A TDC based BIST Scheme for Operational Amplifier Jun Yuan a and Wei Wang b

Size: px
Start display at page:

Download "A TDC based BIST Scheme for Operational Amplifier Jun Yuan a and Wei Wang b"

Transcription

1 Applied Mechanics and Materials Submitted: ISSN: , Vols , pp Accepted: doi: / Online: Trans Tech Publications, Switzerland A TDC based BIST Scheme for Operational Amplifier Jun Yuan a and Wei Wang b 1 School of Electroning Engineering/Chongqing International Semiconductor School, Chongqing University of Posts and Telecommunications, Nan an District, Chongqing, China a yuanjun@cqupt.edu.cn, b wangwei@ cqupt.edu.cn Keywords: built-in Self-Test, inverter, time-to-digital converter, operational amplifier Abstract. This paper presents a time-to-digital converter (TDC) based built-in self-test (BIST) scheme for operational amplifier (Op Amp). The propagation delay exiting in the transient response of the Op Amp is monitored by the inverter based TDC, and converted into a digital code based on the referenced delay interval of the inverter used in the TDC, as a result, the digital code is finally employed to determine the test rsults. The circuit-level simualtion results of the proposed BIST syetem for a two-stage Op Amp are presented to demonstrated the feasility of the proposed BIST scheme with high fault coverage. Introduction The rapid development of IC fabrication technology and the advance of SoC design technology have made it possible to integrate digital and analog components on a single chip. These mixed-signal circuits are widely used in various devices. Compared to logic codes of digital circuits, the performance parameters of the analog circuits are hard to be measured due to the small fluctuation range. The smaller analog blocks make the complex mixed-signal circuits more sensitive to fabrication variations and tolerance accumulations [1], and the cost to produce mixed-signal devices is being dominated by their analog test costs [2]. Therefore, the test of analog blocks in mixed-signal circuits has attracted lots of research attentions. Additionally, the accessibility and observability of the analog block in the mixed-signal circuits are limited by the high integration, so as an effective solution to the traditional off-chip test, BIST techniques, implementing both stimulus generator and response analyzer entirely on-chip, are widely applied in mixed-signal testing. Conventionally, performance parameters were measured on-chip to test analog blocks, but this specification-driven BIST techniques result in high-test costs due to complex testing circuits and test time. Therefore, another structural test technique, fault-based BIST was proposed to detect the possible physical defects caused through the IC production. As the basic parts of analog and mixed-signal circuits, Op Amps have attracted widely research attention, so a large number of fault-based BIST schemes for Op Amp have been proposed. The transient response analysis based test techniques are the most feasible for BIST technique. In [3], the Op Amp under test was converted into a voltage follower, and the transient response was analyzed in order to measure the overshoot and slew rate deviation with respect to the fault-free response. However, the parameters of overshoot and slew rate vary among different Op Amps with different architectures, the designed system must be modified to test other Op Amps, even in the same chip. Therefore, the stable (desired) output value (SOV) checking [4] based BIST was presented, and it can test all the Op Amps in a complex analog and mixed-signal system using only one fixed BIST circuit. Due to the feedback network in the transient test, some slight performance parameters deviations are still hard to be monitored, so another feasible two-step BIST technique [5] for Op Amp was proposed to improve the fault coverage, specifically for the compensation circuit. With the injected test current to the compensation circuit, the fault coverage can be greatly improved, but the designed response analyzer caused high area cost, and the test processing is also complicated. Therefore, a new modified transient response based BIST for Op Amp is proposed, the slew rate of the Op Amp under test is measured by the inverter based TDC, and converted to a digital code for final test result determination. In addition, the nanosecond level delay of the CMOS inverter is All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (ID: , Pennsylvania State University, University Park, USA-05/03/16,06:53:30)

