A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION. Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa

Size: px
Start display at page:

Download "A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION. Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa"

Transcription

1 Title Author(s) Citation A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa Far East Journal of Electronics and Communications. 14(2) P.105-P.115 Issue Date Text Version publisher URL DOI rihts 2015 Pushpa Publishin House

2 Far East Journal of Electronics and Communications 2015 Pushpa Publishin House, Allahabad, India Published Online: June Volume 14, Number 2, 2015, Paes ISSN: A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION Ji Cui, Sadahiro Tani, Kenji Ohara, Yusaku Hirai and Toshimasa Matsuoka Graduate School of Enineerin Osaka University 2-1 Yamada-oka, Suita-shi Osaka , Japan matsuoka@eei.en.osaka-u.ac.jp Abstract This paper presents a novel dynamic latched comparator that uses a built-in offset-cancellation technique. The proposed offset-cancellation scheme does not require any extra amplifiers or diital-assistant cancellation. Combinin a conventional dynamic latched comparator with a one-stae amplifier benefits from not only an enhancement in comparator ain but also a reduction in power consumption. The Monte-Carlo simulation results, which were derived by usin a 130-nm CMOS process, show that the comparator achieved a 3.8 mv equivalent input-referred offset voltae at a 10 MHz clock rate while dissipatin 2.7 μw from a 1.2V supply. 1. Introduction Comparators are the basic elements used for analo-to-diital converters, memory circuits, and so forth. They can have a sinificant impact on the Received: December 30, 2014; Accepted: February 13, 2015 Keywords and phrases: dynamic latched comparator, offset voltae cancellation. Correspondin author

3 106 J. Cui, S. Tani, K. Ohara, Y. Hirai and T. Matsuoka performance of their taret applications in terms of accuracy, speed, and power consumption. In order to amplify a small input voltae to a fully loic voltae, comparators require very hih ain. For dynamic latched comparators, a hih voltae ain can be more easily achieved by adoptin a positive feedback load. These comparators consume no static power. Therefore, such a comparator is widely utilized. However, dynamic latched comparators suffer from lare input-offset voltaes, which cannot be self eliminated. In conventional processes, a scheme that utilizes pre-amplifiers is used to reduce the offset voltae at the cost of an increase in power dissipation and delay [1]. Moreover, the continuin trend of technoloy scalin leads to a larer mismatch in MOS transistors and a lower voltae supply. As a result, it is difficult to desin a hih-performance pre-amplifier without increasin the power consumption. On the other hand, instead of usin a pre-amplifier, a calibration technique based on a diital-assistant circuit becomes more attractive since it is likely to benefit from technoloy scalin [2, 3]. This technique enerally reduces the offset voltae by feedin back an error sinal durin the output of the comparator. This method is an efficient approach, but increases in complexity and power consumption are inevitable. In this paper, a dynamic latched comparator that utilizes a built-in offsetcancellation technique is proposed. The proposed topoloy of the comparator combines a conventional dynamic latched comparator with a one-stae amplifier, which is embedded in the same current path. Therefore, the comparator does not require any pre-amplifiers or diital-assistant circuits and also benefits from low power consumption. In Section 2, a detailed analysis is carried out to verify the proposed technique for the offset voltae cancellation. The simulations of this analysis are described in Section 3. The conclusions of this study are iven in Section 4.

4 A Dynamic Latched Comparator with Built-in Offset Calibration 107 (a) Circuit confiuration (b) Timin diaram (c) Equivalent circuit in equalization and calibration modes (d) Equivalent circuit in reeneration mode Fiure 1. Proposed dynamic latched comparator. 2. Proposed Dynamic Latched Comparator The circuit confiuration of the proposed comparator is shown in Fiure 1(a), and is mainly comprised of two modified latch staes and capacitors that are used for storin input-offset voltae. The stored offset voltae can be subtracted from the input sinal to determine the offset-cancellation by usin auto-zeroin techniques [4]. The proposed comparator is operated at equalization, calibration, and reeneration modes that are switched by usin

5 108 J. Cui, S. Tani, K. Ohara, Y. Hirai and T. Matsuoka a clock, as shown in Fiure 1(b). The operation of the comparator is described as follows. When the clock sinals φ 1 and φ 2 increase, the comparator operates in the equalization mode illustrated in Fiure 1(c), in which the switch is closed. The objective is to make the voltaes of C1 and C2 equal so that the error resultin from the unbalance of the initial voltae can be compressed as much as possible. When the clock sinal φ 1 decreases and φ 2 remains hih, the comparator operates in the calibration mode illustrated in Fiure 1(c), in which the switch is open. In this mode, the offset voltae resultin from M1-M8 is stored in the capacitors C1 and C2. Additionally, M3-M6 perform as a unity-ain amplifier. Thus, the proposed offset-cancellation technique can be considered to be based on the inputoffset storae [1]. However, when φ 3 increases, the circuit is switched to the reeneration mode shown in Fiure 1(d). The offset voltae enerated by M1-M8 is the same as that caused durin the calibration mode, and they consequently are mutually canceled by the subtraction of the offset voltae from the input sinal. In Fiure 1(d), the M3-M6 transistors serve as a one-stae pre-amplifier as well as a part of the latch stae and are constructed in the current-reused confiuration. Thus, its power consumption is sinificantly lower than the conventional dynamic latched comparator, which utilizes the pre-amplifiers and latch staes separately. The principle operation of the modified latch stae is described as follows. The up arrows and down arrows represent the voltae rises and drops, respectively. Assumin that the initial state of the output is V o + > V o, V o+ tends to increase and V o tends to decrease at the start of operation. This mechanism apparently results from positive feedback. In the latch circuit, the ain of the latch stae can be enerally defined as one-half the loop ain in decibels. For the modified latch stae, the ain of latch A latch is iven by ( ) 3 // 5 = 1 + m A m latch m m + +, (1) o3 o3 o5 o5

