Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao

Size: px
Start display at page:

Download "Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao"

Transcription

1 Applied Mechanics and Materials Online: ISSN: , Vols , pp doi: / Trans Tech Publications, Switzerland Ground-Adjustable for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao Graduate Institute of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC Keywords: RF IC,, VCO, Abstract. A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between and - 115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm 2. Introduction In recent years, wireless Communication system becomes an important part in many mobile applications, including cell-phone, ipad, LAN, mobile satellite communication system and personal communication system. VCO provides a precise frequency source to drive the transceiver system and many VCOs were designed for wireless communication. For better performance, some VCOs were fabricated by GaAs hybrid and phemt technologies. Of course, the fabrication costs of such devices are higher than the fine-line standard devices available today. Moreover, since future system-on-chip solutions will comprise tens of millions of digital gates as well as analog/digital and RF/ microwave circuits. These can be implemented in low-cost standard technology [1-2]. In general, designing the RF frontend sub- system of any wideband wireless transceiver illustrates a great challenge for the implementation of the whole transceiver due to the stringent requirement of the ultra-wideband (UWB) radio. Current research focuses on UWB IEEE a of GHz frequency band for short range, low power, and high data-rate applications. We try to separate the UWB bandwidth for six parts and the VCO realizes continuously each part of them. In this paper, we present a novel VCO with new variable-inductor switched-modes using a standard 90nm technology. Because the varactor is the major factor causing low Q and low phase noise [3], there were many paper had published for varactor displacement like switched capacitor array, variable inductor and intrinsic-tuning technique. The new variable-inductor switched-modes could develop in existing structure, so it needs no addition area. In Section 2, the design strategy and circuit simulation of the various VCO considerations are discussed in details. In Section 3, it summarizes the measurement results and some final conclusions are presented in Section 4. Design and Simulation Recently, many kinds of variactors are developed, such as p-n junction, N-MOS, accumulation A- MOS, to enhance tuning range. However, it still encounters nonlinear effects in the variation of capacitor value versus applied voltage. Fig.1 shows various kinds of variable inductors. The types one to three are the major architectures of variable inductors which had published [3-4] and the type 4 is our architecture. Type one is most common variable-inductor. It combined the varactor and inductor together, and changes its inductor value by mutual inductance. Type two is a MEMS structure. It moves the metal flat to cut the magnetic flux and changes the inductor value. Type three is an inductor with a control current, and changes the current to change the inductor value. All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (ID: , Pennsylvania State University, University Park, USA-08/05/16,23:52:08)

2 2374 Advances in Civil Engineering II Fig.1 inductors Fig.2 is our new design, and Fig.3 shows the architecture of this design. It is a cross-section view of the variable inductor. We use the top metal as the inductor and change the different ground point to obtain different value of inductor. When the current I flows cross the top metal clockwise, it induces a magnetic flux. The equation (1) of total magnetic flux φ shows the surface integral of magnetic field B on the normal direction of an infinitesimal area ds. ϕ = B ds (1) The value of an inductor for large-signal calculation shows in equation (2) L =ϕ / I (2) According to equations (1) and (2), we could find that if we change the magnitude of magnetic flux, the inductor value will be varied. If we change the ground area, we will cut the magnetic flux, and also take a change of inductor value. Fig. 3 shows the implemented schematic of an adjustable inductor with variable ground-area. Fig. 2 Adjustable inductor with ground-area variation... Fig 3 Schematic diagram of an adjustable inductor with different kinds of sequential switch operation