2 3584 Machine Tool Technology, Mechatronics and Information Engineering employed as interval reference, so the time interval for slew rate can be precisely measured and the fault coverage can be dramatically improved. Test Strategy and Technique Inverter based TDC. ADC convert voltage amplitude to digital code and TDC is used to convert time interval to digital code. The traditional implementation approach to time-to-digital conversion is first to convert the time interval into a voltage, and then this voltage is digitized by ADC. With IC technology scaling, analog performance parameters like output resistance or intrinsic gain are degraded while digital circuits become faster, smaller, and less power hungry. Therefore, digital circuits can add-on help to reduce analog power or improve robustness and reliability [6]. As a result, the digital TDCs were proposed, the digital counter was designed to count the reference clocks in the time interval and the counting result is the digital code. To further improve the measurement resolution, among a digital delay-line the delay of buffer or inverter was employed to replace the clock reference. In this paper, inverter is employed as delay element, the inverter based TDC implementation is illustrated in Fig.1. Fig.1 Inverter based TDC. The delay of DE1 is designed to T d, the inverter based TDC shown in Fig.1 can convert time interval from start to stop signal to an 8-bit digital code with the time range from 0 to 8T d. The time interval range can be enlarged by lengthening the delay-line, the resolution also can be improved by modifying the transistor sizes of the inverter in each delay element. TDC based Slew Rate Measuring. Many parameters like slew rate (SR), setting time, and phase margin of an Op Amp can be captured and calculated from the transient response. The transient response finally rise or fall to a stable voltage value with a little propagation delay according to the input step, which skipped from an initial voltage to another stable voltage. If the input step magnitude is sufficiently large, the Op Amp will slew by virtue of not having enough current to charge or discharge the compensating and/or load capacitances. The slew rate is determined from the slop of the output waveform during the rise or fall of the output [7]. The output waveform is the so-called transient response. Under voltage follower configuration shown in Fig.2, a step signal is send to V i skipping from V 1 to V 2, the output V o rises from V 1 to the final stable value of V 2 through the propagation region according to the step input. To calculate the value SR, two nodes N 1 and N 2 are selected on the output V o, and the rising slop (also SR) can be computed using the formula of (SR=V d /T i, where V d is the voltage slewing rage from node N 1 to N 2, and T i is the required time interval in which V o changes from node N 1 to N 2.). To test the Op Amp, the reference SR is obtained by simulating the fault-free Op Amp, the value of SR is measured and calculated to compare with the reference value during the field test process. If the measured SR value is without of the acceptable range, the Op Amp under test is determined as a faulty device. However, the aim to calculate and measure SR is to test the Op Amp, SR can be replaced by other prameter for much easier test buliding. In SR=V d /T i, if value of V d is a fixed, only slew time T i is need to demonstrate the test result. As a result, the left work is to measure the delay interval T i according to a fixed V d, and the interval measurement can be easily achieved by TDC to convert T i to a digital code.

3 Applied Mechanics and Materials Vols Fig.2 shows the test result determination process. Firstly, a step input is generated and send to the Op Amp under test through V i, then the output V o would rise from V N1 to V N2, which are set to fix the voltage difference V d in advance. In the second, when V o passed by V N1 at node N 1, a digital start signal is send to the TDC through the start, then this signal flows through each delay element (DE1~DE8) in the delay-line. The digital stop signal isn t send to all flip-flops in the TDC to latch the output of each delay element until the voltage magnitude of V o reaches at V N2 at node N 2. Finally, the output "Q 1 ~Q 8 " is the test result determination criterion. In this paper, with well setting of nodes (N 1 and N 2 ) and the delay of each DE in advance, the rising edge of the start signal would not pass through DE8 after T i for a fault-free Op Amp, T i and T DE should comply with 7T DE <T i <8T DE, that means the fault-free output code is " ". If any output code is not " ", the Op Amp under test is faulty. v i VDD OpAmp v o GND v i v 2 v 1 T i v o v 1 v d v 2 start stop Q 1 ~Q 8 `0` `0` `0` N 1 N 2 Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Fig.2 TDC based Op Amp test strategy by measuring slew rate. `1` `1` `1` Test System Implement To implement the test strategy mentioned above, beside the inverter based TDC shown in Fig.1, step input, start signal and stop signal need be generated, and the complete test system is shown in Fig.3. The test process starts when test start signal V ts skips from logic high to low. When V ts is logic high, the step signal generator including transistor M1, M2 and R, outputs V 1 and is send V i, and then V ts changes to logic low which turn on transistor M2 and force V i to another voltage V 2. Therefore, by controlling the test start signal V ts, M1, M2, and R can generate a step signal. Meanwhile, the switch S i and S o are turned on, so V o will be send to two amplifiers amp1 and amp2, and each amplifier is composed of two same inverters. Different designed transistor sizes between inv1 and inv2, contribute different gains of amp1 and amp2. The outputs of amp1and amp2 would change from logic low to logic high at different moments during the voltage rising from V 1 to V 2. The time interval between outputs switching moments of amp1and amp2 was designed to be T i, so the output V o passes through amp1 and amp2 and generate two controlling the signals start and stop, which control the inverter based TDC to convert T i to the digital code "Q 1 ~Q 8 ". The test controller monitors the output of TDC and determines the test results. Fig.3 The proposed TDC based BIST system for Op Amp.

