Constant-Power CMOS LC Oscillators Using High-Q Active Inductors

Size: px
Start display at page:

Download "Constant-Power CMOS LC Oscillators Using High-Q Active Inductors"

Transcription

1 Constant-Power CMOS LC Oscillators Usin Hih-Q Active Inductors JYH-NENG YANG, 2, MING-JEUI WU 2, ZEN-CHI HU 2, TERNG-REN HSU, AND CHEN-YI LEE. Department of Electronics Enineerin and Institute of Electronics National Chiao Tun University Enineerin 4 th Buildin, 00 Ta-Hsueh Road, Hsin-Chu 300 TAIWAN 2. Department of Electronics Enineerin Min Hsin University of Science and Technoloy. Hsin-Hsin Rd., Hsin-Fon, Hsin-Chu 304 TAIWAN Abstract: - CMOS LC oscillators usin hih-q active inductors with constant-power consumption are presented. The active inductor with one feedback resistor results in a ain-boostin factor to improve the Q-value and the inductance (L) of the active inductor. Based on this hih-q active inductor, a neative resistance LC-tuned oscillator with low constant-power consumption and wide tunin-rane can be achieved. Simulation results show that the improved active inductor can achieve the maximum Q-value of E8 and dissipate 2.5mw power consumption under 2.5 V power supply. The die size included boundin pad is about 853um 43um. In the wide-tunin frequency rane oscillator, low constant power consumption at 2.5 V power supply around 0mW is observed. This oscillator also depicts a reasonable phase noise performance of -9dBc/Hz at 600 khz. The phase noise from 0.8GHz to 3GHz tunin-rane is less than 6dBc/Hz phase noise deviation. The small die size included boundin pad is about 965um 482um. Key-Words: - CMOS, Active Inductor, Q-value, LC Oscillator, Phase Noise, and Power Consumption. Introduction The quarter-micron or below complementary metal oxide semiconductor (CMOS) technoloy has found an attractive alternative to GaAs and BiCMOS technoloies for implementation of interated radio frequency (RF) transceivers due to the lower cost and the possibility for interation of RF front-end and diital circuits on the same chip. Amon the CMOS RF front-end blocks, the oscillator circuit is the major challene for implementin a fully interated transceiver. To achieve a hih-performance oscillator, low power consumption, wide tunin-rane, and strinent phase noise should be simultaneously considered in the RF circuit applications [, 2]. However, a low Q-value passive spiral inductor in fabricatin CMOS process will seriously limit the wide tunin-rane and the phase noise. The lower Q-value spiral inductor will limit the wide tunin-rane [3] and result in lower phase noise [4]. Althouh the low power consumption is one of the most considerations of the subjects in RF applications, the constant power consumption, which is independent of the frequency, is also a sinificant factor that improves the noise production of the circuit. Recently, wide tunin-rane rin oscillators in diital circuit and low phase noise LC oscillators usin passive spiral inductors have been demonstrated [5]. On the other hand, CMOS active inductors have been applied in microwave/rf amplifier and oscillator desins to achieve hih power ain, wide tunin-rane and save chip area [6-8]. The rin oscillator circuits can achieve wide tunin-rane, but the larer phase noise exits in rin oscillator circuit [9]. The LC-tuned oscillator circuits can achieve lower phase noise, but the low Q-value passive inductor limits the frequency tunin-rane [0]. In addition, the oscillators usin active inductors have wide tunin-rane and small chip area, but the lare phase noise is also encountered due to the Q-value of the active inductors is not hih enouh [-2]. Also, the power consumption of these oscillators will be sensitively influenced by the frequency tunin as well, resultin in extra circuit noise in different operatin frequency. Therefore, it is desired to desin an oscillator usin hih-q active inductor to improve wide tunin-rane, reasonable phase noise, and small chip area. Besides, constant power

