Physics 1230: Light and Color

Size: px
Start display at page:

Download "Physics 1230: Light and Color"

Transcription

1 Physics 1230: Light and Color Exam 4 cancelled: Exam extra credit assignment will be due Wed. at 5PM Extra credit to improve exam scores! HW9: Due today, Monday, 5PM FCQ at end of lecture. Lecture 13: The Eye, eyeglasses and other optical instruments, start retina signal processing. Reading: Chap. 9,10 Color perception. 1

2 Review: Parts of the human eye Specialized optical instrument and image analysis computer.

3 The Eye: Analogy to the Camera Lens and cornea Iris (diaphram) Ciliary muscle (focus) Retina (FILM??) We will see that the retina does FAR more than film or CCD 3

4 The Lens system: Imaging &Focusing Most converging of light is by the cornea. Assisted to varying degrees by eyelens focus. Ciliary muscles puff up to relax the lens for close focusing 4

5 What does accommodation of the eye have to do with looking at me or your thumb? How does it work? (Lens represents combined cornea-eyelens system) Thumb is out of focus Focusing your eye on a nearby thumb requires shorter focal length (more bulgy) eyelens than focusing on the Prof far away, since rays must be bent more for image to fall on retina. large f Prof is in focus Thumb is in focus smaller f Prof is out of focus

6 The Eye as a cool instrument: The eyelens We know that lenses suffer from various aberrations. What happens in the eyelens? Spherical aberration is mostly corrected Cornea is not spherical surface (aspherical) Iris cuts out rays through the edge of the lens Index of refraction is not uniform. Curvature of field retina is curved to correct for this Chromatic aberration: Bluest light is absorbed Many of these tricks are now used in technology. 6

7 The Retina: Detecting the light and processing the images The retina and optic nerves are recognized as actually parts of the brain (like your olifactory bulb in the nose). They start development IN the brain and migrate Has 10 8 nerve endings to detect image rods, for high sensitivity (night vision) cones, for color and detail, 7 million optic nerve = 10 6 transmission lines fovea, region of best vision (cones) More nerves in your retina than some creatures have in their entire brains. Processing Power. 7

8

9 Human versus cat retinas Lots of specialization here for detection and processing. More in the next couple of lectures Light comes in from here

10 Very common eye problems: Issues in the lens focusing affect many of us: Myopia, see close objects clearly, only fixed by a negative lens Hyperopia, see things far, only fixed by a positive lens Presbyopia, stiff lens, no accommodation Bifocal glasses have near and far foci. How do we fix these problems? 10

11 The remaining lectures: We are here Ch. 5 (the eye), Ch. 6 (optical instruments), Ch. 7 (Retina and visual perception), Ch. 9 & 10 (color & color perception). 11

12 Optical instruments we ll cover: We are here Single lens instruments Eyeglasses Magnifying glass Two lens Telescope & binoculars Microscope 12

13 A near-sighted or MYOPIC eye produces an image that is not far enough behind the lens, so is blurry on the retina. Therefore, the eye lens focal length is: A) Too long for a focused image. B) Too short for a focused image. C) Actually, the iris is closed too much D) None of these. 13

14 You have a lens with a short focal length and you wish it was longer. You can make it longer by using a second lens. The correct choice for this case is: A) A focusing lens of negative power B) A diverging lens of positive power C) A focusing lens of positive power D) A diverging lens of negative power Recall: ftotal f1 f2 OR D D D TOTAL

15 Eyeglasses: Our most common optical instrument Normal vision: you can focus from 25 cm to infinity ( ) For nearsighted people (can t focus far away) Eyeglasses are diverging (thinner in middle) For farsighted people (can t focus up close) Eyeglasses are converging (thicker in middle) 18 th century HUGE improvement in quality of life Demo: eyeglasses 15

16 Eyeglass prescription is in diopters Optometrists use diopters to measure the power of a lens Diopters [or D] = 1 / (focal length in meters) Example: f = 50 cm or f = 0.5 m D = 1/f = 2 diopters (units are 1/meters) The example above would be: (A) reading glasses (B) distance glasses 16

17 Astigmatism Vertical and horizontal lines focus differently This problem is fixed by a cylinder lens Sharply focused Out of focus Focuses in one direction, but not the other! 17