3 Applied Mechanics and Materials Vols A dual-cross couple LC-tank VCO based on adjustable inductor with MOS-inversion varactor combination was designed and its schematic is shown in Fig. 4. After the circuit design, this circuit was fabricated by using TSMC 90nm standard process. The proposed VCO is the complementary cross-coupled pair architecture. The advantages of complementary cross-coupled is relaxed start-up condition, differential-ended, easy implementation and more balanced output. It is also has some disadvantages like lower energy-transfer efficiency and poor phase-noise. We try to use the switched-modes variable inductor for phase-noise improvement. The NMOS transistors (M3/M4) and PMOS transistors (M1/M2) are cross-coupled pair providing a negative resistor for oscillating. The varactors (C1/C2) use for fine tuning. At the dual output (Terminals Va, Vb), we designed complementary buffer for output matching and protecting external effect. After detailed simulation, the output frequency f o of the VCO versus applied varactor voltage with different kinds of sequential switch operation is shown in Fig. 5, and can be expressed as, 1 f0 = 2π L1(i)C1(V1) (3) Where L1(i) is controlled by grounded switches for band selection i and C1(V1) is tuned by applied voltage V1of the varactor for process variation. VDD Vb... Va Vt Fig 4 VCO using variable inductor Fig. 5 Oscillator frequency range versus varactor voltage with different kinds of switch operation

4 2376 Advances in Civil Engineering II Experimental Results And Discuss The wide-tuning VCO circuit was measured using on-wafer micro-probes. Fig. 6 shows the implemented chip with die size of 0.77x0.62 mm 2 including pads and guard ring. The supply voltage of this circuit is 1.2 V with 5 ma, and the total dc power consumption is 6 mw. Fig. 7 shows the measured spectrum of the VCO circuit. The tuning range of this VCO is between 13.35GHz to 15.6GHz; the output power is between -2dBm to dBm. Fig. 8 shows the measured performance of phase-noise. The VCO is measured a phase noise of around -115 dbc/hz at 1-MHz offset. Fig. 6 Die microphotograph of purposed VCO, with a chip size of 0.77x0.62 mm 2 (a) (b) Fig. 7 The purposed VCO spectrum under (a) switch count = 0, i.e. all-of state, and (b) switch count = 5, all-on state

5 Applied Mechanics and Materials Vols Conclusions Fig. 8 Phase-noise of the purposed VCO performance Table I. Performance Benchmark [5] [6] [7] This Work Power Supply(V) Process 90nm 0.18µm 0.18µm TSMC 90nm Technique Mutual Mutual MEMS Switching Power Dissipation(mW) ~ ~ Frequency(GHz) 53.1~ ~ ~ ~15.6 Tuning Range(GHz) 8.2GHz (14.33%) 0.6GHz (5.45%) 1.47GHz (72.95%) 2.25GHz (15.6%) Phase Noise (dbc/hz@1mhz) (@10MHz) (@10MHz) FOM FOM(T) The voltage controlled oscillator for UWB application is investigated in this work. The VCO is designed and fabricated by using TSMC 90nm technology. The proposed VCO consists of a 5 variable switched-mode inductors, which obtain low phase noise and good performance. The UWB VCO achieves a tuning range between 13.35GHz to 15.6GHz, and output power is between -2dBm to dBm. The phase noise of this VCO is dBc/Hz at 1-MHz offset. The proposed switched-modes voltage controlled oscillator provides a practical good design and solutions for UWB applications. Acknowledgements The authors would like to acknowledge the fabrication support provided by Taiwan Semiconductor Manufacturing Company (TSMC) through the National Chip Implementation Center (CIC), and also appreciate to the CIC for signal source measurements. We are grateful to the national Center for High-Performance Computing (NCHC) and Green Technology Research Center (GTRC) for computer time and facilities.