2 consumption and low deviation of phase noise in taret wide frequency band can be achieved. In this paper, we propose a CMOS wide tunin-rane LC oscillator usin hih-q active inductors. The active inductor, simpler than the circuit of [], results in improvin both Q-value and inductance (L) of the active inductor. Based on this inductor, a neative resistance LC-tuned oscillator with wide tunin-rane, reasonable phase noise, constant power consumption, and low deviation of the phase noise has been desined. These results are carried out in Ailent-ADS simulator usin TSMC 0.25um CMOS process model at 2.5V. 2 Improvin Hih-Q Active Inductor Desin Based on the yrator theory [2], the simple rounded active inductor circuit and its equivalent circuit are shown in Fi. (a) and (b). Each MOS transistor is modeled by the equivalent device components includin m, ds, C s, and C d. Assumin m >> ds and C s, >> C d, then the equivalent input impedance (Z in ) of this circuit can be derived as below. The component values of the inductor are also expressed from Eq. (2) to Eq. (5). Vdd I M2 ds Rs (3) m m2 L C s2 (4) m 2 C C s (5) where mi, dsi, and C si are the transconductance, output conductance, and ate-source capacitance of correspondence transistors, respectively. From Eq. (2), the increasin parallel conductance loss of G will reduce the Q-value of the active inductor. Therefore, in order to improve the performance such as the Q-value and the inductance (L), we propose hih-q active inductors with a feedback resistor. The improved hih-q active inductor circuit is illustrated in Fi. 2 (a). This circuit is composed of common source transistor M, common drain transistor M 2, feedback resistor R f and two biasin current sources I and I 2. Feedback resistor R f and transistor M construct a ain network. This network produces a ain factor to reduce the parallel conductance (G) in such a way that the internal loss of the inductor will be decreased, and then the Q value is increased. Therefore, the inductance (L) is also increased due to the feedback resistor. At hih frequency, this circuit is equivalent to a lossy resonator as well, which is shown in Fi. 2 (b). The values of each component includin three parameters, C si, dsi, and mi, are derived from Eq. (6) to Eq. (9). M I2 Zin C G RS L Fi. Simple active inductor and equivalent circuit Z in ( ds2 + ) + S( Cs2 + Cd + Cd 2 ) () ( SC + + )( S( C + C ) + ) d 2 ds2 ds2 s2 d m2 G + (2) Fi. 2 Hih-Q active inductor and equivalent circuit G + (6) ds2 + R f ds

3 ds Rs (7) m m2 L C ( + R ) s2 f ds (8) m m2 Fiure 4 and 5 indicate that in the rane of 0.5GHz to 2.5GHz, the maximum Q-value is around E8 and the inductance chanes from 5nH to 7.5nH. The Q-value and the inductance of the active inductor with feedback resistor are hiher than that of the one without it. C C s (9) m m2 ω 0 (0) Cs Cs2( + Rf ds ) C () ( R ) m2 s2 Q + 2 f ds ds Cs From Eq. (6), the effect of the factor, (+R f ds ), is desined to be a value reater than unity. This factor will result in the equivalent conductance loss to be minimized, as well as an increase of the equivalent inductance by (+R f ds ) factor. The result of scatterin parameter (S) performance of the inductor is illustrated in Fi. 3. This fiure can be treated as the curve followin the increase of the feedback resistance R f between 0.5GHz and 2.5GHz. Fi. 4 Q-value of the proposed active inductor circuit Fi. 5 Inductance of the proposed active inductor circuit Fi. 3 Microwave performance of the proposed hih-q active inductor (S) Fis. 4, 5, and 6 show the Q-value, the inductance, and the equivalent loss comparisons between the active inductor with feedback resistor R f and the one without it. Fi. 6 Equivalent loss of the proposed active inductor circuit Fi. 6 shows the minimum equivalent loss of a proposed active inductor with feedback resistor is.2e-8ω and it is much smaller than that of the one without the feedback resistor between the frequency ranes of 0.5GHz and 2.5GHz. Consequently, the

4 active inductor has shown a sinificant improvement. The power consumption is only about 2.5mW under 2.5 V supply voltae, and there is lesser power consumption in this active inductor. Furthermore, in this active inductor, the external bias voltaes are used to tune the characteristics of the active inductor due to the variation in the circuit implementation. Therefore, it can be achieved the performances that independent of the process variation. The comparisons between improved and oriinal at.5ghz is shown in TABLE I. Table Comparisons between improved and Oriinal Improved Q-Value.4 E8 Loss (Ω) 8.2E-8 Inductance (nh) Power Consumption (mw) the Q-value is shown in Fi. 8. The Q-value is increased with the increasin feedback resistance. In Fi. 9, accordin to Eq. (8), the inductance of the inductor is also increased by the increasin feedback resistance R f in the rane of 0.8GHz to 3GHz. As a result, the performances of the proposed active inductor containin the Q value and the inductance may be tremendously improved with a simple loss compensation network. The layout of the proposed active inductor is showed in Fi. 0. The die size included boundin pad is 853um 43um. Because the dc current does not pass throuh the feedback resistance R f, the voltae drop of the feedback resistance is zero, and then the voltae will not be chaned when the resistance R f is varied. Consequently, power consumption of the improved active inductor can be retained constant. The movin trend of this curve inclines to the outside of the circle, indicatin that the loss is decreased, but the Q-value is increased. Fi. 7 shows the curves of the S, which the curves are move outside of the circle as the feedback resistor is increased. Fi. 8 Q value of hih-q active inductor in different resistance Fi. 7 Microwave performance of hih-q active inductor (S) in different resistance The Q-value at self-resonant frequency ω 0 (Eq. (0)) can be written as Eq. (). Therefore, the Q-value is promoted with the feedback resistance R f + R f factor and the trend variation of ds by ( ) Fi. 9 Inductance of hih-q active inductor in different resistance Therefore, the unchaned power consumption characteristic can be applied to desin a constant power consumption oscillator circuit with wide tunin-rane.