4 3586 Machine Tool Technology, Mechatronics and Information Engineering Simulation Results Fault models are introduced as equivalent circuits, which are injected into circuit under test to reflect the behavior of realistic physical failures cased in production process. In this paper, 6 fault models were utilized for each transistor to evaluate the proposed test system. Shorts were modeled by connecting a small resistor of 100 Ω between each pair of terminals, including gate-drain short (GDS), gate-source short (GSS), drain-source short (DSS) and resistor short (RS). Opens were modeled by inserting a parallel combination of a large resistor of 100 MΩ and a small capacitor of 10 ff in series into each terminal, including drain open (DO), source open (SO) and resistor open (RO). Particularly, gate open (GO) was modeled by means of grounded parallel combination of resistor and capacitor for simulating real behavior of GO [8]. To evaluate the proposed BIST scheme, a two-stage Op Amp shown in Fig. 4, was considered as test vehicle, and transistor sizes are summarized in Table 1. Fig.4 The circuit configuration of the two-stage Op Amp under test. Table 1 Summary of elements parameters of the two-stage Op Amps. Op Amp Elements Size (unit) Elements Size (unit) Two-stage M0, M5 5.4/0.4 W/L [µm] M1, M2 12/0.4 W/L [µm] Op Amp M3, M4 10.2/0.4 W/L [µm] M6 34/0.4 W/L [µm] Shown in M7 9/0.4 W/L [µm] M8 0.8/0.4 W/L [µm] Fig. 4 R C 18 [kω] C C 1 [pf] C L 10 [pf] By setting M1, M2 and R shown in Fig.3 as 2.8/0.4 µm (W/L), 1.8/0.4 µm (W/L), and 3.29 kω, respectively, the step signal generator can generate the step signal skipping from V (value of V 1 ) to V (value of V 2 ) by controlling test start signal V ts. The sizes of pmos and nmos in amp1 were set as 0.4/0.18 µm (W/L) and 2/0.18 µm (W/L), respectively. The sizes of pmos and nmos in amp1 were set as 5/0.18 µm (W/L) and 0.4/0.18 µm (W/L), respectively. Additionally, to comply with 7T DE <T i <8T DE, the transistor sizes in DE1~DE8 of the delay-line shown in Fig.1 were set as 2/1 µm (W/L), other transistors were set to 0.4/0.18 µm (W/L). Using TSMC 0.18 µm technology, the whole system was simulated by LTspice and the fault-free responses are illustrated in Fig.5. The outputs of DE1~DE8 are labeled as V de1 ~V de8, the fault-free "Q 1 ~Q 8 " is " ". Under test mode, if the " Q 1 ~Q 8 "is not " ", the inserted fault can be detected and Op Amp under test is faulty. To verify the proposed TDC based test system, 54 faults as mentioned before were inserted in the Op Amp shown in Fig.4, only DO of M11 was not detected and the fault coverage is more than 98%. In addition, more than 0.3 pf variation of C c and more than 0.9 kω variation of R c were detected. Summary In order to improve the Op Amp test precision, this paper has proposed a BIST scheme, in which the delay of the CMOS inverter was employed as reference interval to measure the time interval for test