6 2378 Advances in Civil Engineering II References [1] Piernas B, Nishikawa K, Nakagawa T and Araki K 2003 IEEE MTT [2] Ballweber B M, Kurdoghlian A, Sokolich M, Case M, Micovic M, Thomas S and Fields C H 2000 IEEE GaAs IC Symp [3] Raffaelli L, Stewart E, Borelli J and Quimby R1994 IEEE Sarnoff Symp. 0_28 0_34 [4] Hou J A and Wang Y H 2010 IEEE Microwave and Wireless Components Lett [5] Yu C Y, Chen W Z, Wu C Y and Lu T Y 2008 IEEE Asian Solid-State Circuits Conference [6] Leung L L K, Chui K W C and Luong H C 2005 IEEE Asian Solid-State Circuits Conference [7] Ohashi K, Ito Y, Yoshihara Y, Okada K and Masu K 2007 Asia and South Pacific Design Automation Conference 98-99

7 Advances in Civil Engineering II / Ground-Adjustable for Wide-Tuning VCO Design /

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO 82 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 82-86 (213) DOI: 1.6119/JMST-11-123-1 A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz MOS VO Yao-hian Lin, Mei-Ling Yeh, and hung-heng hang

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation 2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement

More information

A 3 8 GHz Broadband Low Power Mixer

A 3 8 GHz Broadband Low Power Mixer PIERS ONLINE, VOL. 4, NO. 3, 8 361 A 3 8 GHz Broadband Low Power Mixer Chih-Hau Chen and Christina F. Jou Institute of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan Abstract

More information

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range.

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range. Volume 6, Issue 4, April 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of CMOS

More information

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology Wireless Engineering and Technology, 2011, 2, 102106 doi:10.4236/wet.2011.22014 Published Online April 2011 (http://www.scirp.org/journal/wet) 99 Layout Design of LC VCO with Current Mirror Using 0.18

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS

A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS Progress In Electromagnetics Research C, Vol. 25, 81 91, 2012 A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS S. Mou *, K. Ma, K. S. Yeo, N. Mahalingam, and B. K. Thangarasu

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

A 25-GHz Differential LC-VCO in 90-nm CMOS

A 25-GHz Differential LC-VCO in 90-nm CMOS A 25-GHz Differential LC-VCO in 90-nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2008 IEEE Asia Pacific Conference on Circuits and Systems Published: 2008-01-01 Link to publication Citation

More information

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer

Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer Australian Journal of Basic and Applied Sciences, 5(12): 2595-2599, 2011 ISSN 1991-8178 Design and Simulation of 5GHz Down-Conversion Self-Oscillating Mixer 1 Alishir Moradikordalivand, 2 Sepideh Ebrahimi

More information

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d Applied Mechanics and Materials Online: 2013-06-27 ISSN: 1662-7482, Vol. 329, pp 416-420 doi:10.4028/www.scientific.net/amm.329.416 2013 Trans Tech Publications, Switzerland A low-if 2.4 GHz Integrated

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

Design of a 0.7~3.8GHz Wideband. Power Amplifier in 0.18-µm CMOS Process. Zhiyuan Li, Xiangning Fan

Design of a 0.7~3.8GHz Wideband. Power Amplifier in 0.18-µm CMOS Process. Zhiyuan Li, Xiangning Fan Applied Mechanics and Materials Online: 2013-08-16 ISSN: 1662-7482, Vol. 364, pp 429-433 doi:10.4028/www.scientific.net/amm.364.429 2013 Trans Tech Publications, Switzerland Design of a 0.7~3.8GHz Wideband

More information

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT Progress In Electromagnetics Research C, Vol. 17, 29 38, 2010 LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT C.-P. Chang, W.-C. Chien, C.-C.

More information

A GHz VCO using a new variable inductor for K band application

A GHz VCO using a new variable inductor for K band application Vol. 34, No. 12 Journal of Semiconductors December 2013 A 20 25.5 GHz VCO using a new variable for K band application Zhu Ning( 朱宁 ), Li Wei( 李巍 ), Li Ning( 李宁 ), and Ren Junyan( 任俊彦 ) State Key Laboratory

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

MULTIPHASE voltage-controlled oscillators (VCOs) are

MULTIPHASE voltage-controlled oscillators (VCOs) are 474 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 3, MARCH 2007 A 15/30-GHz Dual-Band Multiphase Voltage-Controlled Oscillator in 0.18-m CMOS Hsieh-Hung Hsieh, Student Member, IEEE,