6 A Dynamic Latched Comparator with Built-in Offset Calibration 109 where mi and oi are the transconductance and small-sinal drain conductance of Mi, respectively. The above ain expression contains the term m1, which indicates the ain of M1 that operates as a commonsource amplifier, and the term m3 o3 that is attributed to M3, which can be viewed as a common-ate amplifier. Consequently, the ain of the modified latch is sinificantly reinforced compared with a common-source amplifier. The enhancement of ain is expected to improve the voltae transition. Next, the operation of the offset voltae cancellation is explained in detail with a small-sinal analytical expression. It is worth notin that M9 is operated as a current source and it is not taken into account because of its limited effect on the performance of the entire circuit. (a) Calibration mode (b) Reeneration mode Fiure 2. Half small-sinal equivalent circuit of proposed dynamic latched comparator.

7 110 J. Cui, S. Tani, K. Ohara, Y. Hirai and T. Matsuoka In the calibration mode, most of the supply voltae is occupied by M3- M6, since they are operated in a saturation reion. Therefore, the voltaes between the drains and sources of M1-M2 and M7-M8 decrease to smaller values compared to their overdrive voltaes determined by usin the ate voltae V CM. For this reason, M1-M2 and M7-M8 are operated in a linear reion. For simplicity, the drain conductances of M3-M4 and M5-M6 that are operated in the saturation reion are nelected. In this case, the offset voltae oriinates from the mismatch of the threshold voltae V TH and transconductance parameter β (dependin on carrier mobility, ate oxide thickness, and ate width/lenth) of the MOS transistor [5]. To evaluate this, a half equivalent circuit (M2, M4, M6, and M8) that focuses on the deviations from the other half of the circuit (M1, M3, M5, and M7) in the comparator is utilized as illustrated in Fiure 2(a). The deviations of the drain conductance and currents oriinatin from the threshold voltae and transconductance parameter β of the MOS transistors in Fiure 2(a) are calculated as follows: Δβ2 Δβ Δ, 8 o2 = β1δvth, 2 Δo8 = + β7δvth, 8 β, (2) 1 β7 Δβ4 Δβ i, 6 dev, 4 = ID3 m3δvth, 4 idev, 6 = ID5 + m5δvth, 6, (3) β3 β5 where Δβi = βi βi 1, ΔV TH, i = VTH, i VTH, i 1, and I Di are the drain bias current of Mi. By solvin the half circuit shown in Fiure 2(a), the deviation of the output voltae in the calibration mode is iven by ( m4, eff m3) idev, 4 ( m6, eff m5) idev, 6 Δ vo =, (4) + m4, eff m6, eff 3( 1 + Δ 2 ) 3 1 3Δ 2 4, = m o o m o + m o m eff + + Δ + ( + ), (5) m3 o2 m3 1 m3 5( 7 + Δ 8) 5 7 5Δ 8 6, = m o o m o + m o m eff + + Δ + ( + ). (6) m5 o8 m5 1 m5

8 A Dynamic Latched Comparator with Built-in Offset Calibration 111 The input-referred offset voltae corresponds to Δ v o, and is primarily dominated by the mismatches of the channel resistances of M1-M2, M7-M8, and the threshold voltaes of M3-M4 and M5-M6. In the reeneration mode, the comparator amplifies the small input voltae to a detectable loic level. The equivalent input-referred offset voltae Δ vo can be stored with the Gaussian-distributed values located on the ate node of each differential pair in series [6]. To evaluate the outputreferred offset voltae, the differential input voltae is set to zero. It should be noted that the initial output voltaes of the reeneration mode are assumed to be nearly equal to V CM, which is defined as one-half the supply voltae. To evaluate the output-referred offset voltae Δ v o in the reeneration mode, a similar half equivalent circuit (M2, M4, M6 and M8) that focuses on the deviations from the other half circuit (M1, M3, M5 and M7) in the comparator is utilized as illustrated in Fiure 2(b). Owin to the existence of the positive feedback paths, the deviations of the drain currents i dev, 4 and i dev, 6 differ slihtly from those in the calibration mode ( i dev, 4 and i dev, 6 ). By solvin the half circuit shown in Fiure 2(b), the deviation of the output voltae in the reeneration mode is iven as 1 m4, eff ( Δvo + idev, 4 m3) + m6, eff ( Δvo idev, 6 m5) Δ vo = A ( + Δ ) + ( + Δ ). (7) latch m4, eff m1 o2 m6, eff m7 Substitutin Equation (4) into Equation (7) ives the followin: 1 Δ v o = A latch ( m4, eff m3)( idev, 4 idev, 4 ) ( m6, eff m5)( idev, 6 idev, 6 ). (8) ( + Δ ) + ( + Δ ) m4, eff m1 o2 m6, eff If the values of idev, 4 idev, 4 and idev, 6 idev, 6 are small and the value of A latch is lare, Δ v o ets very small. This shows that the offset voltae caused durin the calibration mode can be canceled durin the reeneration mode. m7 o8 o8

