Variable Resolution, 10-Bit to 16-Bit R/D Converter with Reference Oscillator AD2S1210-EP

Size: px
Start display at page:

Download "Variable Resolution, 10-Bit to 16-Bit R/D Converter with Reference Oscillator AD2S1210-EP"

Transcription

1 Data Sheet Variable Resolution, -Bit to -Bit R/D Converter with Reference Oscillator ADS-EP FEATURES Complete monolithic resolver-to-digital converter 35 rps maximum tracking rate (-bit resolution) ±.5 arc minutes of accuracy -/-/-/-bit resolution, set by user Parallel and serial -bit to -bit data ports Absolute position and velocity outputs System fault detection Programmable fault detection thresholds Differential inputs Incremental encoder emulation Programmable sinusoidal oscillator on board Compatible with DSP and SPI interface standards 5 V supply with.3 V to 5 V logic interface ENHANCED PRODUCT FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range: 55 C to +5 C Controlled manufacturing baseline assembly/test site fabrication site Product change notification Qualification data available on request APPLICATIONS DC and ac servo motor control Encoder emulation Electric power steering Electric vehicles Integrated starter generators/alternators Automotive motion sensing and control GENERAL DESCRIPTION The ADS-EP is a complete -bit to -bit resolution tracking resolver-to-digital converter, integrating an on-board programmable sinusoidal oscillator that provides sine wave excitation for resolvers. The converter accepts 3.5 V p-p ± 7% input signals, in the range of khz to khz on the sine and cosine inputs. A Type II servo loop is employed to track the inputs and convert the input sine and cosine information into a digital representation of the input angle and velocity. The maximum tracking rate is 35 rps. Full details about this enhanced product, including theory of operation, registers details, and applications information, are available in the ADS data sheet, which should be concluded in conjunction with this data sheet. EXCITATION OUTPUTS INPUTS FROM RESOLVER ENCODER EMULATION OUTPUTS FUNCTIONAL BLOCK DIAGRAM ADC ADC ENCODER EMULATION RESET REFERENCE OSCILLATOR (DAC) SYNTHETIC REFERENCE REFERENCE PINS VOLTAGE REFERENCE TYPE II TRACKING LOOP POSITION REGISTER VELOCITY REGISTER MULTIPLEXER DATA BUS OUTPUT DATA I/O CRYSTAL INTERNAL CLOCK GENERATOR ADS-EP Figure. FAULT DETECTION CONFIGURATION REGISTER FAULT DETECTION OUTPUTS DATA I/O PRODUCT HIGHLIGHTS. Ratiometric tracking conversion. The Type II tracking loop provides continuous output position data without conversion delay. It also provides noise immunity and tolerance of harmonic distortion on the reference and input signals.. System fault detection. A fault detection circuit can sense loss of resolver signals, out-of-range input signals, input signal mismatch, or loss of position tracking. The fault detection threshold levels can be individually programmed by the user for optimization within a particular application. 3. signal range. The sine and cosine inputs can accept differential input voltages of 3.5 V p-p ± 7%.. Programmable excitation frequency. Excitation frequency is easily programmable to a number of standard frequencies between khz and khz. 5. Triple format position data. Absolute -bit to -bit angular position data is accessed via either a -bit parallel port or a -wire serial interface. Incremental encoder emulation is in standard A-quad-B format with direction output available.. Digital velocity output. -bit to -bit signed digital velocity accessed via either a -bit parallel port or a -wire serial interface. 95- Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9, Norwood, MA -9, U.S.A. Tel: Analog Devices, Inc. All rights reserved. Technical Support

2 ADS-EP TABLE OF CONTENTS Features... Enhanced Product Features... Applications... General Description... Functional Block Diagram... Product Highlights... Revision History... Specifications... 3 Data Sheet Timing Specifications...5 Absolute Maximum Ratings...7 ESD Caution...7 Pin Configuration and Function Descriptions... Typical Performance Characteristics... Outline Dimensions... Ordering Guide... REVISION HISTORY 5/ Rev. to Rev. A Changes to Features Section... Added Enhanced Product Features Section... Updated Outline Dimensions... Changes to Ordering Guide... / Revision : Initial Version Rev. A Page of

