0 meters away? b. What is the magnification of the image? c. If the object is 1.5 m tall, what is the height of the image? (Students need to add this to their notesheet)

54 Ex. 7 Camera lenses are described in terms of their focal length. A 50 mm lens has a focal length of 50 mm. Do cameras use converging or diverging lenses? Converging Convex What does d i represent? The location of the image on the film a. Where is the image (from the lens) of the above camera when it is focused on an object 3.0 meters away? f = 50 mm do = 3m = 3000mm 1/f = 1/d o + 1/d i 1/d i = 1/f - 1/d o 1/d i = 1/50mm - 1/3000mm 1/d i = mm d i = 50.85mm

55 Ex. 7 Camera lenses are described in terms of their focal length. A 50 mm lens has a focal length of 50 mm. f = 50 mm do = 3m = 3000mm di = 50.85mm b. What is the magnification of the image? M = -d i /d o M = mm/3000mm M = Negative means it is real; means it is reduced

56 Ex. 7 Camera lenses are described in terms of their focal length. A 50 mm lens has a focal length of 50 mm. f = 50 mm do = 3m = 3000mm di = 50.85mm M = c. If the object is 1.5 m tall, what is the height of the image? (Students need to add this to their notesheet) M = h i /h o h i = Md o h i = (-0.017) (1.5m) h i = m Negative means it is real

57 Rules for Locating Refracted Images 1. Start at top of object. Light rays that travel through the center of the lens (where the principle axis intersects the midline) are not refracted and continues along the same path. 2. Start at top of object. Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

58 Images formed by Convex lenses

59 Locating images in convex lenses

60 Convex Lenses with the Object located beyond 2f

61 Convex Lens Object located beyond C C C f f Light rays that travel through the center of the lens are not refracted and continue along the same path.

62 Convex Lens Object located beyond 2f 2f 2f f f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

63 Convex Lens Object located beyond 2f 2f Image: Real Inverted Smaller 2f f f The image is located where the refracted light rays intersect

64 Convex Lenses with the Object located at 2f

65 Convex Lens Object located at 2f 2f 2f f f Light rays that travel through the center of the lens are not refracted and continue along the same path.

66 Convex Lens Object located at 2f 2f 2f f f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

67 Convex Lens Object located at 2f 2f Image: 2f f f Real Inverted Same Size The image is located where the refracted light rays intersect

68 Convex Lenses with the Object located between f and 2f

69 Convex Lens Object located between f and 2f 2f 2f f f Light rays that travel through the center of the lens are not refracted and continue along the same path.

70 Convex Lens Object located between f and 2f 2f 2f f f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

71 Convex Lens Object located between f and 2f 2f Image: 2f f f Real Inverted Larger Beyond 2f The image is located where the refracted light rays intersect

72 Convex Lenses with the Object located at f

73 Convex Lens Object located at f 2f 2f f f Light rays that travel through the center of the lens are not refracted and continue along the same path.

74 Convex Lens Object located at f 2f 2f f f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

75 All refracted light rays are parallel and do not cross Convex Lens Object located at f 2f 2f No image is formed. f f

76 Convex Lenses with the Object located between f and the lens

77 Convex Lens Object located between f and the lens 2f 2f f f Light rays that travel through the center of the lens are not refracted and continue along the same path.

78 Convex Lens Object located between f and the lens 2f 2f f f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

79 Convex Lens Object located between f and the lens 2f 2f f f These to refracted rays do not cross to the right of the lens so we have to project them back behind the lens.

80 Convex Lens Image: 2f Virtual Upright Larger Further away f f Object located between f and the lens 2f The image is located at the point which the refracted rays APPEAR to have crossed behind the lens

81 Images formed by concave lenses

82 Locating images in concave lenses

83 Concave Lenses with the Object located anywhere

84 Concave Lens Object located anywhere 2f f f 2f Light rays that travel through the center of the lens are not refracted and continue along the same path.

85 Concave Lens Object located anywhere 2f f f 2f Light rays that travel parallel to the principle axis, strike the lens, and are refracted through the focal point (f).