9 112 J. Cui, S. Tani, K. Ohara, Y. Hirai and T. Matsuoka 3. Simulation Results The proposed dynamic latched comparator was desined and simulated by usin a 130-nm CMOS process. The ate width and lenth of M1-M4 are 24μm and 0.3μm, and those of M5-M8 are 60μm and 0.3μm. To maintain the current consumption, the ate width and lenth of M9 are 0.16μm and 1μm. All of the switches are CMOS transmission ate with a small size (PMOS ate width: 4μm, NMOS ate width: 1.6μm, ate lenth: 0.12μm) so as to reduce the effect of chare injection. Each of all MOS devices has connection between its source and body with triple-well process to avoid body effect. The capacitors C1 and C2 are 88 ff. In order to verify the usefulness of the proposed offset-cancellation method, a proposed comparator without any input storae capacitors was introduced for comparison. Except for the offset-cancellation function, the performance of the comparator was expected to be identical to the proposed latched comparator. The equivalent input-referred offset voltae was observed by applyin a ramp sinal to the comparator input. Both comparators were operated with a 10MHz clock frequency and 1.2V supply. The results were obtained by carryin out 100 Monte-Carlo transient simulations. Distributions of the equivalent input-referred offset voltae of the comparator without and with calibration are illustrated as historams in Fiures 3(a) and 3(b). For the comparator without the offset-cancellation function, the maximum equivalent input-referred offset extension is up to 134mV at ± 3σ. In contrast, the maximum offset voltae of the proposed comparator is reduced to 3.8mV. It should be noted that larer capacitors C1 and C2 can be beneficial to the offset-cancellation at the cost of a decrease in operatin speed.

10 A Dynamic Latched Comparator with Built-in Offset Calibration 113 (a) (b) Fiure 3. Monte-Carlo simulation results of the equivalent input-referred offset voltae distribution (a) without and (b) with the offset-cancellation function (100 trials). The proposed comparator consumes less than 2.7μW of dynamic power with a clock frequency of 10MHz and a 1.2V supply. In this study, the ratio of period between φ 1, φ2 and φ 3 is set as 1:2:2 approximately. Current dissipation can be scaled down by decreasin the pulse width of φ 2 durin the calibration mode. Furthermore, Table 1 compares the performances of our desin to that of other studies. In practical case, there are some timin variations of φ 1, φ2 and φ 3 throuh clock buffers. Even considerin the clock buffer delay variation for each of CMOS switches, the simulation result shows that the maximum offset voltae of the proposed comparator is only 4.1mV.

11 114 J. Cui, S. Tani, K. Ohara, Y. Hirai and T. Matsuoka Table 1. Performance summary and comparisons 4. Conclusions A low-offset dynamic latched comparator with a built-in offset calibration that does not require extra amplifiers or diital cancellation was proposed. This structure contributes to the compact size of the comparator circuit and lower power consumption. The proposed comparator was verified by usin analytical method and simulation. The simulation results show that the equivalent input-referred offset voltae can be reduced to 3.8mV at ±3 σ when usin a 10MHz clock frequency and 1.2V supply. Acknowledements This work is supported by the VLSI Desin and Education Center (VDEC), University of Tokyo, in collaboration with Cadence Corporation and Mentor Graphics, Inc. In addition, this study is also partially supported by the Japan Society for the Promotion of Science (JSPS) throuh Grants-in- Aid for Scientific Research (B) (# ). References [1] B. Razavi and B. A. Wooley, Desin techniques for hih-speed, hih-resolution comparators, IEEE J. Solid-State Circuits 27(12) (1992), [2] M. Miyahara, Y. Asada, D. Paik and A. Matsuzawa, A low-noise self-calibratin dynamic comparator for hih-speed ADCs, IEEE Asian Solid-State Circuits Conference, Nov. 2008, pp

12 A Dynamic Latched Comparator with Built-in Offset Calibration 115 [3] C.-H. Chan, Y. Zhu, U.-F. Chio, S.-W. Sin, S.-P. U and R. P. Martins, A voltaecontrolled capacitance offset calibration technique for hih resolution dynamic comparator, IEEE International SoC Desin Conference, Nov. 2009, pp [4] A. Bakker, K. Thiele and J. H. Huijsin, A CMOS nested-chopper instrumentation amplifier with 100-nV offset, IEEE J. Solid-State Circuits 35(12) (2000), [5] K. Uyttenhove and M. S. J. Steyaert, Speed-power-accuracy tradeoff in hihspeed CMOS ADCs, IEEE Trans. Circuits and Systems II 49(4) (2002), [6] B. Razavi, Principles of Data Conversion System Desin, IEEE Press, New York, [7] S. Kwon and H. Lee, A 1.2V, 3.5μW, 20MS/s, 8-bit comparator with dynamicbiasin preamplifier, Proc IEEE International Symposium on Circuits and Systems, May 2006, pp [8] K. Kotani, T. Shibata and T. Ohmi, CMOS chare-transfer preamplifier for offsetfluctuation cancellation in low-power A/D converters, IEEE J. Solid-State Circuits 33(5) (1998),