3 Data Sheet ADS-EP SPECIFICATIONS AVDD = DVDD = 5. V ± 5%, CLKIN =.9 MHz ± 5%, EXC, EXC frequency = khz to khz (-bit); khz to khz (-bit); 3 khz to khz (-bit); khz to khz (-bit); TA = TMIN to TMAX; unless otherwise noted. Table. Parameter Min Typ Max Unit Conditions/Comments SINE, COSINE INPUTS Voltage Amplitude V p-p Sinusoidal waveforms, differential SIN to SINLO, COS to COSLO Input Bias Current.5 μa VIN =. V p-p, CLKIN =.9 MHz Input Impedance 5 kω VIN =. V p-p, CLKIN =.9 MHz Phase Lock Range + Degrees Sine/cosine vs. EXC output, Control Register D3 = Common-Mode Rejection ± arc sec/v Hz to MHz, Control Register D = ANGULAR ACCURACY 3 Angular Accuracy ±.5 + LSB ±7 + LSB arc min Resolution,,, Bits No missing codes Linearity INL -Bit ± LSB -Bit ± LSB -Bit ± LSB -Bit ± LSB Linearity DNL ±.9 LSB Repeatability ± LSB VELOCITY OUTPUT Velocity Accuracy -Bit ± LSB Zero acceleration -Bit ± LSB Zero acceleration -Bit ± LSB Zero acceleration -Bit ± LSB Zero acceleration Resolution 5 9,, 3, 5 Bits DYNAMNIC PERFORMANCE Bandwidth -Bit Hz 9 5 Hz CLKIN =.9 MHz -Bit 9 Hz Hz CLKIN =.9 MHz -Bit 5 Hz Hz CLKIN =.9 MHz -Bit 35 Hz 5 75 Hz CLKIN =.9 MHz Tracking Rate -Bit 35 rps CLKIN =. MHz 5 CLKIN =.9 MHz -Bit 5 rps CLKIN =. MHz CLKIN =.9 MHz -Bit 5 rps CLKIN =. MHz 5 CLKIN =.9 MHz -Bit 5.5 rps CLKIN =. MHz 5 CLKIN =.9 MHz Acceleration Error -Bit 3 arc min At 5, rps, CLKIN =.9 MHz -Bit 3 arc min At, rps, CLKIN =.9 MHz -Bit 3 arc min At 5 rps, CLKIN =.9 MHz -Bit 3 arc min At 5 rps, CLKIN =.9 MHz Rev. A Page 3 of

4 ADS-EP Data Sheet Parameter Min Typ Max Unit Conditions/Comments Settling Time Step Input -Bit..9 ms To settle to within ± LSB, CLKIN =.9 MHz -Bit. 3.3 ms To settle to within ± LSB, CLKIN =.9 MHz -Bit.5 9. ms To settle to within ± LSB, CLKIN =.9 MHz -Bit 7.5 ms To settle to within ± LSB, CLKIN =.9 MHz Settling Time 79 Step Input -Bit.5. ms To settle to within ± LSB, CLKIN =.9 MHz -Bit.75. ms To settle to within ± LSB, CLKIN =.9 MHz -Bit.5 5. ms To settle to within ± LSB, CLKIN =.9 MHz -Bit 5 ms To settle to within ± LSB, CLKIN =.9 MHz EXC, EXC OUTPUTS Voltage V p-p Load ± μa, typical differential output (EXC to EXC) = 7. V p-p Center Voltage V Frequency khz EXC/EXC DC Mismatch 3 mv EXC/EXC AC Mismatch 3 mv THD 5 db First five harmonics VOLTAGE REFERENCE REFOUT V ±IOUT = μa Drift ppm/ C PSRR db CLKIN, XTALOUT VIL Voltage Input Low. V VIH Voltage Input High. V LOGIC INPUTS VIL Voltage Input Low. V VDRIVE =.7 V to 5.5 V.7 V VDRIVE =.3 V to.7 V VIH Voltage Input High. V VDRIVE =.7 V to 5.5 V.7 V VDRIVE =.3 V to.7 V IIL Low Level Input Current (Non- Pull-Up) μa IIL Low Level Input Current (Pull-Up) μa RES, RES, RD, WR/FSYNC, A, A, and RESET pins IIH High Level Input Current μa LOGIC OUTPUTS VOL Voltage Output Low. V VDRIVE =.3 V to 5.5 V VOH Voltage Output High. V VDRIVE =.7 V to 5.5 V. V VDRIVE =.3 V to.7 V IOZH High Level Three-State Leakage μa IOZL Low Level Three-State Leakage μa POWER REQUIREMENTS AVDD V DVDD V VDRIVE V POWER SUPPLY IAVDD ma IDVDD 35 ma IOVDD ma Temperature range is as follows: 55 C to +5 C. The voltages SIN, SINLO, COS, and COSLO, relative to AGND, must always be between.5 V and AVDD. V. 3 All specifications within the angular accuracy parameter are tested at constant velocity, that is, zero acceleration. The velocity accuracy specification includes velocity offset and dynamic ripple. 5 For example, when RES = and RES =, the position output has a resolution of bits. The velocity output has a resolution of bits with the MSB indicating the direction of rotation. In this example, with a CLKIN frequency of.9 MHz, the velocity LSB is. rps, that is, rps/( ). The clock frequency of the ADS-EP can be supplied with a crystal, an oscillator, or directly from a DSP/microprocessor digital output. When using a single-ended clock signal directly from the DSP/microprocessor, the XTALOUT pin should remain open circuit and the logic levels outlined under the logic inputs parameter in Table apply. Rev. A Page of