18 Action of a cylinder lens Focuses in one direction, but not the other! If a cylinder lens is needed for your eyeglasses, your cornea and eyelens is curved more in one direction than in the other! 18

19 Play with your eyeglasses to see what they can do! 19

20 The Magnifying glass (again): New insight! Our first effort to explain: Ray optics lets us determine the ray paths. A model of the observer lets us predict an image where rays converge. 20

21 The Magnifying glass (again): Another view The eye perceives via focused images: 25 cm Typical closest focus is 25 cm from the eye. A magnifying glass is like READING GLASSES: It lets you focus on closer things. 21

22 The Magnifying glass (again): Another view The eye perceives via focused images: 25 cm Best focused image alone. Or: By similar triangles: Magnifying glass M 25 cm f cm Focal length Bigger image Demo with thumb and eyepiece from telescope kits. 22

23 Magnification of a one-lens magnifier Example: 5 cm focal length has a magnification of A) 5 B) 4 C) 25 D) 1/5 E) None of these focal 25 cm length in cm Interesting thought: 2 mm focal length has 125 magnification 23

24 van Leeuwenhoek s microscope Focal length, approximately 25 cm, reading distance, approximately 24

25 van Leeuwenhoek s microscope Years developed: 1660s Tiny lens with 2 mm focal length (a lens cannot be much bigger than the focal length) 25cm Magnification = cm Technology edge: Outstanding single lenses Problem: image was still small, and very dim. 25

26 Robert Hooke s microscope, also circa 1660 Discovered: Blood cells, Microbes, etc. A TWO LENS system. No existing pictures of Hooke van Leeuwenhoek 26

27 Robert Hooke s two-lens microscope A magnifying glass (the eyepiece) magnifies the first image further. lens 2 image lens 1 image object lens 2 eyepiece lens 1 Nosepiece or Objective The first lens, the nosepiece, is used as a projection lens. 27

28 Hooke s discoveries The cell Detailed structure of creatures. Example: The flea (plague). 28

29 Modern binocular microscope is very much the same as Hooke s. A beamsplitter, a halfsilvered mirror, sends half the light to each eyepiece. 29

30 Many optical instruments can be understood step by step, as we did for Hooke s microscope: The first lens collects light and produces an image. The second lens produces a new image of the first image. The third lens produces a new image of the second image And so on. 30

31 Galileo s telescope (~1600) Negative lens for eyepiece gives rightside-up image. 31

32 lens 1 image Kepler s telescope (~1600) lens 2 image lens 2 eyepiece lens 1 Objective Positive lens for eyepiece gives upside down image. It s upside down, but brighter and is easier to see. 32

33 Your telescope kit makes a: A) Galilean telescope B) Keplerian telescope C)Another type that we have not seen. 33

34 Galileo s telescope 30 x magnification Tiny lens means not much light entered, so image is dim. Discoveries: Sunspots Craters on the Moon Phases of Venus Moons of Jupiter 34

35 Magnification of a telescope (refractor or reflector) Magnification = focal length of objective lens or mirror focal length of eyepiece Example: Objective focal length = 1 m = 100 cm Eyepiece focal length = 1 cm Magnification =

36 Limits to magnification A bigger fuzzy image is not useful (no additional information). A high resolution image requires large lenses and mirrors. 8 inch reflector telescope Hubble telescope, 96 inch (2 meter) mirror Smallest visible feature 1/(diameter of lens or mirror) 36

37 Yerkes observatory, Largest refractor 40 inch lens 1897 Larger lenses would sag under their own weight. The lens was achromatic (two kinds of glass). 37

38 Yerkes Today Still available for observations in the original observatory. Lake Geneva Wisc. COLD winters yield great seeing. Constant pressure from developers for the lakeshore. 38

39 Newton s reflector telescope 39

40 Newton s telescope Advantage: no chromatic aberration 40

41 Palomar reflector - 5 meter mirror 41

42 South Africa Large Telescope (10 m) Former CU student Amanda Gulbis uses this telescope. This shows 7 of the 91 mirrors. Diameter is about 10 m. Each mirror is a hexagon so that they pack closely. 42

43 Largest single mirrors are 8 m now Prof. Roger Angel s group. University of Arizona 43

44 Finished mirror (don t sneeze) 44

45 Keck Telescope 36 mirrors 10 m dia. 45

46 Magellan Telescope (yr. 2018) 24.5 m dia. segmented mirror 46

47 European Extremely Large Telescope (42 m dia.) would use many smaller mirrors 47

48 The remaining lectures: Ch. 5 (the eye), Ch. 6 (optical instruments), We are here Ch. 7 (Retina and visual perception), Ch. 9 & 10 (color & color perception). 48