5 Fi. 0 Layout of the proposed active inductor 3 Oscillator Circuit Desin The chief desin considerations of the oscillator are to obtain a low constant-power consumption, wide tunin-rane and low phase noise. The circuit diaram of the proposed oscillator shown in Fi. has a cross-coupled connection of NMOS transistors M NR and M NL to form a positive feedback loop for providin neative resistance, called neative impedance converter (NIC) to compensate the loss of the active inductor in the LC tank. Two improved hih-q active inductors depicted in Fi. 2 replace the conventional inductors of the LC tank. Throuh these active inductors a superior oscillator, bein composed of M R, M L, M 2R, M 2L, M SR, M SL, M PR, M PL, R fr and R fl, can be completely desined. These active inductors are behaved as the equivalent inductance in this oscillator. Because the oscillator circuit is symmetric and the Q value of the active inductor is hih enouh, all transistors only have the same minimum dimension, where the lenth and the width of each MOSFET are 0.24um and 40um, respectively. No varactors are employed in this oscillator; the oscillator frequency modulation function will be constrained. To provide an adjustable frequency rane, the feedback resistance R f of the active inductor is added to tune the desired oscillator frequency. Thouh the capacitance is kept unchaned, the equivalent inductance values are deviated by the resistance R f. Thus, the output frequency of the oscillator will only be adjusted by R f. Assume the total equivalent capacitance from the output node of the NIC is C T, then the output oscillatin frequency can be expressed as: Fi. Proposed LC voltae controlled oscillator m2 ω 0 = (2) C + C )[ C ( + R )] ( s T s2 f ds Fi. 2 The frequency of output v.s. feedback resistance R f From Eq. (2), the frequency ω0 is the inverse proportion of the feedback resistance R f. In other words, when the feedback resistance is decreased, then the frequency will be increased, and vice versa. The output frequency shows a wide tunin frequency rane. The result between the output frequency and the feedback resistance is iven in Fi. 2. This fiure points out the frequency has wide tunin-rane, from 0.8GHz to 3GHz. Althouh the wide tunin frequency rane is achieved, the power consumption is still constant.

6 size included boundin pad is only 965um 482um. Fi. 3 Oscillator power consumption v.s. tunin frequency Fi. 5 Phase noise v.s. tunin frequency Fi. 4 Output amplitude v.s. tunin frequency Fi. 3 shows that the constant power consumption of 0mW is constantly maintained in this rane, 0.8GHz to 3GHz. The relationship between the output amplitude and the output frequency is appeared in Fi. 4. It indicates that the variation of the output amplitude is about 5dBm durin the wide tunin-rane. Besides, the phase noise in the wide tunin-rane is exposed in Fi. 5. It explores that the variation of the phase noise durin 0.8GHz to 3GHz is around 6dBc/Hz and the phase noise almost retains a constant value between.5ghz and 3GHz. Moreover, the oscillator has the reasonable phase noise below -9dBc even thouh the active inductors have the hiher noise than the passive counterparts. Finally, this proposed circuit exhibits wider tunin-rane, constant power consumption, and reasonable phase-noise. Fi. 6 is showed the layout of the oscillator. The small die 4 Conclusion A CMOS LC oscillator usin an improved hih Q-value active inductor is proposed. Only usin a feedback resistor R f, a tunable hih-q active inductor can be achieved. The power consumption of the oscillator can be retained as a constant value in a wide frequency tunin rane. The phase noise depicts the uninfluenced value even thouh the active inductor has larer noise than the passive inductor counterparts. These simulation results of the proposed circuit are better than those of earlier publications [0-2]. Therefore, this study shows that the proposed circuit can achieve constant power consumption, wide frequency tunin-rane and reasonable phase noise to fit RF requirements. The comparisons between this work and other works are shown in TABLE II. Fi. 6 Layout of the oscillator Table 2 Comparisons between this work and other works