5 Data Sheet ADS-EP TIMING SPECIFICATIONS AVDD = DVDD = 5. V ± 5%, TA = TMIN to TMAX, unless otherwise noted. Table. Parameter Description Limit at TMIN, TMAX Unit fclkin Frequency of clock input. MHz min. MHz max tck Clock period (tck = /fclkin) 9 ns min 3 ns max t A and A setup time before RD/CS low ns min t Delay CS falling edge to WR/FSYNC rising edge ns min t3 Address/data setup time during a write cycle 3 ns min t Address/data hold time during a write cycle ns min t5 Delay WR/FSYNC rising edge to CS rising edge ns min t Delay CS rising edge to CS falling edge ns min t7 Delay between writing address and writing data tck + ns min t A and A hold time after WR/FSYNC rising edge ns min t9 Delay between successive write cycles tck + ns min t Delay between rising edge of WR/FSYNC and falling edge of RD ns min t Delay CS falling edge to RD falling edge ns min t Enable delay RD low to data valid in configuration mode VDRIVE =.5 V to 5.5 V 37 ns min VDRIVE =.7 V to 3. V 5 ns min VDRIVE =.3 V to.7 V 3 ns min t3 RD rising edge to CS rising edge ns min ta Disable delay RD high to data high-z ns min tb Disable delay CS high to data high-z ns min t5 Delay between rising edge of RD and falling edge of WR/FSYNC ns min t SAMPLE pulse width tck + ns min t7 Delay from SAMPLE before RD/CS low tck + ns min t Hold time RD before RD low ns min t9 Enable delay RD/CS low to data valid VDRIVE =.5 V to 5.5 V 7 ns min VDRIVE =.7 V to 3. V ns min VDRIVE =.3 V to.7 V 33 ns min t RD pulse width ns min t A and A set time to data valid when RD/CS low VDRIVE =.5 V to 5.5 V 3 ns min VDRIVE =.7 V to 3. V 37 ns min VDRIVE =.3 V to.7 V 9 ns min t Delay WR/FSYNC falling edge to SCLK rising edge 3 ns min t3 Delay WR/FSYNC falling edge to SDO release from high-z VDRIVE =.5 V to 5.5 V ns min VDRIVE =.7 V to 3. V ns min VDRIVE =.3 V to.7 V 9 ns min t Delay SCLK rising edge to DBx valid VDRIVE =.5 V to 5.5 V ns min VDRIVE =.7 V to 3. V ns min VDRIVE =.3 V to.7 V 3 ns min t5 SCLK high time. tsclk ns min t SCLK low time. tsclk ns min t7 SDI setup time prior to SCLK falling edge 3 ns min t SDI hold time after SCLK falling edge ns min Rev. A Page 5 of