49 Stop here for the FCQs 49

50 The retina is where the image falls at the back of your eyeball Inverted image falls on retina instead of film. Can demonstrate this inversion Open left eye only. Press gently with left finger on eyeball just above tear duct. Observe dark spot in lower left corner of your field of view. Rods & cones packed into retina. Sensitive to light like camera film Optic nerve Nerve fibers connect rods & cones to brain. (transform light into electrical signals) Blind spot is where optic nerve leaves eyeball. Demo. How are rods and cones distributed in the retina? Fig The fovea is the small region near the center of the retina Used for sharp, detailed viewing. Has the most cones (precise, color vision) Has no rods (used for low light, less precise viewing). Looking at someone means their image is on your fovea If their image is not on your fovea you see them "out of the corner of your eye." Eyeball moves to see a sharp image It scans to make all parts of an image eventually fall on your fovea Like TV image scanning

51 Retina has 10 8 nerve endings to detect image rods, for night vision cones, for color and detail, 7 million optic nerve = 10 6 transmission lines fovea, region of best vision (cones) 51

52

53 Human and cat retinas Light comes in from here

54 Rods and cones Rhodopsin, a photochemical, responds to light It is destroyed and reformed. Signal goes to a synapse, a gap between nerve cells There are 3 kinds of cones for 3 colors red, green, blue 54

55 Retina details Choroid, outside layer with blood supply Photoreceptors: rods and cones Plexiform layer, inside layer with nerves Photopic vision, in bright light, cones are used Scotopic, in low light, rods are used more rods per nerve combines signals 55

56 56

57 References y_make_your_own_negative_film_or_plates.php

58 Robert Hooke s two-lens microscope Magnification = M 1 x M 2 Example: Eyepiece M 2 = 25 Nosepiece M 1 = 40 Final magnification = 40 x 25 = 1000 M 1, like for any projection lens, is X i / X o M 2, like for any magnifier, is 25 cm / focal length 58

59 Telescope drives Telescopes must rotate once every 24 hrs (approximately) to follow the stars, or the pictures will have streaks. North star 59

60 Student telescopes View of galaxy NGC

61 Catadioptric telescope Also called Schmidt-Cassegrain Front glass lens corrects aberrations Why buy this? It s shorter. 61

62 Hubble Space Telescope image Compare to student telescope image. 62

63 Binoculars Simply folded telescopes for each eye. 63

64 What does 7 x 50 binoculars mean? 7x is the magnification 50 is the diameter of the front lens (the objective lens) in millimeters 6 x 30 binoculars are easy to carry 7 x 50 binoculars are heavy, but these give a brighter image 15 x 80 binoculars need a tripod 64

65 35 mm slide projector Field lens is used to put the most light on the slide. Field lens Color slide Projection lens Mirror 65

66 Viewgraph projector Mirror Projection lens Fresnel lens (condenser) and viewgraph location Curved mirror 66

67 Eye problems Loss of accomodation: ability to focus from 10 inches to infinity Cataracts = cloudy eyelens, replacement lens does not accommodate Floaters = dead cells floating in vitreous humor (seen against a clear sky) Diseases of the eye components. Nerve damage Etc. 67

68 A dash past The Iris Low light levels (say at night!): Wide open, f/2 or f/3 Get more of the available light! We lose our color vision. More aberrations from the larger lens opening Less depth of field Higher light levels (say daytime): Closed down, f/8 We sense colors! Fewer aberrations More depth of field You can check depth of field: Try it: Close one eye, hold up thumb, stuff behind thumb is out of focus. 68

Lecture 15 Chap. 6 Optical Instruments. Single lens instruments Eyeglasses Magnifying glass. Two lens Telescope & binoculars Microscope

Lecture 15 Chap. 6 Optical Instruments. Single lens instruments Eyeglasses Magnifying glass. Two lens Telescope & binoculars Microscope Lecture 15 Chap. 6 Optical Instruments Single lens instruments Eyeglasses Magnifying glass Two lens Telescope & binoculars Microscope The projector Projection lens Field lens October 12, 2010 all these

More information

Photography (cont d)

Photography (cont d) Lecture 13 Ch. 4 Photography continued Ch. 5 The Eye Feb. 23, 2010 Exams will be back on Feb. 25 Homework 5 is due Feb. 25 Read all of Ch. 5. on The Eye. 1 Photography (cont d) Polarizing and haze filters

More information

Last time: Built a telescope (1 each!)