7 Xibo Zhan 3 Jo-Yi Foo 4 This Work Frequency(Hz) 2.4G 5G 3G Phase Noise(00KHz) dbc/hz dbc/hz -9 dbc/hz Power(mW) Tunin Rane(GHz) Acknowledments The authors would like to thank National Chip Implementation Center (CIC) for chip fabrication. This work is sponsored by NSC of Taiwan under rant NSC E References: [] B. Razavi, A Study of Phase Noise in CMOS Oscillator, IEEE Journal of Solid-state Circuits, Vol.3, No.3, 996, pp [2] M. Thamsirianunt, and T. A. Kwasniewski, CMOS VCO s for PLL Fequency Synthesis in GHz Diital Mobile Radio Communications, IEEE Journal of Solid-state Circuits, Vol.32, No. 0, 997, pp [3] C. H. Park and K. Beomsup, A low-noise, 900-MHz VCO in 0.6-µm MOS, IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, 999, pp [4] J. K. A. Everard, Low Noise Oscillators a Review, IEE Colloquium on Microwave and Millimetre-Wave Oscillators and Mixers, No. 480, 998, pp. / -/0. [5] L. Zhenbiao, and O. Kenneth, A 900-MHz.5-V CMOS Voltae-Controlled Oscillator Usin Switched Resonators with a Wide Tunin Rane, IEEE Microwave and Wireless Components Letters, Vol. 3, 2003, pp [6] J. N. Yan, C. Y. Lee, Y. C. Chen, T. Y. Hsu, and T. R. Hsu, A Low-Power 2GHz CMOS LNA with Active Inductor and Neative Conductance Generator, the 5 th WSES/IEEE CSCC, MCP, MCME, 200, pp.8-5. [7] P.B.M. Hammer and P.M. Bakken, 2.4GHz CMOS VCO with multiple tunin inputs, Electron Lett., Vol. 38, 2002, pp [8] Y. Wu, M. Ismail and H. Olsson, CMOS VHF/RF CCO based on active inductors, Electron Lett., Vol. 37, 200, pp [9] T.K. Lin, and A.J. Payne, Desin of a Low-Voltae, Low-Power, Wide-Tunin Interated Oscillator, IEEE ISCAS, 2000, pp. V-629-V-632,. [0] X. Haiqiao, and S. Rolf, A Low-Voltae Low-Power CMOS 5-GHz Oscillator Based on Active Inductors, Electronics, Circuits and Systems, 9th International Conference, Vol., 2002, pp [] C. C. Hsiao, C. W. Kuo, C. C. Ho, and Y. J. Chan, Improved Quality-Factor of 0.8-um CMOS Active Inductor by a Feedback Resistance Desin, IEEE Microwave and Wireless Components Letters, Vol. 2, 2002, pp [2] M. Ismail, R. Wassenaar, and W. Morrison, A Hih-Speed Continuous-Time Bandpass VHF Filter In MOS Technoloy, Proc. IEEE ISCAS, Vol. 3, 99, pp [3] X. Zhan, K. T. Mok, M. Chan, and P. K. Ko, Lare-Sinal and Phase Noise Performance Analysis of Active Inductor Tunable Oscillator, IEEE Conference, 2003, pp. I-705-I-708. [4] J. Y. Foo and R. J. Weber, Low Power 5GHz Quadrature Phase CMOS LC Oscillator with Active Inductor, International Symposium on Communications and Information Technoloies, 2004, pp

Low-Phase Noise CMOS Voltage Controller Oscillator (LC Oscillators) Using High-Q Active Inductors with the Transistors in Strong Inversion

Low-Phase Noise CMOS Voltage Controller Oscillator (LC Oscillators) Using High-Q Active Inductors with the Transistors in Strong Inversion International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-6, Issue-8, August 2018 Low-Phase Noise CMOS Voltage Controller Oscillator (LC Oscillators) Using

More information

High Q Active Inductors Apply in A 2.4GHz Bandpass Filter

High Q Active Inductors Apply in A 2.4GHz Bandpass Filter Proceedins of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hanzhou, China, April 15-17, 7 158 Hih Q Active Inductors Apply in A.4GHz Bandpass Filter Jenn-Tzer

More information

Low Power Amplifier Design Using CMOS Active Inductor

Low Power Amplifier Design Using CMOS Active Inductor Proceedins of the 5th WSEAS International Conference on Sinal Processin, Istanbul, Turkey, May 7-9, 006 (pp111-115) Low Power Amplifier Desin Usin CMOS Active Inductor MING-JEUI WU, PEI-JEN YEN, CHING-CHUAN

More information

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here Copyriht 7 Year IEEE. eprinted from ISCAS 7 International Symposium on Circuits and Systems, 7-3 May 7. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in

More information

A High-Gain, Low-Noise GHz Ultra-Wideband LNA in a 0.18μm CMOS

A High-Gain, Low-Noise GHz Ultra-Wideband LNA in a 0.18μm CMOS Majlesi Journal of Electrical Enineerin Vol., No., June 07 A Hih-Gain, Low-Noise 3. 0.6 GHz Ultra-Wideband LNA in a Behnam Babazadeh Daryan, Hamid Nooralizadeh * - Department of Electrical Enineerin, Islamshahr