An accurate track-and-latch comparator

An accurate track-and-latch comparator An accurate track-and-latch comparator K. D. Sadeghipour a) University of Tabriz, Tabriz 51664, Iran a) dabbagh@tabrizu.ac.ir Abstract: In this paper, a new accurate track and latch comparator circuit

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

A New Architecture for Rail-to-Rail Input Constant-g m CMOS Operational Transconductance Amplifiers

A New Architecture for Rail-to-Rail Input Constant-g m CMOS Operational Transconductance Amplifiers A New Architecture for Rail-to-Rail Input Constant- m CMOS Operational Transconductance Amplifiers Mohammad M. Ahmadi Electrical Enineerin Dept. Sharif University of Technoloy. Azadi Ave., Tehran, Iran

More information

A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION Journal of Enineerin Science and Technoloy Vol. 12, No. 3 (2017) 686-700 School of Enineerin, Taylor s University A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION RAMKRISHNA

More information

Analog Integrated Circuits. Lecture 6: Noise Analysis

Analog Integrated Circuits. Lecture 6: Noise Analysis Analo Interated Circuits Lecture 6: Noise Analysis ELC 60 Fall 03 Dr. Ahmed Nader Dr. Mohamed M. Aboudina anader@ieee.or maboudina@mail.com Department of Electronics and Communications Enineerin Faculty

More information

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs 1 A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs Masaya Miyahara, Yusuke Asada, Daehwa Paik and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline 2 Motivation The Calibration

More information

Design of Low-Offset Voltage Dynamic Latched Comparator

Design of Low-Offset Voltage Dynamic Latched Comparator Apr. 212, Vol. 2(4) pp: 585-59 Design of Low-Offset Voltage Dynamic Latched Comparator Mayank Nema, Rachna Thakur Assistant Professor, Department of ECE Sagar Institute of Science, Technology & Research,

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analo) VLSI Circuit Desin Sprin 08 Lecture 6: Output Staes Sam Palermo Analo & Mixed-Sinal Center Texas A&M University Announcements Project eport Due May Email it to me by 5PM Exam 3 is

More information

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation JOURNAL OF STELLAR EE315 CIRCUITS 1 A 60-MHz 150-µV Fully-Differential Comparator Erik P. Anderson and Jonathan S. Daniels (Invited Paper) Abstract The overall performance of two-step flash A/D converters

More information

CMOS Fully Differential Feedforward-Regulated Folded Cascode Amplifier

CMOS Fully Differential Feedforward-Regulated Folded Cascode Amplifier MOS Fully Differential Feedforward-Reulated Folded ascode Amplifier Edinei Santin, Michael Fiueiredo, João Goes and Luís B. Oliveira Departamento de Enenharia Electrotécnica / TS UNINOVA Faculdade de iências

More information

Figure 1 Typical block diagram of a high speed voltage comparator.

Figure 1 Typical block diagram of a high speed voltage comparator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 6, Ver. I (Nov. - Dec. 2016), PP 58-63 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design of Low Power Efficient

More information

Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier

Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier Volume 89 No 8, March 04 Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier P.Keerthana PG Student Dept. of ECE SSN Collee of Enineerin, Chennai, India. J.Raja Professor Dept. of

More information

PDm200 High Performance Piezo Driver

PDm200 High Performance Piezo Driver PDm200 Hih Performance Piezo Driver The PDm200 is a complete hih-performance power supply and linear amplifier module for drivin piezoelectric actuators. The output voltae rane can be switched between

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2012

ECEN474: (Analog) VLSI Circuit Design Fall 2012 ECEN474: (Analo) VLSI Circuit Desin Fall 2012 Lecture 18: OTA Examples Sam Palermo Analo & Mixed-Sinal Center Texas A&M University Announcements No class on Monday Preliminary report still due Monday (11/19)

More information

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain

Design And Implementation of Pulse-Based Low Power 5-Bit Flash Adc In Time-Domain IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 3, Ver. I (May. - June. 2018), PP 55-60 www.iosrjournals.org Design And Implementation

More information

Comparison of LNA Topologies for WiMAX Applications in a Standard 90-nm CMOS Process

Comparison of LNA Topologies for WiMAX Applications in a Standard 90-nm CMOS Process 2010 12th International Conference on Computer Modellin and Simulation Comparison of LNA Topoloies for WiMAX Applications in a Standard 90-nm CMOS Process Michael Anelo G. Lorenzo Electrical and Electronics