Last time: Built a telescope (1 each!) Last time: Built a telescope (1 each!) 1. Got parts: TWO lenses, cardboard tubes, two red caps, foam, little tube, white paper disk. 2. Assembled the parts into a useful optical instrument, a telescope!

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras

Physics 1230: Light and Color. Guest Lecture, Jack again. Lecture 23: More about cameras Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 Guest Lecture, Jack again Lecture 23: More about

More information

The eye & corrective lenses

The eye & corrective lenses Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Chapter 25: Applied Optics. PHY2054: Chapter 25

Chapter 25: Applied Optics. PHY2054: Chapter 25 Chapter 25: Applied Optics PHY2054: Chapter 25 1 Operation of the Eye 24 mm PHY2054: Chapter 25 2 Essential parts of the eye Cornea transparent outer structure Pupil opening for light Lens partially focuses

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Cameras and the Human Eye CAMERAS A typical camera uses a converging lens to focus a real (inverted) image onto photographic film (or in a digital camera the image is on a CCD chip). Light goes

More information

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses. Shown below are various types of lenses, both converging and diverging. Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Optics: Lenses & Mirrors

Optics: Lenses & Mirrors Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

More information

Exam 3--PHYS 151--S15

Exam 3--PHYS 151--S15 Name: Class: Date: Exam 3--PHYS 151--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this diagram of the eye and answer the following questions.

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010 Introduction Most of the subject material in this lab can be found in Chapter 25 of Serway and Faughn. In this lab, you will make images of images using lenses and the optical bench (Experiment A). IT

More information

Refraction Phenomena Apparent Depth & Volume

Refraction Phenomena Apparent Depth & Volume Refraction Phenomena Apparent Depth & Volume Refraction can change the perception of depth and volume because the apparent path of light does not equal the actual path of light. 1 Underwater Vision Atmospheric

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Physics 1202: Lecture 19 Today s Agenda

Physics 1202: Lecture 19 Today s Agenda Physics 1202: Lecture 19 Today s Agenda Announcements: Team problems today Team 12: Kervell Baird, Matthew George, Derek Schultz Team 13: Paxton Stowik, Stacey Ann Burke Team 14: Gregory Desautels, Benjamin

More information

Chapter 3 Optical Systems

Chapter 3 Optical Systems Chapter 3 Optical Systems The Human Eye [Reading Assignment, Hecht 5.7.1-5.7.3; see also Smith Chapter 5] retina aqueous vitreous fovea-macula cornea lens blind spot optic nerve iris cornea f b aqueous

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye Vision 1 Slide 2 The obvious analogy for the eye is a camera, and the simplest camera is a pinhole camera: a dark box with light-sensitive film on one side and a pinhole on the other. The image is made

More information

Unit 2: Optics Part 2

Unit 2: Optics Part 2 Unit 2: Optics Part 2 Refraction of Visible Light 1. Bent-stick effect: When light passes from one medium to another (for example, when a beam of light passes through air and into water, or vice versa),

More information

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony

Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony Sense Organs (Eye) The eye is the sense organ of sight. The eye is shaped like a ball and is located in bony sockets in the skull. It is held in place by six muscles which are joined to the outside of

More information

Physics 1230: Light and Color. If you do not have a telescope, please come get the parts on front table. Useful for Written_HW12.

Physics 1230: Light and Color. If you do not have a telescope, please come get the parts on front table. Useful for Written_HW12. Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 If you do not have a telescope, please come

More information

Unit 3: Chapter 6. Refraction

Unit 3: Chapter 6. Refraction Unit 3: Chapter 6 Refraction Refraction of Visible Light 2 Examples: 1. Bent-stick effect: When light passes from one medium to another (ex: from air into water), the change of speed causes it to change

More information

Physics 208 Spring 2008 Lab 2: Lenses and the eye

Physics 208 Spring 2008 Lab 2: Lenses and the eye Name Section Physics 208 Spring 2008 Lab 2: Lenses and the eye Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