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS

A 24-GHz Quadrature Receiver Front-end in 90-nm CMOS A 24GHz Quadrature Receiver Frontend in 90nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2009 IEEE Asia Pacific Microwave Conference Published: 20090101 Link to publication Citation for

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14 Mazhareddin Taghivand, Kamal Aggarwal and Ada Poon Dept. of Electrical Engineering Stanford University Outline Motivation Design Challenges Design of Mode-Switching VCO Measurement Results Conclusion 2

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

A 44.5 GHz differntially tuned VCO in 65nm bulk CMOS with 8% tuning range Cheema, H.M.; Mahmoudi, R.; Sanduleanu, M.A.T.; van Roermund, A.H.M.

A 44.5 GHz differntially tuned VCO in 65nm bulk CMOS with 8% tuning range Cheema, H.M.; Mahmoudi, R.; Sanduleanu, M.A.T.; van Roermund, A.H.M. A 44.5 GHz differntially tuned VCO in 65nm bulk with 8% tuning range Cheema, H.M.; Mahmoudi, R.; Sanduleanu, M.A.T.; van Roermund, A.H.M. Published in: Proceedings of the EEE Radio Frequency Integrated

More information

InGaP HBT MMIC Development

InGaP HBT MMIC Development InGaP HBT MMIC Development Andy Dearn, Liam Devlin; Plextek Ltd, Wing Yau, Owen Wu; Global Communication Semiconductors, Inc. Abstract InGaP HBT is being increasingly adopted as the technology of choice

More information

Design of Wide Tuning Range and Low Power Dissipation of VCRO in 50nm CMOS Technology

Design of Wide Tuning Range and Low Power Dissipation of VCRO in 50nm CMOS Technology Design of Wide Tuning Range and Low Power Dissipation of VCRO in 50nm CMOS Technology Gagandeep Singh 1, Mandeep Singh Angurana 2 PG Student, Dept. Of Microelectronics, BMS College of Engineering, Sri

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

Implementation of Low Phase Noise Wide-Band VCO with Digital

Implementation of Low Phase Noise Wide-Band VCO with Digital Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors 199 10 x Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors Meng-Ting Hsu, Chien-Ta Chiu

More information

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

Quiz2: Mixer and VCO Design

Quiz2: Mixer and VCO Design Quiz2: Mixer and VCO Design Fei Sun and Hao Zhong 1 Question1 - Mixer Design 1.1 Design Criteria According to the specifications described in the problem, we can get the design criteria for mixer design:

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL

DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL 1 Parmjeet Singh, 2 Rekha Yadav, 1, 2 Electronics and Communication Engineering Department D.C.R.U.S.T. Murthal, 1, 2 Sonepat,

More information

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers Electrical and Computer Engineering Volume 2011, Article ID 361910, 7 pages doi:10.1155/2011/361910 Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio

More information

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor A. GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor Najmeh Cheraghi Shirazi, Ebrahim Abiri, and Roozbeh Hamzehyan, ember, IACSIT Abstract By using a differential

More information

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.1.042 ISSN(Online) 2233-4866 Low Phase Noise Series-coupled VCO

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

ISSN:

ISSN: High Frequency Power Optimized Ring Voltage Controlled Oscillator for 65nm CMOS Technology NEHA K.MENDHE 1, M. N. THAKARE 2, G. D. KORDE 3 Department of EXTC, B.D.C.O.E, Sevagram, India, nehakmendhe02@gmail.com

More information

A K-BAND TRANSMITTER FRONT-END BASED ON DIFFERENTIAL SWITCHES IN 0.13-µm CMOS TECH- NOLOGY

A K-BAND TRANSMITTER FRONT-END BASED ON DIFFERENTIAL SWITCHES IN 0.13-µm CMOS TECH- NOLOGY Progress In Electromagnetics Research C, Vol. 19, 61 72, 2011 A K-BAND TRANSMITTER FRONT-END BASED ON DIFFERENTIAL SWITCHES IN 0.13-µm CMOS TECH- NOLOGY H.-C. Wang and J.-C. Juang Department of Electrical