6 ADS-EP Data Sheet Parameter Description Limit at TMIN, TMAX Unit t9 Delay WR/FSYNC rising edge to SDO high-z 5 ns min t3 Delay from SAMPLE before WR/FSYNC falling edge tck + ns ns min t3 Delay CS falling edge to WR/FSYNC falling edge in normal mode ns min t3 A and A setup time before WR/FSYNC falling edge ns min t33 A and A hold time after WR/FSYNC falling edge In normal mode, A =, A = / tck + 5 ns ns min In configuration mode, A =, A = tck + 5 ns ns min t3 Delay WR/FSYNC rising edge to WR/FSYNC falling edge ns min fsclk Frequency of SCLK input VDRIVE =.5 V to 5.5 V MHz VDRIVE =.7 V to 3. V 5 MHz VDRIVE =.3 V to.7 V 5 MHz Temperature range is as follows: 55 C to +5 C. A and A should remain constant for the duration of the serial readback. This may require clock periods to read back the -bit fault information in addition to the bits of position/velocity data. If the fault information is not required, A/A may be released after clock cycles. Rev. A Page of

7 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 3. Parameter AVDD to AGND, DGND DVDD to AGND, DGND VDRIVE to AGND, DGND AVDD to DVDD AGND to DGND Analog Input Voltage to AGND Digital Input Voltage to DGND Digital Output Voltage to DGND Analog Output Voltage Swing Input Current to Any Pin Except Supplies Operating Temperature Range (Ambient) EP Grade Storage Temperature Range θja Thermal Impedance θjc Thermal Impedance RoHS-Compliant Temperature, Soldering Reflow ESD Rating.3 V to +7. V.3 V to +7. V.3 V to AVDD.3 V to +.3 V.3 V to +.3 V.3 V to AVDD +.3 V.3 V to VDRIVE +.3 V.3 V to VDRIVE +.3 V.3 V to AVDD +.3 V ± ma 55 C to +5 C 5 C to +5 C 5 C/W 5 C/W ( 5/+) o C kv HBM ADS-EP Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION Transient currents of up to ma do not cause latch-up. JEDEC SP standard board. Rev. A Page 7 of