More information

A CMOS Multi-Output Cross-Coupled Gain-Boosting Current- Mode Integrator

A CMOS Multi-Output Cross-Coupled Gain-Boosting Current- Mode Integrator Vol.6, No.6 (203), pp.39-50 http://dx.doi.or/0.4257/ijca.203.6.6.4 A CMOS Multi-Output Cross-Coupled Gain-Boostin Current- Mode Interator Junho Ban, Inho Ryu, Jeho Son, Hyunjun Chun IT Applied System Enineerin,

More information

Constant-Power CMOS LC Oscillators Using High-Q Active Inductors

Constant-Power CMOS LC Oscillators Using High-Q Active Inductors Constant-Power CMOS LC Oscillators Usin Hih-Q Active Inductors JYH-NENG YANG, 2, MING-JEUI WU 2, ZEN-CHI HU 2, TERNG-REN HSU, AND CHEN-YI LEE. Department of Electronics Enineerin and Institute of Electronics

More information

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here Copyriht 7 Year IEEE. eprinted from ISCAS 7 International Symposium on Circuits and Systems, 7-3 May 7. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in

More information

A High-Gain, Low-Noise GHz Ultra-Wideband LNA in a 0.18μm CMOS

A High-Gain, Low-Noise GHz Ultra-Wideband LNA in a 0.18μm CMOS Majlesi Journal of Electrical Enineerin Vol., No., June 07 A Hih-Gain, Low-Noise 3. 0.6 GHz Ultra-Wideband LNA in a Behnam Babazadeh Daryan, Hamid Nooralizadeh * - Department of Electrical Enineerin, Islamshahr

More information

PARAMETRIC ANALYSIS OF DFAL BASED DYNAMIC COMPARATOR

PARAMETRIC ANALYSIS OF DFAL BASED DYNAMIC COMPARATOR HEENA PARVEEN AND VISHAL MOYAL: PARAMETRIC ANALYSIS OF DFAL BASED DYNAMIC COMPARATOR DOI: 1.21917/ijme.217.62 PARAMETRIC ANALYSIS OF DFAL BASED DYNAMIC COMPARATOR Heena Parveen and Vishal Moyal Department

More information

PDm200B High Performance Piezo Driver

PDm200B High Performance Piezo Driver PDm200B Hih Performance Piezo Driver The PDm200B is a hih-performance power supply and linear amplifier module for drivin piezoelectric actuators. The output voltae rane can be switched between bipolar

More information

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique James Lin, Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Laḃ

More information

Sigma-Delta A/D Modulator Design in a Pre-Diffused Digital Array Using the Principle of Trapezoidal Association of Transistors

Sigma-Delta A/D Modulator Design in a Pre-Diffused Digital Array Using the Principle of Trapezoidal Association of Transistors Sima-Delta A/D Modulator Desin in a Pre-Diffused Diital Array Usin the Principle of Trapezoidal Association of Transistors Jun Hyun Choi and Serio Bampi Federal University of Rio Grande do Sul - UFRGS

More information

DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY

DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY ISSN (Print ) : 2614-4867 ISSN (Online) : 2614-4859 DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY 11 Anraini Puspita Sari, Aun Darmawansyah, M. Julius St. Abstract The research

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design EE 435 ecture 5 Sprin 06 Fully Differential Sinle-Stae Amplifier Desin Common-mode operation Desin of basic differential op amp Slew Rate The Reference Op Amp Review from last lecture: Where we are at:

More information

Cascode Configuration

Cascode Configuration EE 330 Lecture 34 Some dditional nalo Circuits The Cascode Confiuration Darlinton Confiuration Other Special Confiurations The Differential mplifier Cascade mplifiers mplifier Biasin Diital Loic Review

More information

EE 435 Lecture 12. OTA circuits. Cascaded Amplifiers. -- Stability Issues. -- Two-Stage Op Amp Design

EE 435 Lecture 12. OTA circuits. Cascaded Amplifiers. -- Stability Issues. -- Two-Stage Op Amp Design EE 435 Lecture 12 OTA circuits Cascaded Amplifiers -- Stability Issues -- Two-Stae Op Amp Desin Review from last lecture: Current Mirror Op Amp W/O CMFB DD M : 1 1 : M M meq m1 Often termed an OTA I T

More information

A Comparative Study of Dynamic Latch Comparator

A Comparative Study of Dynamic Latch Comparator A Comparative Study of Dynamic Latch Comparator Sandeep K. Arya, Neelkamal Department of Electronics & Communication Engineering Guru Jambheshwar University of Science & Technology, Hisar, India (125001)

More information

Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors

Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors Indian Journal of Pure & Applied Physics Vol. 49, December, pp. 84-846 Realiation of current-mode KHN-equivalent biquad filter usin ZC-CFTAs and rounded capacitors Jetsdaporn Satansup & Worapon Tansrirat*

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in m N-well CMOS

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in m N-well CMOS JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 309 A Gate-Leakae Insensitive 0.7-V 233-nW ECG Amplifier usin Non-Feedback PMOS Pseudo-Resistors in 0.13- m N-well CMOS Ji-Yon

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

Analysis and Design of High Speed Low Power Comparator in ADC

Analysis and Design of High Speed Low Power Comparator in ADC Analysis and Design of High Speed Low Power Comparator in ADC Yogesh Kumar M. Tech DCRUST (Sonipat) ABSTRACT: The fast growing electronics industry is pushing towards high speed low power analog to digital