5 Applied Mechanics and Materials Vols results determination based on inverter based TDC. Due to the delay of CMOS inverter is under nanosecond level, the proposed test system could provide precise time interval measurement and achieve high fault coverage. Additionally, thanks to the inverter based fully digital TDC, the proposed BIST scheme can be easily integrated with other analog and mixed signal circuits. Using 0.18-µm TSMC technology, the 8-bit TDC based BIST system was implemented for a two-stage Op Amp and the fault simulation has shown the proposed scheme could be an alternative and effective test approach for Op Amp with high fault coverage. The proposed BIST scheme can also be applied to test other amplifiers or analog circuits for time interval measurement. Fig.5 Fault-free output of the proposed TDC based BIST system for Op Amp. Acknowledgements This work was financially supported by the Youth Science Foundation (A ) and the PhD Start-up Fund (A ) of Chongqing University of Posts and Telecommunications, the Chongqing Municipal Science and Technology Commission Foundation and Advanced Research Project (cstc2013jcyja40006) and Chongqing City Board of Education Science and Technology Research Projects (KJ130530). References [1] P. Kabisatpathy, A. Barua and S. Sinha, Fault Diagnosis of Analog Integrated Circuits, Springer (2011). [2] G.W. Roherts, Chapter 6.2 DFT techniques for Mixed-signal Integrated Circuits, 97.pdf [3] J. Font-Tossello, etc., A Digital BIST for Opamps Embedded in Mixed-Signal Circuits by Analysing the Transient Response, IEEE Int. Caracas Conf. On Devices, Circuits and Systems, Aruba, pp , [4] J. Yuan and M. Tachibana, A BIST Scheme for Operational Amplifier by Checking the Stable Output of Transient Response,20th European Conference on Circuit Theory and Design, Linkoping, Sweden, Aug , [5] J. Yuan and M. Tachibana, A Two-Step BIST Scheme for Operational Amplifier, Proceedings of Workshop on Synthesis and System Integration of Mixed Information technologies (SASIMI-2012), Beppu, Japan, Mar [6] S. Henzler, Time-to-Digital Converter, Springer (2010). [7] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed., vol. 2. Oxford: New York, [8] U. Kac and F. Novak, Oscillation Test Scheme of SC Biquad Filters based on Internal Reconfiguration, J. Electron Test, Vol.23, No.6, pp , 2007.

6 Machine Tool Technology, Mechatronics and Information Engineering / A TDC Based BIST Scheme for Operational Amplifier /

Oscillation Test Methodology for Built-In Analog Circuits

Oscillation Test Methodology for Built-In Analog Circuits Oscillation Test Methodology for Built-In Analog Circuits Ms. Sankari.M.S and Mr.P.SathishKumar Department of ECE, Amrita School of Engineering, Bangalore, India Abstract This article aims to describe

More information

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d Applied Mechanics and Materials Online: 2013-06-27 ISSN: 1662-7482, Vol. 329, pp 416-420 doi:10.4028/www.scientific.net/amm.329.416 2013 Trans Tech Publications, Switzerland A low-if 2.4 GHz Integrated

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

Fault Testing of Analog Circuits Using Combination of Oscillation Based Built-In Self- Test and Quiescent Power Supply Current Testing Method

Fault Testing of Analog Circuits Using Combination of Oscillation Based Built-In Self- Test and Quiescent Power Supply Current Testing Method Fault Testing of Analog Circuits Using Combination of Oscillation Based Built-In Self- Test and Quiescent Power Supply Current Testing Method Ms. Harshal Meharkure 1, Mr. Swapnil Gourkar 2 1 Lecturer,

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Research and Design of Envelope Tracking Amplifier for WLAN g

Research and Design of Envelope Tracking Amplifier for WLAN g Research and Design of Envelope Tracking Amplifier for WLAN 802.11g Wei Wang a, Xiao Mo b, Xiaoyuan Bao c, Feng Hu d, Wenqi Cai e College of Electronics Engineering, Chongqing University of Posts and Telecommunications,

More information

Performance Analysis of Two-Stage Op Amp using different BIST Techniques

Performance Analysis of Two-Stage Op Amp using different BIST Techniques Performance Analysis of Two-Stage Op Amp usg different BIST Techniques Chandrakala N 1, Padmaja Ja 2 1 Chandrakala N, M.Tech Student, Dept. of ECE, VLSI & ES, BNM Institute of Technology, Karnataka, India

More information

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

More information

Design and Implementation of Digital Frequency Meter Based on SCM. Weiqiang Zheng

Design and Implementation of Digital Frequency Meter Based on SCM. Weiqiang Zheng Applied Mechanics and Materials Submitted: 2014-09-28 ISS: 1662-7482, Vols. 687-691, pp 3466-3469 Accepted: 2014-09-28 doi:10.4028/www.scientific.net/amm.687-691.3466 Online: 2014-11-27 2014 Trans Tech

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation JOURNAL OF STELLAR EE315 CIRCUITS 1 A 60-MHz 150-µV Fully-Differential Comparator Erik P. Anderson and Jonathan S. Daniels (Invited Paper) Abstract The overall performance of two-step flash A/D converters

More information

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Design of a Capacitor-less Low Dropout Voltage Regulator