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

Design of Single to Differential Amplifier using 180 nm CMOS Process

Design of Single to Differential Amplifier using 180 nm CMOS Process Design of Single to Differential Amplifier using 180 nm CMOS Process Bhoomi Patel 1, Amee Mankad 2 P.G. Student, Department of Electronics and Communication Engineering, Shantilal Shah Engineering College,

More information

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator http://dx.doi.org/10.5573/jsts.2013.13.3.198 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.3, JUNE, 2013 A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator Hyung-Gu Park,

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

On-Chip Passive Devices Embedded in Wafer-Level Package

On-Chip Passive Devices Embedded in Wafer-Level Package On-Chip Passive Devices Embedded in Wafer-Level Package Kazuya Masu 1, Kenichi Okada 1, Kazuhisa Itoi 2, Masakazu Sato 2, Takuya Aizawa 2 and Tatsuya Ito 2 On-chip high-q spiral and solenoid inductors

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

Broadband analog phase shifter based on multi-stage all-pass networks

Broadband analog phase shifter based on multi-stage all-pass networks This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Broadband analog phase shifter based on multi-stage

More information

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4 17.4 A 6GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction Daquan Huang, William Hant, Ning-Yi Wang, Tai W. Ku, Qun Gu, Raymond Wong, Mau-Chung

More information

DISTRIBUTED amplification is a popular technique for

DISTRIBUTED amplification is a popular technique for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 5, MAY 2011 259 Compact Transformer-Based Distributed Amplifier for UWB Systems Aliakbar Ghadiri, Student Member, IEEE, and Kambiz

More information

Design of 2.4 GHz Oscillators In CMOS Technology

Design of 2.4 GHz Oscillators In CMOS Technology Design of 2.4 GHz Oscillators In CMOS Technology Mr. Pravin Bodade Department of electronics engineering Priyadarshini College of engineering Nagpur, India prbodade@gmail.com Ms. Divya Meshram Department

More information

High-Linearity CMOS. RF Front-End Circuits

High-Linearity CMOS. RF Front-End Circuits High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-linearity CMOS tf Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record

More information

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology International Journal of Industrial Electronics and Control. ISSN 0974-2220 Volume 6, Number 1 (2014), pp. 1-5 International Research Publication House http://www.irphouse.com A New Approach for Op-amp

More information

School of Electronics, Devi Ahilya University, Indore, Madhya Pradesh, India 3. Acropolis Technical Campus, Indore, Madhya Pradesh, India

School of Electronics, Devi Ahilya University, Indore, Madhya Pradesh, India 3. Acropolis Technical Campus, Indore, Madhya Pradesh, India International Journal of Emerging Research in Management &Technology Research Article August 2017 Power Efficient Implementation of Low Noise CMOS LC VCO using 32nm Technology for RF Applications 1 Shitesh

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR

WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR Progress In Electromagnetics Research Letters, Vol. 18, 135 143, 2010 WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR W. C. Chien, C.-M. Lin, C.-H. Liu, S.-H.