Refraction of Light. Refraction of Light

Refraction of Light. Refraction of Light 1 Refraction of Light Activity: Disappearing coin Place an empty cup on the table and drop a penny in it. Look down into the cup so that you can see the coin. Move back away from the cup slowly until the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

More information

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments Physics 700 Geometric Optics Geometric Optics (rough drat) A. Focal Length B. Lens Law, object & image C. Optical Instruments W. Pezzaglia Updated: 0Aug A. Focal Length 3. Converging Systems 4. Converging

More information

LO - Lab #06 - The Amazing Human Eye

LO - Lab #06 - The Amazing Human Eye LO - Lab #06 - In this lab you will examine and model one of the most amazing optical systems you will ever encounter: the human eye. You might find it helpful to review the anatomy and function of the

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Chapter 6 Human Vision

Chapter 6 Human Vision Chapter 6 Notes: Human Vision Name: Block: Human Vision The Humane Eye: 8) 1) 2) 9) 10) 4) 5) 11) 12) 3) 13) 6) 7) Functions of the Eye: 1) Cornea a transparent tissue the iris and pupil; provides most

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

Chapter 25 Optical Instruments

Chapter 25 Optical Instruments Chapter 25 Optical Instruments Units of Chapter 25 Cameras, Film, and Digital The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of

More information

PHY132 Introduction to Physics II Class 7 Outline:

PHY132 Introduction to Physics II Class 7 Outline: Ch. 24 PHY132 Introduction to Physics II Class 7 Outline: Lenses in Combination The Camera Vision Magnifiers Class 7 Preclass Quiz on MasteringPhysics This was due this morning at 8:00am 662 students submitted

More information

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) 1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

More information

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Lecture 21. Physics 1202: Lecture 21 Today s Agenda Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

More information

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

In our discussion of the behavior of light in the two previous Chapters, we

In our discussion of the behavior of light in the two previous Chapters, we Of the many optical devices we discuss in this Chapter, the magnifying glass is the simplest. Here it is magnifying part of page 722 of this Chapter, which describes how the magnifying glass works according

More information

Human Eye Model OS-8477A

Human Eye Model OS-8477A Instruction Manual 02-3032A Human Eye Model OS-8477A 800-772-8700 www.pasco.com Table of Contents Contents Quick Start............................................................ Introduction...........................................................

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS SIMPLE MICROSCOPE A simple microscope consists of a single convex lens of a short focal length. The object

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 036: Application of Lenses - the Human Eye SteveSekula, 1 December 2010 (created 30 November 2010) Goals of this lecture no tags conclude the discussion

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World

Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Class 10 Science NCERT Exemplar Solutions Human Eye and Colourful World Short Answer Questions Question 1. A student sitting at the back of the classroom cannot read clearly the letters written on the

More information

EYE. The eye is an extension of the brain

EYE. The eye is an extension of the brain I SEE YOU EYE The eye is an extension of the brain Eye brain proxomity Can you see : the optic nerve bundle? Spinal cord? The human Eye The eye is the sense organ for light. Receptors for light are found

More information

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Don t twinkle, little star!

Don t twinkle, little star! Lecture 16 Ch. 6. Optical instruments (cont d) Single lens instruments Eyeglasses Magnifying glass Two lens instruments Microscope Telescope & binoculars The projector Projection lens Field lens Ch. 7,

More information

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9, Slide 3 Cases for Converging Lenses Object Past 2F Image Inverted Reduced Real Object Between F & 2F Image Inverted Enlarged

More information

[ Summary. 3i = 1* 6i = 4J;

[ Summary. 3i = 1* 6i = 4J; the projections at angle 2. We calculate the difference between the measured projections at angle 2 (6 and 14) and the projections based on the previous esti mate (top row: 2>\ + 6\ = 10; same for bottom

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

Physics of the Eye *

Physics of the Eye * OpenStax-CNX module: m42482 1 Physics of the Eye * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the image formation by

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

Physics 1230 Homework 8 Due Friday June 24, 2016

Physics 1230 Homework 8 Due Friday June 24, 2016 At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

More information

12.1. Human Perception of Light. Perceiving Light

12.1. Human Perception of Light. Perceiving Light 12.1 Human Perception of Light Here is a summary of what you will learn in this section: Focussing of light in your eye is accomplished by the cornea, the lens, and the fluids contained in your eye. Light

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

More information

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

More information

Optics of the Human Eye

Optics of the Human Eye Optics of the Human Eye References: Equipment: Ford, Kenneth W., Classical and Modern Physics Vol2 Xerox College Publishing 1972 pp. 900-922. Pasco Human Eye Model Instruction Manual (OS-8477) pp. 1-34.