86 Concave Lens Object located anywhere Image: Virtual 2f f f 2f Upright Smaller Between f and the lens The image is located where the refracted light rays appear to have intersected

Refraction and Lenses

Refraction and Lenses Reraction and Lenses The most common application o reraction in science and technology is lenses. The kind o lenses we typically think o are made o glass or plastic. The basic rules o reraction still apply

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

More information

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) 1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

More information

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Unit 2: Optics Part 2

Unit 2: Optics Part 2 Unit 2: Optics Part 2 Refraction of Visible Light 1. Bent-stick effect: When light passes from one medium to another (for example, when a beam of light passes through air and into water, or vice versa),

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

Unit 3: Chapter 6. Refraction

Unit 3: Chapter 6. Refraction Unit 3: Chapter 6 Refraction Refraction of Visible Light 2 Examples: 1. Bent-stick effect: When light passes from one medium to another (ex: from air into water), the change of speed causes it to change

More information

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya LIGHT ENERGY FOR LIFE 2 Presented by- Ms.Priya VOCABULARY 1. Opaque 2. Transparent 3. Translucent 4. Refraction 5. Reflection 6. Ray 7. Image 8. Virtual image 9. Medium 10.Vacuum 11. Lens 12. Spectrum

More information

Optics: Lenses & Mirrors

Optics: Lenses & Mirrors Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

More information

The eye & corrective lenses

The eye & corrective lenses Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Chapter 13- Refraction and Lenses

Chapter 13- Refraction and Lenses hapter 13- Refraction and Lenses We have already established that light is an electromagnetic wave, so it does not require a medium to travel through. However, we know from the personal experience of being

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

More information

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

LENSES. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

LENSES. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. 1 LENSES A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of Lenses There are two types of basic lenses: Converging/

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26. The Refraction of Light: Lenses and Optical Instruments Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information

Ch. 18 Notes 3/28/16

Ch. 18 Notes 3/28/16 Section 1 Light & Color: Vocabulary Transparent material: transmits most of the light that strikes it. Light passes through without being scattered, so you can see clearly what is on the other side. Ex.

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9, Slide 3 Cases for Converging Lenses Object Past 2F Image Inverted Reduced Real Object Between F & 2F Image Inverted Enlarged

More information

Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics. PSI AP Physics 2. Multiple-Choice Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

More information

Refraction and Lenses

Refraction and Lenses Refraction and Lenses Name Q.(a) Figure shows a ray of light entering a glass block. (i) The angle of incidence in Figure is labelled with the letter i. On Figure, use the letter r to label the angle of

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Chapter 25: Applied Optics. PHY2054: Chapter 25

Chapter 25: Applied Optics. PHY2054: Chapter 25 Chapter 25: Applied Optics PHY2054: Chapter 25 1 Operation of the Eye 24 mm PHY2054: Chapter 25 2 Essential parts of the eye Cornea transparent outer structure Pupil opening for light Lens partially focuses

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light

Test Review # 9. Physics R: Form TR9.15A. Primary colors of light Physics R: Form TR9.15A TEST 9 REVIEW Name Date Period Test Review # 9 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Physics 222, October 25

Physics 222, October 25 Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

More information

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1) Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

More information

19. Ray Optics. S. G. Rajeev. April 2, 2009

19. Ray Optics. S. G. Rajeev. April 2, 2009 9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.

More information

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses. Shown below are various types of lenses, both converging and diverging. Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

General Physics II. Ray Optics

General Physics II. Ray Optics General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

More information

Part 1 Investigating Snell s Law

Part 1 Investigating Snell s Law Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

Optics Review. 2. List the different types of Light/EM Radiation in order of increasing wavelength.

Optics Review. 2. List the different types of Light/EM Radiation in order of increasing wavelength. Optics Review 1. Match the vocabulary words from Column 1 with the choices in Column 2. Column 1 Vocabulary Words Column 2 Choices 1. incandescence A. production of light by friction 2. chemiluminescence

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

Lenses. Not in your text book

Lenses. Not in your text book Lenses Not in your text book Objectives: 1. Students will be able to draw a ray diagram for a lens 2. Students will be able to explain the difference between a real and a virtual image Different Lenses,

More information

The Optics of Mirrors

The Optics of Mirrors Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

More information

Downloaded from

Downloaded from QUESTION BANK SCIENCE STD-X PHYSICS REFLECTION & REFRACTION OF LIGHT (REVISION QUESTIONS) VERY SHORT ANSWER TYPE (1 MARK) 1. Out of red and blue lights, for which is the refractive index of glass greater?

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Focusing power of the lens is function of radius of curvature of each surface and index of refraction of lens.

More information

always positive for virtual image

always positive for virtual image Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

More information

Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

More information

Image Formation by Lenses

Image Formation by Lenses Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information