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2 17.2 A CMOS Differential Noise-Shifting Colpitts VCO Roberto Aparicio, Ali Hajimiri California Institute of Technology, Pasadena, CA Demand for higher

More information

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell Devi Singh Baghel 1, R.C. Gurjar 2 M.Tech Student, Department of Electronics and Instrumentation, Shri G.S. Institute of

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

A Compact W-Band Reflection-Type Phase Shifter with Extremely Low Insertion Loss Variation Using 0.13 µm CMOS Technology

A Compact W-Band Reflection-Type Phase Shifter with Extremely Low Insertion Loss Variation Using 0.13 µm CMOS Technology Micromachines 2015, 6, 390-395; doi:10.3390/mi6030390 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines A Compact W-Band Reflection-Type Phase Shifter with Extremely Low

More information

25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors

25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors 25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors Aspemyr, Lars; Kuylenstierna, Dan; Sjöland, Henrik; Vorobiev, Andrej; Gevorgian, Spartak Published in: [Host publication

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

Voltage Controlled Ring Oscillator Design with Novel 3 Transistors XNOR/XOR Gates

Voltage Controlled Ring Oscillator Design with Novel 3 Transistors XNOR/XOR Gates Circuits and Systems, 2011, 2, 190-195 doi:10.4236/cs.2011.23027 Published Online July 2011 (http://www.scirp.org/journal/cs) Voltage Controlled Ring Oscillator Design with Novel 3 Transistors XNOR/XOR

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information

A Compact GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE

A Compact GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010 2575 A Compact 0.1 14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member,

More information

DC~18GHz Wideband SPDT Switch Chengpeng Liu 1, a, Zhihua Huang 1,b

DC~18GHz Wideband SPDT Switch Chengpeng Liu 1, a, Zhihua Huang 1,b 5th International Conference on Education, Management, Information and Medicine (EMIM 2015) DC~18GHz Wideband SPDT Switch Chengpeng Liu 1, a, Zhihua Huang 1,b 1 Sichuan Institute of Solid State Circuits,

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

EDA Toolsets for RF Design & Modeling

EDA Toolsets for RF Design & Modeling Yiannis Moisiadis, Errikos Lourandakis, Sotiris Bantas Helic, Inc. 101 Montgomery str., suite 1950 San Fransisco, CA 94104, USA Email: {moisiad, lourandakis, s.bantas}@helic.com Abstract This paper presents

More information

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.1, FEBRUARY, 2014 http://dx.doi.org/10.5573/jsts.2014.14.1.131 A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider

More information

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Progress In Electromagnetics Research Letters, Vol. 34, 83 90, 2012 K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Y. C. Du *, Z. X. Tang, B. Zhang, and P. Su School

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

A CMOS GHz UWB LNA Employing Modified Derivative Superposition Method

A CMOS GHz UWB LNA Employing Modified Derivative Superposition Method Circuits and Systems, 03, 4, 33-37 http://dx.doi.org/0.436/cs.03.43044 Published Online July 03 (http://www.scirp.org/journal/cs) A 3. - 0.6 GHz UWB LNA Employing Modified Derivative Superposition Method

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Ultra Wideband Amplifier Senior Project Proposal

Ultra Wideband Amplifier Senior Project Proposal Ultra Wideband Amplifier Senior Project Proposal Saif Anwar Sarah Kief Senior Project Fall 2007 December 4, 2007 Advisor: Dr. Prasad Shastry Department of Electrical & Computer Engineering Bradley University

More information

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Ali M. Niknejad Robert G. Meyer Electronics Research Laboratory University of California at Berkeley Joo Leong Tham 1 Conexant

More information

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator , July 4-6, 2012, London, U.K. A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator Ashish Raman 1,Jaya Nidhi Vashishtha 1 and R K sarin 2 Abstract A voltage controlled ring oscillator is implemented

More information

BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN 0.18 µm CMOS

BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN 0.18 µm CMOS Progress In Electromagnetics Research C, Vol. 23, 41 54, 211 BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN.18 µm CMOS H.-K. Chiou * and J.-Y. Lin Department of Electrical Engineering,

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Progress In Electromagnetics Research Letters, Vol. 36, 171 179, 213 A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Qianyin Xiang, Quanyuan Feng *, Xiaoguo Huang, and Dinghong Jia School of Information

More information

An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application

An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application Progress In Electromagnetics Research Letters, Vol. 66, 99 104, 2017 An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application Lang Chen 1, * and Ye-Bing Gan 1, 2 Abstract A novel asymmetrical single-pole