Design of a Capacitor-less Low Dropout Voltage Regulator Design of a Capacitor-less Low Dropout Voltage Regulator Sheenam Ahmed 1, Isha Baokar 2, R Sakthivel 3 1 Student, M.Tech VLSI, School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

More information

Design of CMOS Based PLC Receiver

Design of CMOS Based PLC Receiver Available online at: http://www.ijmtst.com/vol3issue10.html International Journal for Modern Trends in Science and Technology ISSN: 2455-3778 :: Volume: 03, Issue No: 10, October 2017 Design of CMOS Based

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

Design and verification of internal core circuit of FlexRay transceiver in the ADAS

Design and verification of internal core circuit of FlexRay transceiver in the ADAS Design and verification of internal core circuit of FlexRay transceiver in the ADAS Yui-Hwan Sa 1 and Hyeong-Woo Cha a Department of Electronic Engineering, Cheongju University E-mail : labiss1405@naver.com,

More information

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique 1 Shailika Sharma, 2 Himani Mittal, 1.2 Electronics & Communication Department, 1,2 JSS Academy of Technical Education,Gr. Noida,

More information

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Ravi Kumar 1, Seema Kanathe 2 ¹PG Scholar, Department of Electronics and Communication, Suresh GyanVihar University, Jaipur, India ²Assistant

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

ISSN Page 32. Figure 1.1: Black box representation of the basic current conveyor.

ISSN Page 32. Figure 1.1: Black box representation of the basic current conveyor. DESIGN OF CURRENT CONVEYOR USING OPERATIONAL AMPLIFIER Nidhi 1, Narender kumar 2 1 M.tech scholar, 2 Assistant Professor, Deptt. of ECE BRCMCET, Bahal 1 nidhibajaj44@g mail.com Abstract-- The paper focuses

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

NOWADAYS, multistage amplifiers are growing in demand

NOWADAYS, multistage amplifiers are growing in demand 1690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 9, SEPTEMBER 2004 Advances in Active-Feedback Frequency Compensation With Power Optimization and Transient Improvement Hoi

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

UNLIKE digital circuits, the specifications of analog circuits

UNLIKE digital circuits, the specifications of analog circuits IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 4, APRIL 1998 573 Design for Testability of Embedded Integrated Operational Amplifiers Karim Arabi, Member, IEEE, and Bozena Kaminska, Member, IEEE Abstract

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM -v in /2 R 1 C L (a) (b) R 2 ECE415/EO

More information

Design of Low Power Vlsi Circuits Using Cascode Logic Style

Design of Low Power Vlsi Circuits Using Cascode Logic Style Design of Low Power Vlsi Circuits Using Cascode Logic Style Revathi Loganathan 1, Deepika.P 2, Department of EST, 1 -Velalar College of Enginering & Technology, 2- Nandha Engineering College,Erode,Tamilnadu,India

More information

ISSN: X Impact factor: 4.295

ISSN: X Impact factor: 4.295 ISSN: 2454-132X Impact factor: 4.295 (Volume2, Issue6) Available online at: www.ijariit.com An Approach for Reduction in Power Consumption in Low Voltage Dropout Regulator Shivani.S. Tantarpale 1 Ms. Archana

More information

Design of High Gain Low Voltage CMOS Comparator

Design of High Gain Low Voltage CMOS Comparator Design of High Gain Low Voltage CMOS Comparator Shahid Khan 1 1 Rustomjee Academy for Global Careers Abstract: Comparators used in most of the analog circuits like analog to digital converters, switching

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique Juliet Abraham 1, Dr. B. Paulchamy 2 1 PG Scholar, Hindusthan institute of Technology, coimbtore-32, India 2 Professor and HOD,

More information

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application Author Mohd-Yasin, Faisal, Yap, M., I Reaz, M. Published 2006 Conference Title 5th WSEAS Int. Conference on

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

Test based on Built-In Current Sensors for Mixed-Signal Circuits

Test based on Built-In Current Sensors for Mixed-Signal Circuits Test based on Built-In Current Sensors for Mixed-Signal Circuits Román Mozuelos, Yolanda Lechuga, Mar Martínez and Salvador Bracho Microelectronic Engineeering Group, University of Cantabria, ETSIIT, Av.