8 ADS-EP Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS RES REFOUT REFBYP COS COSLO AV DD SINLO SIN AGND EXC EXC A RES CS PIN 3 A 35 DOS RD 3 3 LOT WR/FSYNC 33 RESET DGND DV DD CLKIN 5 7 ADS-EP TOP VIEW (Not to Scale) 3 DIR 3 NM 3 B XTALOUT 9 A SOE 9 DB SAMPLE 7 DB DB5/SDO DB DB/SDI 5 DB DB3/SCLK DB DB DB DB9 V DRIVE DGND DB DB7 DB DB5 DB 95- Figure. Pin Configuration Table. Pin Function Descriptions Pin No. Mnemonic Description RES Resolution Select. Logic input. RES in conjunction with RES allows the resolution of the ADS-EP to be programmed. CS Chip Select. Active low logic input. The device is enabled when CS is held low. 3 RD Edge-Triggered Logic Input. When the SOE pin is high, this pin acts as a frame synchronization signal and output enable for the parallel data outputs, DB5 to DB. The output buffer is enabled when CS and RD are held low. When the SOE pin is low, the RD pin should be held high. WR/FSYNC Edge-Triggered Logic Input. When the SOE pin is high, this pin acts as a frame synchronization signal and input enable for the parallel data inputs, DB7 to DB. The input buffer is enabled when CS and WR/FSYNC are held low. When the SOE pin is low, the WR/FSYNC pin acts as a frame synchronization signal and enable for the serial data bus. 5, 9 DGND Digital Ground. These pins are ground reference points for digital circuitry on the ADS-EP. Refer all digital input signals to this DGND voltage. Both of these pins can be connected to the AGND plane of a system. The DGND and AGND voltages should ideally be at the same potential and must not be more than.3 V apart, even on a transient basis. DVDD Digital Supply Voltage,.75 V to 5.5 V. This is the supply voltage for all digital circuitry on the ADS-EP. The AVDD and DVDD voltages should ideally be at the same potential and must not be more than.3 V apart, even on a transient basis. 7 CLKIN Clock Input. A crystal or oscillator can be used at the CLKIN and XTALOUT pins to supply the required clock frequency of the ADS-EP. Alternatively, a single-ended clock can be applied to the CLKIN pin. The input frequency of the ADS-EP is specified from. MHz to. MHz. XTALOUT Crystal Output. When using a crystal or oscillator to supply the clock frequency to the ADS-EP, apply the crystal across the CLKIN and XTALOUT pins. When using a single-ended clock source, the XTALOUT pin should be considered a no connect pin. 9 SOE Serial Output Enable. Logic input. This pin enables either the parallel or serial interface. The serial interface is selected by holding the SOE pin low, and the parallel interface is selected by holding the SOE pin high. SAMPLE Sample Result. Logic input. Data is transferred from the position and velocity integrators to the position and velocity registers after a high-to-low transition on the SAMPLE signal. The fault register is also updated after a high-to-low transition on the SAMPLE signal. DB5/SDO Data Bit 5/Serial Data Output Bus. When the SOE pin is high, this pin acts as DB5, a three-state data output pin controlled by CS and RD. When the SOE pin is low, this pin acts as SDO, the serial data output bus controlled by CS and WR/FSYNC. The bits are clocked out on the rising edge of SCLK. DB/SDI Data Bit /Serial Data Input Bus. When the SOE pin is high, this pin acts as DB, a three-state data output pin controlled by CS and RD. When the SOE pin is low, this pin acts as SDI, the serial data input bus controlled by CS and WR/FSYNC. The bits are clocked in on the falling edge of SCLK. Rev. A Page of

9 Data Sheet ADS-EP Pin No. Mnemonic Description 3 DB3/SCLK Data Bit 3/Serial Clock. In parallel mode, this pin acts as DB3, a three-state data output pin controlled by CS and RD. In serial mode, this pin acts as the serial clock input. to DB to Data Bit to Data Bit 9. Three-state data output pins controlled by CS and RD. 7 DB9 VDRIVE Logic Power Supply Input. The voltage supplied at this pin determines at what voltage the interface operates. Decouple this pin to DGND. The voltage range on this pin is.3 V to 5.5 V and may be different from the voltage range at AVDD and DVDD but should never exceed either by more than.3 V. DB Data Bit. Three-state data output pin controlled by CS and RD. to DB7 to DB Data Bit 7 to Data Bit. Three-state data input/output pins controlled by CS, RD, and WR/FSYNC. 9 A Incremental Encoder Emulation Output A. Logic output. This output is free running and is valid if the resolver format input signals applied to the converter are valid. 3 B Incremental Encoder Emulation Output B. Logic output. This output is free running and is valid if the resolver format input signals applied to the converter are valid. 3 NM North Marker Incremental Encoder Emulation Output. Logic output. This output is free running and is valid if the resolver format input signals applied to the converter are valid. 3 DIR Direction. Logic output. This output is used in conjunction with the incremental encoder emulation outputs. The DIR output indicates the direction of the input rotation and is high for increasing angular rotation. 33 RESET Reset. Logic input. The ADS-EP requires an external reset signal to hold the RESET input low until VDD is within the specified operating range of.75 V to 5.5 V. 3 LOT Loss of Tracking. Logic output. Loss of tracking (LOT) is indicated by a logic low on the LOT pin and is not latched. 35 DOS Degradation of Signal. Logic output. Degradation of signal (DOS) is detected when either resolver input (sine or cosine) exceeds the specified DOS sine/cosine threshold or when an amplitude mismatch occurs between the sine and cosine input voltages. DOS is indicated by a logic low on the DOS pin. 3 A Mode Select. Logic input. A in conjunction with A allows the mode of the ADS-EP to be selected. 37 A Mode Select. Logic input. A in conjunction with A allows the mode of the ADS-EP to be selected. 3 EXC Excitation Frequency. Analog output. An on-board oscillator provides the sinusoidal excitation signal (EXC) and its complement signal (EXC) to the resolver. The frequency of this reference signal is programmable via the excitation frequency register. 39 EXC Excitation Frequency Complement. Analog output. An on-board oscillator provides the sinusoidal excitation signal (EXC) and its complement signal (EXC) to the resolver. The frequency of this reference signal is programmable via the excitation frequency register. AGND Analog Ground. This pin is the ground reference points for analog circuitry on the ADS-EP. Refer all analog input signals and any external reference signal to this AGND voltage. Connect the AGND pin to the AGND plane of a system. The AGND and DGND voltages should ideally be at the same potential and must not be more than.3 V apart, even on a transient basis. SIN Positive Analog Input of Differential SIN/SINLO Pair. The input range is.3 V p-p to. V p-p. SINLO Negative Analog Input of Differential SIN/SINLO Pair. The input range is.3 V p-p to. V p-p. 3 AVDD Analog Supply Voltage,.75 V to 5.5 V. This pin is the supply voltage for all analog circuitry on the ADS-EP. The AVDD and DVDD voltages ideally should be at the same potential and must not be more than.3 V apart, even on a transient basis. COSLO Negative Analog Input of Differential COS/COSLO Pair. The input range is.3 V p-p to. V p-p. 5 COS Positive Analog Input of Differential COS/COSLO Pair. The input range is.3 V p-p to. V p-p. REFBYP Reference Bypass. Connect reference decoupling capacitors at this pin. Typical recommended values are μf and. μf. 7 REFOUT Voltage Reference Output. RES Resolution Select. Logic input. RES in conjunction with RES allows the resolution of the ADS-EP to be programmed. Rev. A Page 9 of