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein

Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein Physics Chapter Review Chapter 25- The Eye and Optical Instruments Ethan Blitstein The Human Eye As light enters through the human eye it first passes through the cornea (a thin transparent membrane of

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Geometrical Optics Optical systems

Geometrical Optics Optical systems Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus:

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus: Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes eyebrows: protection from debris & sun eyelids: continuation of skin, protection & lubrication eyelashes:

More information

Biology 70 Slides for Lecture 1 Fall 2007

Biology 70 Slides for Lecture 1 Fall 2007 Biology 70 Part II Sensory Systems www.biology.ucsc.edu 1 2 intensity vs spatial position (image formation) color 3 4 motion depth (monocular) 5 6 1 depth (binocular) 1. In the lectures on perception we

More information

Lecture 9. Lecture 9. t (min)

Lecture 9. Lecture 9. t (min) Sensitivity of the Eye Lecture 9 The eye is capable of dark adaptation. This comes about by opening of the iris, as well as a change in rod cell photochemistry fovea only least perceptible brightness 10

More information

Aspects of Vision. Senses

Aspects of Vision. Senses Lab is modified from Meehan (1998) and a Science Kit lab 66688 50. Vision is the act of seeing; vision involves the transmission of the physical properties of an object from an object, through the eye,

More information

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes

Getting light to imager. Capturing Images. Depth and Distance. Ideal Imaging. CS559 Lecture 2 Lights, Cameras, Eyes CS559 Lecture 2 Lights, Cameras, Eyes Last time: what is an image idea of image-based (raster representation) Today: image capture/acquisition, focus cameras and eyes displays and intensities Corrected

More information

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

An Application of Lenses: The Human Eye. Prof. Jodi Cooley Supplementary Material for PHY1308 (General Physics Electricity and Magnetism)

An Application of Lenses: The Human Eye. Prof. Jodi Cooley Supplementary Material for PHY1308 (General Physics Electricity and Magnetism) An Application of Lenses: The Human Eye Prof. Jodi Cooley Supplementary Material for PHY1308 (General Physics Electricity and Magnetism) Announcements Homework 13 Assigned - Due before 3 pm on Friday November

More information

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye A few words about light BÓDIS Emőke 02 October 2012 Optical Imaging in the Eye Healthy eye: 25 cm, v1 v2 Let s determine the change in the refractive power between the two extremes during accommodation!

More information

EYE ANATOMY. Multimedia Health Education. Disclaimer

EYE ANATOMY. Multimedia Health Education. Disclaimer Disclaimer This movie is an educational resource only and should not be used to manage your health. The information in this presentation has been intended to help consumers understand the structure and

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Chapter 20 Human Vision

Chapter 20 Human Vision Chapter 20 GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Characterize the physical parameters that are significant in human vision. Visual

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

OpenStax-CNX module: m Vision Correction * OpenStax

OpenStax-CNX module: m Vision Correction * OpenStax OpenStax-CNX module: m42484 1 Vision Correction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Identify and discuss common vision

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

CHAPTER 34. Optical Images

CHAPTER 34. Optical Images CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus

More information

(Effective Alternative Secondary Education) PHYSICS. BUREAU OF SECONDARY EDUCATION Department of Education DepED Complex, Meralco Avenue Pasig City

(Effective Alternative Secondary Education) PHYSICS. BUREAU OF SECONDARY EDUCATION Department of Education DepED Complex, Meralco Avenue Pasig City (Effective Alternative Secondary Education) PHYSICS MODULE 4 Optical Instruments BUREAU OF SECONDARY EDUCATION Department of Education DepED Complex, Meralco Avenue Pasig City Module 4 Optical Instruments

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET.

Optics B. Science Olympiad North Regional Tournament at the University of Florida DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Optics B Science Olympiad North Regional Tournament at the University of Florida 1 DO NOT WRITE ON THIS BOOKLET. THIS IS AN TEST SET. Part I: General Body Knowledge Questions 2 1) (3 PTS) For much of the

More information