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 15.7 A 4µA-Quiescent-Current Dual-Mode Buck Converter IC for Cellular Phone Applications Jinwen Xiao, Angel Peterchev, Jianhui Zhang, Seth Sanders

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style

Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style International Journal of Advancements in Research & Technology, Volume 1, Issue3, August-2012 1 Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style Vishal Sharma #, Jitendra Kaushal Srivastava

More information

Analog Integrated Circuits Fundamental Building Blocks

Analog Integrated Circuits Fundamental Building Blocks Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

Analysis and Design of High Speed Low Power Comparator in ADC

Analysis and Design of High Speed Low Power Comparator in ADC Analysis and Design of High Speed Low Power Comparator in ADC Yogesh Kumar M. Tech DCRUST (Sonipat) ABSTRACT: The fast growing electronics industry is pushing towards high speed low power analog to digital

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP 10.4 A Novel Continuous-Time Common-Mode Feedback for Low-oltage Switched-OPAMP M. Ali-Bakhshian Electrical Engineering Dept. Sharif University of Tech. Azadi Ave., Tehran, IRAN alibakhshian@ee.sharif.edu

More information

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation WA 17.6: A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation Gu-Yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos 1, Mark Horowitz 1 Computer Systems Laboratory, Stanford

More information

Yet, many signal processing systems require both digital and analog circuits. To enable

Yet, many signal processing systems require both digital and analog circuits. To enable Introduction Field-Programmable Gate Arrays (FPGAs) have been a superb solution for rapid and reliable prototyping of digital logic systems at low cost for more than twenty years. Yet, many signal processing

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

Mixed signal IC (CP-PLL) Testing scheme using a novel approach

Mixed signal IC (CP-PLL) Testing scheme using a novel approach International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 Mixed signal IC (CP-PLL) Testing scheme using a novel approach Ashish Tiwari, Anil Kumar Sahu Abstract An effective

More information

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) A 14-bit 2.5 GS/s based on Multi-Clock Synchronization Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng,

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector

Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector Sanjay Kumar Wadhwa 1, G.K. Siddhartha 2, Anand Gaurav 3 Freescale Semiconductor India Pvt. Ltd. 1 sanjay.wadhwa@freescale.com,

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment 1 ECEN 720 High-Speed Links: Circuits and Systems Lab3 Transmitter Circuits Objective To learn fundamentals of transmitter and receiver circuits. Introduction Transmitters are used to pass data stream

More information

Design and Implement of Low Power Consumption SRAM Based on Single Port Sense Amplifier in 65 nm

Design and Implement of Low Power Consumption SRAM Based on Single Port Sense Amplifier in 65 nm Journal of Computer and Communications, 2015, 3, 164-168 Published Online November 2015 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2015.311026 Design and Implement of Low

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 1 PG student, Department of ECE, Vivekanandha College of Engineering for Women. 2 Assistant

More information

Dynamic-static hybrid near-threshold-voltage adder design for ultra-low power applications

Dynamic-static hybrid near-threshold-voltage adder design for ultra-low power applications LETTER IEICE Electronics Express, Vol.12, No.3, 1 6 Dynamic-static hybrid near-threshold-voltage adder design for ultra-low power applications Xin-Xiang Lian 1, I-Chyn Wey 2a), Chien-Chang Peng 3, and

More information

A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower

A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower Chih-Wen Lu, Yen-Chih Shen and Meng-Lieh Sheu Abstract A high-driving class-ab buffer amplifier, which consists of a high-gain

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC

Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC Research Manuscript Title Transient Response Boosted D-LDO Regulator Using Starved Inverter Based VTC K.K.Sree Janani, M.Balasubramani P.G. Scholar, VLSI Design, Assistant professor, Department of ECE,

More information

IMPLEMENTATION OF A LOW-KICKBACK-NOISE LATCHED COMPARATOR FOR HIGH-SPEED ANALOG-TO-DIGITAL DESIGNS IN 0.18

IMPLEMENTATION OF A LOW-KICKBACK-NOISE LATCHED COMPARATOR FOR HIGH-SPEED ANALOG-TO-DIGITAL DESIGNS IN 0.18 International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 2 Issue 4 Dec - 2012 43-56 TJPRC Pvt. Ltd., IMPLEMENTATION OF A

More information

In the previous chapters, efficient and new methods and. algorithms have been presented in analog fault diagnosis. Also a