10 ADS-EP Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS TA = 5 C, AVDD = DVDD = VDRIVE = 5 V, SIN/SINLO = 3.5 V p-p, COS/COSLO = 3.5 V p-p, CLKIN =.9 MHz, unless otherwise noted. HITS PER CODE HITS PER CODE CODE Figure 3. Typical -Bit Angular Accuracy Histogram Of Codes,, Samples CODE Figure. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Disabled 95- HITS PER CODE HITS PER CODE CODE Figure. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Disabled CODES Figure 7. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Enabled 95-7 HITS PER CODE HITS PER CODE CODES Figure 5. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Enabled CODE Figure. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Disabled 95- Rev. A Page of

11 Data Sheet ADS-EP HITS PER CODE ANGLE (Degrees) ANGLE (Degrees) CODES Figure 9. Typical -Bit Angular Accuracy Histogram of Codes,, Samples, Hysteresis Enabled 3 3 TIME (ms) Figure. Typical -Bit Step Response TIME (ms) Figure. Typical -Bit Step Response ANGLE (Degrees) ANGLE (Degrees) ANGLE (Degrees) TIME (ms) Figure. Typical -Bit Step Response TIME (ms) Figure 3. Typical -Bit Step Response TIME (ms) Figure. Typical -Bit 79 Step Response Rev. A Page of

12 ADS-EP Data Sheet 5 -BIT 5 ANGLE (Degrees) MAGNITUDE (db) BIT -BIT -BIT TIME (ms) Figure 5. Typical -Bit 79 Step Response k k k FREQUENCY (Hz) Figure. Typical System Magnitude Response BIT ANGLE (Degrees) PHASE (db) -BIT -BIT -BIT TIME (ms) Figure. Typical -Bit 79 Step Response 95- k k k FREQUENCY (Hz) 9 Figure 9. Typical System Phase Response 95- ANGLE (Degrees) TIME (ms) Figure 7. Typical -Bit 79 Step Response 95- TRACKING ERROR (Degrees) ACCELERATION (rps ) Figure. Typical -Bit Tracking Error vs. Acceleration 95- Rev. A Page of

13 Data Sheet ADS-EP 9 9 TRACKING ERROR (Degrees) TRACKING ERROR (Degrees) ACCELERATION (rps ) Figure. Typical -Bit Tracking Error vs. Acceleration 95- ACCELERATION (rps ) Figure 3. Typical -Bit Tracking Error vs. Acceleration TRACKING ERROR (Degrees) ACCELERATION (rps ) Figure. Typical -Bit Tracking Error vs. Acceleration 95- Rev. A Page 3 of