More information

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 11 (June 2014) PP: 1-7 Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power

More information

STT-MRAM Read-circuit with Improved Offset Cancellation

STT-MRAM Read-circuit with Improved Offset Cancellation JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.347 ISSN(Online) 2233-4866 STT-MRAM Read-circuit with Improved Offset

More information

Design Of A Comparator For Pipelined A/D Converter

Design Of A Comparator For Pipelined A/D Converter Design Of A Comparator For Pipelined A/D Converter Ms. Supriya Ganvir, Mr. Sheetesh Sad ABSTRACT`- This project reveals the design of a comparator for pipeline ADC. These comparator is designed using preamplifier

More information

DESIGN OF LOW-VOLTAGE HIGH-GAIN CURRENT-MODE OPERATIONAL AMPLIFIER

DESIGN OF LOW-VOLTAGE HIGH-GAIN CURRENT-MODE OPERATIONAL AMPLIFIER DESIGN OF LOW-VOLTAGE HIGH-GAIN CURRENT-MODE OPERATIONAL AMPLIFIER Thesis Submitted in partial fulfillment of the requirements for the deree of Master of Technoloy (VLSI Desin & CAD) Submitted by Pankaj

More information

Design methodology of Miller frequency compensation with current buffer/amplifier

Design methodology of Miller frequency compensation with current buffer/amplifier Desin methodoloy of Miller frequency compensation with current buffer/amplifier W. Aloisi, G. Palumbo and S. Pennisi Abstract: Current buffers/amplifiers are used in series to the Miller compensation capacitor

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information

High Q Active Inductors Apply in A 2.4GHz Bandpass Filter

High Q Active Inductors Apply in A 2.4GHz Bandpass Filter Proceedins of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hanzhou, China, April 15-17, 7 158 Hih Q Active Inductors Apply in A.4GHz Bandpass Filter Jenn-Tzer

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design EE 435 ecture 5 Sprin 06 ully Differential Sinle-Stae mplifier Desin Common-mode operation Desin of basic differential op amp Slew Rate The Reference Op mp Review from last lecture: Determination of op

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

EE 435 Lecture 11. Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns. OTA circuits

EE 435 Lecture 11. Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns. OTA circuits EE 435 Lecture 11 Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns OTA circuits Review from last lecture: Current Mirror Op Amp W/O CMFB DD M : 1 1 : M M meq m1 Often termed

More information

Design of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications

Design of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications Desin of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications Ersin Alaybeyoğlu, Arda Güney, Mustafa Altun and Hakan Kuntman Abstract n this study, hih-performance

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

Design Of The Miller Opamp

Design Of The Miller Opamp Miller Opamp Desin Of The Miller Opamp The Miller opamp is made up of Input differential stae Simple MOS OTA A second ain stae ommon Source Amplifier The desin of a Miller opamp is beneficial as a learnin

More information

IMPLEMENTATION OF A LOW-KICKBACK-NOISE LATCHED COMPARATOR FOR HIGH-SPEED ANALOG-TO-DIGITAL DESIGNS IN 0.18

IMPLEMENTATION OF A LOW-KICKBACK-NOISE LATCHED COMPARATOR FOR HIGH-SPEED ANALOG-TO-DIGITAL DESIGNS IN 0.18 International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 43-56 TJPRC Pvt. Ltd., IMPLEMENTATION OF A

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

New Simple CMOS Realization of Voltage Differencing Transconductance Amplifier and Its RF Filter Application

New Simple CMOS Realization of Voltage Differencing Transconductance Amplifier and Its RF Filter Application 63 A. YESIL, F. KACAR, H. KUNTMAN, NEM SIMPLE CMOS REALIZATION OF OLTAGE DIFFERENCG... New Simple CMOS Realization of oltae Differencin Transconductance Amplifier and Its RF Filter Application Abdullah

More information

Single Stage Amplifier

Single Stage Amplifier CHAPTE 3 Sle Stae Aplifier Analo IC Analysis and esin 3- Chih-Chen Hsieh Outle. Coon-Source Aplifier. Coon-Source Ap with Source eeneration 3. Coon-ra Aplifier 4. Coon-Gate Aplifier 5. Cascode Aplifier

More information

@IJMTER-2016, All rights Reserved 333

@IJMTER-2016, All rights Reserved 333 Design of High Performance CMOS Comparator using 90nm Technology Shankar 1, Vasudeva G 2, Girish J R 3 1 Alpha college of Engineering, 2 Knowx Innovations, 3 sjbit Abstract- In many digital circuits the

More information

Design of a Capacitor-less Low Dropout Voltage Regulator

Design of a Capacitor-less Low Dropout Voltage Regulator Design of a Capacitor-less Low Dropout Voltage Regulator Sheenam Ahmed 1, Isha Baokar 2, R Sakthivel 3 1 Student, M.Tech VLSI, School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

More information

EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s

EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s B.Padmavathi, ME (VLSI Design), Anand Institute of Higher Technology, Chennai, India krishypadma@gmail.com Abstract In electronics, a comparator

More information

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower.