In the previous chapters, efficient and new methods and. algorithms have been presented in analog fault diagnosis. Also a 118 CHAPTER 6 Mixed Signal Integrated Circuits Testing - A Study 6.0 Introduction In the previous chapters, efficient and new methods and algorithms have been presented in analog fault diagnosis. Also

More information

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters Circuits and Systems, 2011, 2, 183-189 doi:10.4236/cs.2011.23026 Published Online July 2011 (http://www.scirp.org/journal/cs) An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application

More information

An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS Technology

An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS Technology IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS

More information

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,

More information

Design of Sub-10-Picoseconds On-Chip Time Measurement Circuit

Design of Sub-10-Picoseconds On-Chip Time Measurement Circuit Design of Sub-0-Picoseconds On-Chip Time Measurement Circuit M.A.Abas, G.Russell, D.J.Kinniment Dept. of Electrical and Electronic Eng., University of Newcastle Upon Tyne, UK Abstract The rapid pace of

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

An Improved Recycling Folded Cascode OTA with positive feedback

An Improved Recycling Folded Cascode OTA with positive feedback An Improved Recycling Folded Cascode OTA with positive feedback S.KUMARAVEL, B.VENKATARAMANI Department of Electronics and Communication Engineering National Institute of Technology Trichy Tiruchirappalli

More information

Intellect Amplifier, Current Clasped and Filled Current Approach Sense Amplifiers Techniques Based Low Power SRAM

Intellect Amplifier, Current Clasped and Filled Current Approach Sense Amplifiers Techniques Based Low Power SRAM Intellect Amplifier, Current Clasped and Filled Current Approach Sense Amplifiers Techniques Based Low Power SRAM V. Karthikeyan 1 1 Department of ECE, SVSCE, Coimbatore, Tamilnadu, India, Karthick77keyan@gmail.com

More information

Research Of Displacement Measuring System Based On Capacitive. Grating Sensor

Research Of Displacement Measuring System Based On Capacitive. Grating Sensor Applied Mechanics and Materials Vols. 20-23 (2010) pp 1260-1264 Online available since 2010/Jan/12 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.20-23.1260

More information

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao Applied Mechanics and Materials Online: 2012-12-13 ISSN: 1662-7482, Vols. 256-259, pp 2373-2378 doi:10.4028/www.scientific.net/amm.256-259.2373 2013 Trans Tech Publications, Switzerland Ground-Adjustable

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS

CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS 70 CHAPTER 5 DESIGN AND ANALYSIS OF COMPLEMENTARY PASS- TRANSISTOR WITH ASYNCHRONOUS ADIABATIC LOGIC CIRCUITS A novel approach of full adder and multipliers circuits using Complementary Pass Transistor

More information

A Novel Low-Power Scan Design Technique Using Supply Gating

A Novel Low-Power Scan Design Technique Using Supply Gating A Novel Low-Power Scan Design Technique Using Supply Gating S. Bhunia, H. Mahmoodi, S. Mukhopadhyay, D. Ghosh, and K. Roy School of Electrical and Computer Engineering, Purdue University, West Lafayette,

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

A Robust Oscillator for Embedded System without External Crystal

A Robust Oscillator for Embedded System without External Crystal Appl. Math. Inf. Sci. 9, No. 1L, 73-80 (2015) 73 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/091l09 A Robust Oscillator for Embedded System without

More information

Lecture 6: Digital/Analog Techniques

Lecture 6: Digital/Analog Techniques Lecture 6: Digital/Analog Techniques The electronics signals that we ve looked at so far have been analog that means the information is continuous. A voltage of 5.3V represents different information that

More information

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 6 Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS Goal The goals of this experiment are: - Verify the operation of a differential ADC; - Find the

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA Analog Integrated Circuits and Signal Processing, 43, 127 136, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA IVAN

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

POWER-MANAGEMENT circuits are becoming more important

POWER-MANAGEMENT circuits are becoming more important 174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 3, MARCH 2011 Dynamic Bias-Current Boosting Technique for Ultralow-Power Low-Dropout Regulator in Biomedical Applications

More information

Design and Analysis of High Gain Differential Amplifier Using Various Topologies

Design and Analysis of High Gain Differential Amplifier Using Various Topologies Design and Analysis of High Gain Amplifier Using Various Topologies SAMARLA.SHILPA 1, J SRILATHA 2 1Assistant Professor, Dept of Electronics and Communication Engineering, NNRG, Ghatkesar, Hyderabad, India.

More information