14 ADS-EP Data Sheet OUTLINE DIMENSIONS PKG VIEW A ROTATED 9 CCW REF SEATING PLANE MAX COPLANARITY SIDE VIEW. MAX VIEW A COMPLIANT TO JEDEC STANDARDS MS--BBC SQ. TOP VIEW.5 BSC Figure. -Lead Low Profile Quad Flat Package [LQFP] (ST-) Dimensions shown in millimeters SQ. ORDERING GUIDE Model Temperature Range Package Description Package Option ADSSST-EP-RL7 55 C to +5 C -Lead LQFP ST- ADSSSTZ-EPRL7 55 C to +5 C -Lead LQFP ST- Z = RoHS Compliant Part -7--A Rev. A Page of

15 Data Sheet ADS-EP NOTES Rev. A Page 5 of

16 ADS-EP Data Sheet NOTES Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D95--5/(A) Rev. A Page of

Variable Resolution, 10-Bit to 16-Bit R/D Converter with Reference Oscillator AD2S1210

Variable Resolution, 10-Bit to 16-Bit R/D Converter with Reference Oscillator AD2S1210 Variable Resolution, 1-Bit to 16-Bit R/D Converter with Reference Oscillator ADS11 FEATURES Complete monolithic resolver-to-digital converter 315 rps maximum tracking rate (1-bit resolution) ±.5 arc minutes

More information

DLA LAND AND MARITIME COLUMBUS, OHIO

DLA LAND AND MARITIME COLUMBUS, OHIO REVISIONS LTR DESCRIPTION DTE PPROVED dd lead finish E to the devices. - PHN 18-02-15 Thomas M. Hess Prepared in accordance with SME Y14.24 Vendor item drawing REV PGE REV PGE REV STTUS OF PGES REV PGE

More information

Low Power, mw, 2.3 V to 5.5 V, Programmable Waveform Generator AD9833-EP

Low Power, mw, 2.3 V to 5.5 V, Programmable Waveform Generator AD9833-EP Enhanced Product Low Power, 12.65 mw, 2.3 V to 5.5 V, Programmable Waveform Generator FEATURES Digitally programmable frequency and phase 12.65 mw power consumption at 3 V MHz to 12.5 MHz output frequency

More information

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490-EP

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490-EP Enhanced Product FEATURES Fast throughput rate: 1 MSPS Specified for VDD of 4.75 V to 5.25 V Low power at maximum throughput rates 12.5 mw maximum at 1 MSPS with 5 V supplies 16 (single-ended) inputs with

More information

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP Data Sheet Octal, -Bit with 5 ppm/ C On-Chip Reference in -Lead TSSOP FEATURES Enhanced product features Supports defense and aerospace applications (AQEC) Military temperature range ( 55 C to +5 C) Controlled

More information

12-Bit R/D Converter with Reference Oscillator AD2S1205

12-Bit R/D Converter with Reference Oscillator AD2S1205 1-Bit R/D Converter with Reference Oscillator ADS105 FEATURES Complete monolithic resolver-to-digital converter (RDC) Parallel and serial 1-bit data ports System fault detection ±11 arc minutes of accuracy

More information

12-Bit RDC with Reference Oscillator AD2S1205

12-Bit RDC with Reference Oscillator AD2S1205 1-Bit RDC with Reference Oscillator ADS105 FEATURES Complete monolithic resolver-to-digital converter (RDC) Parallel and serial 1-bit data ports System fault detection ±11 arc minutes of accuracy Input

More information

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Current Output/Serial Input, 16-Bit DAC AD5543-EP Data Sheet Current Output/Serial Input, 16-Bit DAC FEATURES FUNCTIONAL BLOCK DIAGRAM 1/+2 LSB DNL ±3 LSB INL Low noise: 12 nv/ Hz Low power: IDD = 1 μa.5 μs settling time 4Q multiplying reference input

More information

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP Dual Precision, Low Cost, High Speed BiFET Op Amp FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +125 C) Controlled manufacturing baseline One