More information

Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier

Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier Volume 89 No 8, March 04 Analysis of Active Feedback and its Influence on UWB Low Noise Amplifier P.Keerthana PG Student Dept. of ECE SSN Collee of Enineerin, Chennai, India. J.Raja Professor Dept. of

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

Comparison of LNA Topologies for WiMAX Applications in a Standard 90-nm CMOS Process

Comparison of LNA Topologies for WiMAX Applications in a Standard 90-nm CMOS Process 2010 12th International Conference on Computer Modellin and Simulation Comparison of LNA Topoloies for WiMAX Applications in a Standard 90-nm CMOS Process Michael Anelo G. Lorenzo Electrical and Electronics

More information

Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors

Realization of current-mode KHN-equivalent biquad filter using ZC-CFTAs and grounded capacitors Indian Journal of Pure & Applied Physics Vol. 49, December, pp. 84-846 Realiation of current-mode KHN-equivalent biquad filter usin ZC-CFTAs and rounded capacitors Jetsdaporn Satansup & Worapon Tansrirat*

More information

A CMOS Multi-Output Cross-Coupled Gain-Boosting Current- Mode Integrator

A CMOS Multi-Output Cross-Coupled Gain-Boosting Current- Mode Integrator Vol.6, No.6 (203), pp.39-50 http://dx.doi.or/0.4257/ijca.203.6.6.4 A CMOS Multi-Output Cross-Coupled Gain-Boostin Current- Mode Interator Junho Ban, Inho Ryu, Jeho Son, Hyunjun Chun IT Applied System Enineerin,

More information

CMOS Active Inductor: A Technical Review

CMOS Active Inductor: A Technical Review CMOS Active Inductor: A Technical Review Dhara P Patel Electronics and Communication Engineering Department, Charotar University of Science and Technology, Changa,Gujarat 388421, India. Shruti Oza Professor,

More information

Analog Integrated Circuits. Lecture 6: Noise Analysis

Analog Integrated Circuits. Lecture 6: Noise Analysis Analo Interated Circuits Lecture 6: Noise Analysis ELC 60 Fall 03 Dr. Ahmed Nader Dr. Mohamed M. Aboudina anader@ieee.or maboudina@mail.com Department of Electronics and Communications Enineerin Faculty

More information

A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION. Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa

A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION. Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa Title Author(s) Citation A DYNAMIC LATCHED COMPARATOR WITH BUILT-IN OFFSET CALIBRATION Cui, Ji; Tani, Sadahiro; Ohara, Kenji; Hirai, Yusaku; Matsuoka, Toshimasa Far East Journal of Electronics and Communications.

More information

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End

Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End International Journal of Intelligent Engineering & Systems http://www.inass.org/ Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End J.Manjula, S.Malarvizhi ECE department,

More information

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR Yang-Shyung Shyu * and Jiin-Chuan Wu Dept. of Electronics Engineering, National Chiao-Tung University 1001 Ta-Hsueh Road, Hsin-Chu, 300, Taiwan * E-mail:

More information

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation 2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement

More information

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology Wireless Engineering and Technology, 2011, 2, 102106 doi:10.4236/wet.2011.22014 Published Online April 2011 (http://www.scirp.org/journal/wet) 99 Layout Design of LC VCO with Current Mirror Using 0.18

More information

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique ECE1352 Term Paper Low Voltage Phase-Locked Loop Design Technique Name: Eric Hu Student Number: 982123400 Date: Nov. 14, 2002 Table of Contents Abstract pg. 04 Chapter 1 Introduction.. pg. 04 Chapter 2

More information

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications M. Ikram Malek, Suman Saini National Institute of technology, Kurukshetra Kurukshetra, India Abstract Many architectures

More information

Quiz2: Mixer and VCO Design

Quiz2: Mixer and VCO Design Quiz2: Mixer and VCO Design Fei Sun and Hao Zhong 1 Question1 - Mixer Design 1.1 Design Criteria According to the specifications described in the problem, we can get the design criteria for mixer design:

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

ISSN: International Journal of Engineering and Innovative Technology (IJEIT) Volume 1, Issue 2, February 2012

ISSN: International Journal of Engineering and Innovative Technology (IJEIT) Volume 1, Issue 2, February 2012 A Performance Comparison of Current Starved VCO and Source Coupled VCO for PLL in 0.18µm CMOS Process Rashmi K Patil, Vrushali G Nasre rashmikpatil@gmail.com, vrushnasre@gmail.com Abstract This paper describes

More information

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao Applied Mechanics and Materials Online: 2012-12-13 ISSN: 1662-7482, Vols. 256-259, pp 2373-2378 doi:10.4028/www.scientific.net/amm.256-259.2373 2013 Trans Tech Publications, Switzerland Ground-Adjustable

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range.