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower. Characterization of CMOS Four Quadrant Analog Multiplier Nipa B. Modi*, Priyesh P. Gandhi ** *(PG Student, Department of Electronics & Communication, L. C. Institute of Technology, Gujarat Technological

More information

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

A High Speed-Low Power Comparator with Composite Cascode Pre-amplification for Oversampled ADCs

A High Speed-Low Power Comparator with Composite Cascode Pre-amplification for Oversampled ADCs Journal of Automation and Control Engineering Vol. 1, No. 4, December 013 A High Speed-Low Power Comparator with Composite Cascode Pre-amplification for Oversampled ADCs Kavindra Kandpal, Saloni Varshney,

More information

Design of DC-DC Boost Converter in CMOS 0.18µm Technology

Design of DC-DC Boost Converter in CMOS 0.18µm Technology Volume 3, Issue 10, October-2016, pp. 554-560 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Design of DC-DC Boost Converter in

More information

Dual-mode Multiphase Sinusoidal Oscillator using CDBAs

Dual-mode Multiphase Sinusoidal Oscillator using CDBAs Dual-mode Multiphase Sinusoidal Oscillator usin DBAs D. Pulsub and W. Surakampontorn Faculty of Enineerin, in Monkut s Institute of Technoloy Ladkraban (MITL), Ladkraban, Bankok 1050, THAILAD E-mail: tump555@hotmail.com,

More information

Full Paper ACEEE Int. J. on Control System and Instrumentation, Vol. 4, No. 2, June 2013

Full Paper ACEEE Int. J. on Control System and Instrumentation, Vol. 4, No. 2, June 2013 ACEEE Int J on Control System and Instrumentation, Vol 4, No 2, June 2013 Analys and Design of CMOS Source Followers and Super Source Follower Mr D K Shedge 1, Mr D A Itole 2, Mr M P Gajare 3, and Dr P

More information

Low Power Amplifier Design Using CMOS Active Inductor

Low Power Amplifier Design Using CMOS Active Inductor Proceedins of the 5th WSEAS International Conference on Sinal Processin, Istanbul, Turkey, May 7-9, 006 (pp111-115) Low Power Amplifier Desin Usin CMOS Active Inductor MING-JEUI WU, PEI-JEN YEN, CHING-CHUAN

More information

High Speed CMOS Comparator Design with 5mV Resolution

High Speed CMOS Comparator Design with 5mV Resolution High Speed CMOS Comparator Design with 5mV Resolution Raghava Garipelly Assistant Professor, Dept. of ECE, Sree Chaitanya College of Engineering, Karimnagar, A.P, INDIA. Abstract: A high speed CMOS comparator

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

GBM8320 Dispositifs Médicaux Intelligents

GBM8320 Dispositifs Médicaux Intelligents GBM830 Dispositifs Médicaux Intellients Biopotential amplifiers Part 3 Mohamad Sawan et al. Laboratoire de neurotechnoloies Polystim http://www.cours.polymtl.ca/bm830/ mohamad.sawan@polymtl.ca M5418 11-18

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

Calibration of Offset Voltage of Op-Amp for Bandgap Voltage Reference Using Chopping Technique and Switched-Capacitor Filter

Calibration of Offset Voltage of Op-Amp for Bandgap Voltage Reference Using Chopping Technique and Switched-Capacitor Filter Calibration of Offset Voltage of Op-Amp for Bandgap Voltage Reference Using Chopping Technique and Switched-Capacitor Filter Ji-Yong Um a Department of Electronic Engineering, Hannam University E-mail

More information

Simulation of Soft-Switched Three-Phase Inverter for RL and Induction Motor Load

Simulation of Soft-Switched Three-Phase Inverter for RL and Induction Motor Load imulation of oft-witched Three-Phase Inverter for RL and Induction Motor Load Pratibha Thakur PG cholar epartment of Electrical Enineerin amrat Ashok Technoloical Institute Vidisha, (M.P) India anjeev

More information

Chapter 4. Junction Field Effect Transistor Theory and Applications

Chapter 4. Junction Field Effect Transistor Theory and Applications Chapter 4 Junction Field Effect Transistor Theory and Applications 4.0 ntroduction Like bipolar junction transistor, junction field effect transistor JFET is also a three-terinal device but it is a unipolar

More information

A Novel Approach of Low Power Low Voltage Dynamic Comparator Design for Biomedical Application

A Novel Approach of Low Power Low Voltage Dynamic Comparator Design for Biomedical Application A Novel Approach of Low Power Low Voltage Dynamic Design for Biomedical Application 1 Nitesh Kumar, 2 Debasish Halder, 3 Mohan Kumar 1,2,3 M.Tech in VLSI Design 1,2,3 School of VLSI Design and Embedded

More information

Summary 185. Chapter 4

Summary 185. Chapter 4 Summary This thesis describes the theory, design and realization of precision interface electronics for bridge transducers and thermocouples that require high accuracy, low noise, low drift and simultaneously,

More information

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique 1 Shailika Sharma, 2 Himani Mittal, 1.2 Electronics & Communication Department, 1,2 JSS Academy of Technical Education,Gr. Noida,