More information

Vertical Integration of MM-wave MMIC s and MEMS Antennas

Vertical Integration of MM-wave MMIC s and MEMS Antennas JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.3, SEPTEMBER, 2006 169 Vertical Integration of MM-wave MMIC s and MEMS Antennas Youngwoo Kwon, Yong-Kweon Kim, Sanghyo Lee, and Jung-Mu Kim Abstract

More information

An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications

An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications F. Svelto S. Deantoni, G. Montagna R. Castello Dipartimento di Ingegneria Studio di Microelettronica Dipartimento di Elettronica Università

More information

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372 ATF-531P8 9 MHz High Linearity Amplifier Application Note 1372 Introduction This application note describes the design and construction of a single stage 85 MHz to 9 MHz High Linearity Amplifier using

More information

A TDC based BIST Scheme for Operational Amplifier Jun Yuan a and Wei Wang b

A TDC based BIST Scheme for Operational Amplifier Jun Yuan a and Wei Wang b Applied Mechanics and Materials Submitted: 2014-07-19 ISSN: 1662-7482, Vols. 644-650, pp 3583-3587 Accepted: 2014-07-20 doi:10.4028/www.scientific.net/amm.644-650.3583 Online: 2014-09-22 2014 Trans Tech

More information

An Efficient Design of CMOS based Differential LC and VCO for ISM and WI-FI Band of Applications

An Efficient Design of CMOS based Differential LC and VCO for ISM and WI-FI Band of Applications IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X An Efficient Design of CMOS based Differential LC and VCO for ISM and WI-FI Band

More information

Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End

Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End International Journal of Intelligent Engineering & Systems http://www.inass.org/ Performance Analysis of Tunable Band Pass Filter and VCO for Multiband RF Front End J.Manjula, S.Malarvizhi ECE department,

More information

A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle

A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle Mo Zhang a), Syed Kamrul Islam b), and M. Rafiqul Haider c) Department of Electrical & Computer Engineering, University

More information

ISSCC 2004 / SESSION 21/ 21.1

ISSCC 2004 / SESSION 21/ 21.1 ISSCC 2004 / SESSION 21/ 21.1 21.1 Circular-Geometry Oscillators R. Aparicio, A. Hajimiri California Institute of Technology, Pasadena, CA Demand for faster data rates in wireline and wireless markets

More information

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage Low Power Low Phase Noise LC To Reduce Start Up Time OF RF Transmitter M.A.Nandanwar,Dr.M.A.Gaikwad,Prof.D.R.Dandekar B.D.College Of Engineering,Sewagram,Wardha(M.S.)INDIA. Abstract Voltage controlled

More information

A Low Power Single Phase Clock Distribution Multiband Network

A Low Power Single Phase Clock Distribution Multiband Network A Low Power Single Phase Clock Distribution Multiband Network A.Adinarayana Asst.prof Princeton College of Engineering and Technology. Abstract : Frequency synthesizer is one of the important elements

More information

Research and Design of Envelope Tracking Amplifier for WLAN g

Research and Design of Envelope Tracking Amplifier for WLAN g Research and Design of Envelope Tracking Amplifier for WLAN 802.11g Wei Wang a, Xiao Mo b, Xiaoyuan Bao c, Feng Hu d, Wenqi Cai e College of Electronics Engineering, Chongqing University of Posts and Telecommunications,

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID. National Cheng-Kung University, No. 1 University Road, Tainan 70101, Taiwan

A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID. National Cheng-Kung University, No. 1 University Road, Tainan 70101, Taiwan Progress In Electromagnetics Research C, Vol. 24, 147 159, 2011 A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID Y.-A. Lai 1, C.-N. Chen 1, C.-C. Su 1, S.-H. Hung 1, C.-L. Wu 1, 2, and Y.-H.

More information