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range. Volume 6, Issue 4, April 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of CMOS

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

EE 434 Lecture 22. Properties of Bipolar Devices

EE 434 Lecture 22. Properties of Bipolar Devices EE 434 Lecture 22 Properties of Bipolar Devices Quiz 16 A dc current source is shown. If the device has width W50u, lenth L1.2u, ucox100ua -2, T.75 and.04-1, determine a) The nominal output current b)

More information

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO 82 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 82-86 (213) DOI: 1.6119/JMST-11-123-1 A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz MOS VO Yao-hian Lin, Mei-Ling Yeh, and hung-heng hang

More information

A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION Journal of Enineerin Science and Technoloy Vol. 12, No. 3 (2017) 686-700 School of Enineerin, Taylor s University A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION RAMKRISHNA

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

PDm200 High Performance Piezo Driver

PDm200 High Performance Piezo Driver PDm200 Hih Performance Piezo Driver The PDm200 is a complete hih-performance power supply and linear amplifier module for drivin piezoelectric actuators. The output voltae rane can be switched between

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

EE 435 Lecture 12. OTA circuits. Cascaded Amplifiers. -- Stability Issues. -- Two-Stage Op Amp Design

EE 435 Lecture 12. OTA circuits. Cascaded Amplifiers. -- Stability Issues. -- Two-Stage Op Amp Design EE 435 Lecture 12 OTA circuits Cascaded Amplifiers -- Stability Issues -- Two-Stae Op Amp Desin Review from last lecture: Current Mirror Op Amp W/O CMFB DD M : 1 1 : M M meq m1 Often termed an OTA I T

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

Design Of The Miller Opamp

Design Of The Miller Opamp Miller Opamp Desin Of The Miller Opamp The Miller opamp is made up of Input differential stae Simple MOS OTA A second ain stae ommon Source Amplifier The desin of a Miller opamp is beneficial as a learnin

More information

Design of a Low Noise Amplifier using 0.18µm CMOS technology

Design of a Low Noise Amplifier using 0.18µm CMOS technology The International Journal Of Engineering And Science (IJES) Volume 4 Issue 6 Pages PP.11-16 June - 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Design of a Low Noise Amplifier using 0.18µm CMOS technology

More information

RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design

RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design By VIKRAM JAYARAM, B.Tech Signal Processing and Communication Group & UMESH UTHAMAN, B.E Nanomil FINAL PROJECT Presented to Dr.Tim S Yao of Department

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

A 25-GHz Differential LC-VCO in 90-nm CMOS

A 25-GHz Differential LC-VCO in 90-nm CMOS A 25-GHz Differential LC-VCO in 90-nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2008 IEEE Asia Pacific Conference on Circuits and Systems Published: 2008-01-01 Link to publication Citation

More information

Design of a Wide Tuning-Range, High Swing Fully Differential CMOS VCO with a Differential Tunable Active Inductor

Design of a Wide Tuning-Range, High Swing Fully Differential CMOS VCO with a Differential Tunable Active Inductor Desin of a Wide Tunin-ane, Hih Swin Fully Differential CMOS VCO with a Differential Tunable Active Inductor Zahra Dorost Ghol, Noushin Ghaderi 2, Majid Ebnali-Heidari - Department of Enineerin, Shahrekord

More information

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage Low Power Low Phase Noise LC To Reduce Start Up Time OF RF Transmitter M.A.Nandanwar,Dr.M.A.Gaikwad,Prof.D.R.Dandekar B.D.College Of Engineering,Sewagram,Wardha(M.S.)INDIA. Abstract Voltage controlled

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS International Journal of Electrical and Electronics Engineering Research Vol.1, Issue 1 (2011) 41-56 TJPRC Pvt. Ltd., DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS M.

More information

Christopher J. Barnwell ECE Department U. N. Carolina at Charlotte Charlotte, NC, 28223, USA

Christopher J. Barnwell ECE Department U. N. Carolina at Charlotte Charlotte, NC, 28223, USA Copyright 2008 IEEE. Published in IEEE SoutheastCon 2008, April 3-6, 2008, Huntsville, A. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising

More information

DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY

DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY ISSN (Print ) : 2614-4867 ISSN (Online) : 2614-4859 DESIGN OF SECOND ORDER BUTTERWORTH HIGHPASS FILTER USING CMOS TECHNOLOGY 11 Anraini Puspita Sari, Aun Darmawansyah, M. Julius St. Abstract The research

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

PDm200B High Performance Piezo Driver

PDm200B High Performance Piezo Driver PDm200B Hih Performance Piezo Driver The PDm200B is a hih-performance power supply and linear amplifier module for drivin piezoelectric actuators. The output voltae rane can be switched between bipolar