More information

Analysis and Design of High Speed Low Power Comparator in ADC

Analysis and Design of High Speed Low Power Comparator in ADC Analysis and Design of High Speed Low Power Comparator in ADC 1 Abhishek Rai, 2 B Ananda Venkatesan 1 M.Tech Scholar, 2 Assistant professor Dept. of ECE, SRM University, Chennai 1 Abhishekfan1791@gmail.com,

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters Circuits and Systems, 2011, 2, 183-189 doi:10.4236/cs.2011.23026 Published Online July 2011 (http://www.scirp.org/journal/cs) An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application

More information

Design of a Wide Tuning-Range, High Swing Fully Differential CMOS VCO with a Differential Tunable Active Inductor

Design of a Wide Tuning-Range, High Swing Fully Differential CMOS VCO with a Differential Tunable Active Inductor Desin of a Wide Tunin-ane, Hih Swin Fully Differential CMOS VCO with a Differential Tunable Active Inductor Zahra Dorost Ghol, Noushin Ghaderi 2, Majid Ebnali-Heidari - Department of Enineerin, Shahrekord

More information

Adiabatic Logic Circuits for Low Power, High Speed Applications

Adiabatic Logic Circuits for Low Power, High Speed Applications IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 10 April 2017 ISSN (online): 2349-784X Adiabatic Logic Circuits for Low Power, High Speed Applications Satyendra Kumar Ram

More information

A High Speed and Low Voltage Dynamic Comparator for ADCs

A High Speed and Low Voltage Dynamic Comparator for ADCs A High Speed and Low Voltage Dynamic Comparator for ADCs M.Balaji 1, G.Karthikeyan 2, R.Baskar 3, R.Jayaprakash 4 1,2,3,4 ECE, Muthayammal College of Engineering Abstract A new dynamic comparator is proposed

More information

The Differential Transimpedance Amplifier Design based 0.18 µm CMOS Technology

The Differential Transimpedance Amplifier Design based 0.18 µm CMOS Technology International Journal of pplied Eneer esearch ISSN 0973-456 olume, Number 4 (07) pp. 4095-400 esearch India Publications. http://www.ripublication.com The ifferential Transimpedance mplifier es based 0.8

More information

SAR ADC USING SINGLE-CAPACITOR PULSE WIDTH TO ANALOG CONVERTER BASED DAC. A Thesis. Presented to. The Graduate Faculty of the University of Akron

SAR ADC USING SINGLE-CAPACITOR PULSE WIDTH TO ANALOG CONVERTER BASED DAC. A Thesis. Presented to. The Graduate Faculty of the University of Akron SAR ADC USING SINGLE-CAPACITOR PULSE WIDTH TO ANALOG CONVERTER BASED DAC A Thesis Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

CDTE and CdZnTe detector arrays have been recently

CDTE and CdZnTe detector arrays have been recently 20 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 44, NO. 1, FEBRUARY 1997 CMOS Low-Noise Switched Charge Sensitive Preamplifier for CdTe and CdZnTe X-Ray Detectors Claudio G. Jakobson and Yael Nemirovsky

More information

Differential Amplifier with Active Load

Differential Amplifier with Active Load EEEB73 Electronics nalysis & Desin (7) Differential plifier with ctive Loa Learnin Outcoe ble to: Describe active loas. Desin a iff-ap with an active loa to yiel a specifie ifferential-oe voltae ain. Reference:

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

GBM8320 Dispositifs Médicaux Intelligents

GBM8320 Dispositifs Médicaux Intelligents GBM830 Dispositifs Médicaux Intellients Biopotential amplifiers Part 3 Mohamad Sawan et al. Laboratoire de neurotechnoloies Polystim http://www.cours.polymtl.ca/bm830/ mohamad.sawan@polymtl.ca M5418 February

More information

THE comparison is the basic operation in an analog-to-digital

THE comparison is the basic operation in an analog-to-digital IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 7, JULY 2006 541 Kickback Noise Reduction Techniques for CMOS Latched Comparators Pedro M. Figueiredo, Member, IEEE, and João

More information

A Novel Resistive Capacitive Feedback Trans-impedance Amplifier Optimization Using IPSO Algorithm

A Novel Resistive Capacitive Feedback Trans-impedance Amplifier Optimization Using IPSO Algorithm 3 International Journal of Smart Electrical Enineerin, Vol., No.,Winter 6 ISSN: -946 pp.3:9 EISSN: 34-6 A Novel Resistive Capacitive eedback Trans-impedance Amplifier Optimization Usin IPSO Alorithm Hamid

More information

PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology

PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology by Jingqi Liu A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree

More information

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS IEICE TRANS. ELECTRON., VOL.E90 C, NO.4 APRIL 2007 779 INVITED PAPER Special Section on Low-Power, High-Speed LSIs and Related Technologies Design Challenges of Analog-to-Digital Converters in Nanoscale

More information

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors LETTER IEICE Electronics Express, Vol.14, No.2, 1 12 A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors Tongxi Wang a), Min-Woong Seo

More information

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY International Journal of Electronics and Communication Engineering (IJECE) ISSN 2278-9901 Vol. 2, Issue 4, Sep 2013, 67-74 IASET ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL

More information