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM Progress In Electromagnetics Research C, Vol. 9, 25 34, 2009 DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM S.-K. Wong and F. Kung Faculty of Engineering Multimedia University

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS A 24GHz Quadrature Receiver Frontend in 90nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2009 IEEE Asia Pacific Microwave Conference Published: 20090101 Link to publication Citation for

More information

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor A. GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor Najmeh Cheraghi Shirazi, Ebrahim Abiri, and Roozbeh Hamzehyan, ember, IACSIT Abstract By using a differential

More information

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components. 3 rd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 07-12, 2004 Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive

More information

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL IN CMOS TECHNOLOGY L. Majer, M. Tomáška,V. Stopjaková, V. Nagy, and P. Malošek Department of Microelectronics, Slovak Technical University, Ilkovičova 3, Bratislava,

More information

A New Architecture for Rail-to-Rail Input Constant-g m CMOS Operational Transconductance Amplifiers

A New Architecture for Rail-to-Rail Input Constant-g m CMOS Operational Transconductance Amplifiers A New Architecture for Rail-to-Rail Input Constant- m CMOS Operational Transconductance Amplifiers Mohammad M. Ahmadi Electrical Enineerin Dept. Sharif University of Technoloy. Azadi Ave., Tehran, Iran

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

CMOS LNA Design for Ultra Wide Band - Review

CMOS LNA Design for Ultra Wide Band - Review International Journal of Innovation and Scientific Research ISSN 235-804 Vol. No. 2 Nov. 204, pp. 356-362 204 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/ CMOS LNA

More information

Sigma-Delta A/D Modulator Design in a Pre-Diffused Digital Array Using the Principle of Trapezoidal Association of Transistors

Sigma-Delta A/D Modulator Design in a Pre-Diffused Digital Array Using the Principle of Trapezoidal Association of Transistors Sima-Delta A/D Modulator Desin in a Pre-Diffused Diital Array Usin the Principle of Trapezoidal Association of Transistors Jun Hyun Choi and Serio Bampi Federal University of Rio Grande do Sul - UFRGS

More information

EDA Toolsets for RF Design & Modeling

EDA Toolsets for RF Design & Modeling Yiannis Moisiadis, Errikos Lourandakis, Sotiris Bantas Helic, Inc. 101 Montgomery str., suite 1950 San Fransisco, CA 94104, USA Email: {moisiad, lourandakis, s.bantas}@helic.com Abstract This paper presents

More information

EE 435 Lecture 11. Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns. OTA circuits

EE 435 Lecture 11. Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns. OTA circuits EE 435 Lecture 11 Current Mirror Op Amps -- Alternative perspective -- Loop phase-shift concerns OTA circuits Review from last lecture: Current Mirror Op Amp W/O CMFB DD M : 1 1 : M M meq m1 Often termed

More information

An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications

An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications F. Svelto S. Deantoni, G. Montagna R. Castello Dipartimento di Ingegneria Studio di Microelettronica Dipartimento di Elettronica Università

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Jaehyuk Yoon* (corresponding author) School of Electronic Engineering, College of Information Technology,

More information

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in m N-well CMOS

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in m N-well CMOS JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 309 A Gate-Leakae Insensitive 0.7-V 233-nW ECG Amplifier usin Non-Feedback PMOS Pseudo-Resistors in 0.13- m N-well CMOS Ji-Yon

More information

ELECTRONICALLY ADJUSTABLE TRIPLE-INPUT SINGLE-OUTPUT FILTER WITH VOLTAGE DIFFERENCING TRANSCONDUCTANCE AMPLIFIER

ELECTRONICALLY ADJUSTABLE TRIPLE-INPUT SINGLE-OUTPUT FILTER WITH VOLTAGE DIFFERENCING TRANSCONDUCTANCE AMPLIFIER ELECTRONICALLY ADJUSTABLE TRIPLE-INPUT SINGLE-OUTPUT FILTER WITH VOLTAGE DIFFERENCING TRANSCONDUCTANCE AMPLIFIER JAN JERABEK 1, ROMAN SOTNER, KAMIL VRBA 1 Key words: Current mode, Triple-input sinle-output

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application

An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application Progress In Electromagnetics Research Letters, Vol. 66, 99 104, 2017 An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application Lang Chen 1, * and Ye-Bing Gan 1, 2 Abstract A novel asymmetrical single-pole

More information

Cascode Configuration

Cascode Configuration EE 330 Lecture 34 Some dditional nalo Circuits The Cascode Confiuration Darlinton Confiuration Other Special Confiurations The Differential mplifier Cascade mplifiers mplifier Biasin Diital Loic Review

More information

ABabcdfghiejklStanford University

ABabcdfghiejklStanford University Design Methodology or Power-Constrained Low Noise RF Circuits Jung-Suk Goo, Hee-Tae Ahn, Donald J Ladwig, Zhiping Yu, Thomas H Lee, and Robert W Dutton, Stanord University, Stanord CA National Semiconductor,

More information

Case Study: Osc2 Design of a C-Band VCO

Case Study: Osc2 Design of a C-Band VCO MICROWAVE AND RF DESIGN Case Study: Osc2 Design of a C-Band VCO Presented by Michael Steer Reading: Chapter 20, 20.5,6 Index: CS_Osc2 Based on material in Microwave and RF Design: A Systems Approach, 2

More information

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator Bendik Kleveland, Carlos H. Diaz 1 *, Dieter Vook 1, Liam Madden 2, Thomas H. Lee, S. Simon Wong Stanford University, Stanford, CA 1 Hewlett-Packard

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analo) VLSI Circuit Desin Sprin 08 Lecture 6: Output Staes Sam Palermo Analo & Mixed-Sinal Center Texas A&M University Announcements Project eport Due May Email it to me by 5PM Exam 3 is

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

Low Power Low Phase Noise CMOS LC VCO A Review

Low Power Low Phase Noise CMOS LC VCO A Review Low Power Low Phase Noise CMOS LC VCO A Review M.A.Nandanwar Research Scholar B.D.College of Engineering.Sewagram M.A.Gaikwad P.G.Department of Electronics Engineering B.D.C.O.E.Sewagram D.Dandekar P.G.Department

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

Miniature 3-D Inductors in Standard CMOS Process

Miniature 3-D Inductors in Standard CMOS Process IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 4, APRIL 2002 471 Miniature 3-D Inductors in Standard CMOS Process Chih-Chun Tang, Student Member, Chia-Hsin Wu, Student Member, and Shen-Iuan Liu, Member,

More information

Implementation of Low Phase Noise Wide-Band VCO with Digital

Implementation of Low Phase Noise Wide-Band VCO with Digital Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors 199 10 x Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors Meng-Ting Hsu, Chien-Ta Chiu

More information

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d Applied Mechanics and Materials Online: 2013-06-27 ISSN: 1662-7482, Vol. 329, pp 416-420 doi:10.4028/www.scientific.net/amm.329.416 2013 Trans Tech Publications, Switzerland A low-if 2.4 GHz Integrated

More information

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design

EE 435. Lecture 5 Spring Fully Differential Single-Stage Amplifier Design EE 435 ecture 5 Sprin 06 Fully Differential Sinle-Stae Amplifier Desin Common-mode operation Desin of basic differential op amp Slew Rate The Reference Op Amp Review from last lecture: Where we are at:

More information

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process Krishna B. Makwana Master in VLSI Technology, Dept. of ECE, Vishwakarma Enginnering College, Chandkheda,

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

THE reference spur for a phase-locked loop (PLL) is generated

THE reference spur for a phase-locked loop (PLL) is generated IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 8, AUGUST 2007 653 Spur-Suppression Techniques for Frequency Synthesizers Che-Fu Liang, Student Member, IEEE, Hsin-Hua Chen, and

More information

A 2-V Low-Power CMOS Direct-Conversion. Voltage-Controlled Oscillator and RF Amplifier for GHz RF Transmitter Applications

A 2-V Low-Power CMOS Direct-Conversion. Voltage-Controlled Oscillator and RF Amplifier for GHz RF Transmitter Applications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 2, FEBRUARY 2002 123 A 2-V Low-Power CMOS Direct-Conversion Quadrature Modulator With Integrated Quadrature

More information

Design of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications

Design of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications Desin of Positive Feedback Driven Current-Mode Amplifiers Z-Copy CDBA and CDTA, and Filter Applications Ersin Alaybeyoğlu, Arda Güney, Mustafa Altun and Hakan Kuntman Abstract n this study, hih-performance

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

A low noise amplifier with improved linearity and high gain

A low noise amplifier with improved linearity and high gain International Journal of Electronics and Computer Science Engineering 1188 Available Online at www.ijecse.org ISSN- 2277-1956 A low noise amplifier with improved linearity and high gain Ram Kumar, Jitendra

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information

CMOS Fully Differential Feedforward-Regulated Folded Cascode Amplifier

CMOS Fully Differential Feedforward-Regulated Folded Cascode Amplifier MOS Fully Differential Feedforward-Reulated Folded ascode Amplifier Edinei Santin, Michael Fiueiredo, João Goes and Luís B. Oliveira Departamento de Enenharia Electrotécnica / TS UNINOVA Faculdade de iências

More information