More information

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP FEATURES Digitally/pin-programmable gain G = 1, 2, 4, 8, 16, 32, 64, or 128 Specified from 55 C to +125 C 5 nv/ C maximum input offset

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information

Fault Protection and Detection, 10 Ω RON, Quad SPST Switches ADG5412F-EP

Fault Protection and Detection, 10 Ω RON, Quad SPST Switches ADG5412F-EP Enhanced Product FEATURES Overvoltage protection up to 55 V and +55 V Power-off protection up to 55 V and +55 V Overvoltage detection on source pins Low on resistance: Ω On-resistance flatness:.5 Ω 5.5

More information

REVISION HISTORY. 8/15 Revision 0: Initial Version. Rev. 0 Page 2 of 17

REVISION HISTORY. 8/15 Revision 0: Initial Version. Rev. 0 Page 2 of 17 Dual, 6-Bit nanodac+ with 4 ppm/ C Reference, SPI Interface FEATURES High relative accuracy (INL): ±4 LSB maximum at 6 bits Low drift.5 V reference: 4 ppm/ C typical Tiny package: 3 mm 3 mm, 6-lead LFCSP

More information

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP Enhanced Product FEATURES Low offset voltage and low offset voltage drift Maximum offset voltage: 9 µv at TA = 2 C Maximum offset voltage drift:.2 µv/ C Moisture sensitivity level (MSL) rated Low input

More information

Dual, 16-Bit nanodac+ with 4 ppm/ C Reference, SPI Interface AD5689R-EP

Dual, 16-Bit nanodac+ with 4 ppm/ C Reference, SPI Interface AD5689R-EP Dual, 6-Bit nanodac+ with 4 ppm/ C Reference, SPI Interface FEATURES High relative accuracy (INL): ±4 LSB maximum at 6 bits Low drift.5 V reference: 4 ppm/ C typical Tiny package: 3 mm 3 mm, 6-lead LFCSP

More information

CMOS, 170 MHz, Triple, 10-Bit High Speed Video DAC ADV7123-EP

CMOS, 170 MHz, Triple, 10-Bit High Speed Video DAC ADV7123-EP CMOS, 70 MHz, Triple, 0-Bit High Speed Video DAC ADV723-EP FEATURES 70 MSPS throughput rate Triple, 0-bit digital-to-analog converters (DACs) SFDR 70 db at fclk = 50 MHz; fout = MHz 53 db at fclk = 40

More information

Programmable Low Voltage 1:10 LVDS Clock Driver ADN4670

Programmable Low Voltage 1:10 LVDS Clock Driver ADN4670 Data Sheet Programmable Low Voltage 1:10 LVDS Clock Driver FEATURES FUNCTIONAL BLOCK DIAGRAM Low output skew

More information

Low Noise, Micropower 5.0 V Precision Voltage Reference ADR293-EP

Low Noise, Micropower 5.0 V Precision Voltage Reference ADR293-EP Enhanced Product Low Noise, Micropower 5.0 V Precision Voltage Reference FEATURES 6.0 V to 15 V supply range Supply current: 15 μa maximum Low noise: 15 μv p-p typical (0.1 Hz to 10 Hz) High output current:

More information

9.5 Ω RON, ±15 V/+12 V/±5 V icmos, Serially-Controlled Octal SPST Switches ADG1414

9.5 Ω RON, ±15 V/+12 V/±5 V icmos, Serially-Controlled Octal SPST Switches ADG1414 9.5 Ω RON, ±5 V/+2 V/±5 V icmos, Serially-Controlled Octal SPST Switches FEATURES SPI interface Supports daisy-chain mode 9.5 Ω on resistance at 25 C and ±5 V dual supply.6 Ω on-resistance flatness at

More information

ADM6823. Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23. Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS

ADM6823. Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23. Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS Data Sheet Low Voltage, Supervisory Circuit with Watchdog and Manual Reset in 5-Lead SOT-23 FEATURES Precision low voltage monitoring 9 reset threshold options: 1.58 V to 4.63 V (typical) 140 ms (minimum)

More information

800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222

800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222 8 MHz, : Analog Multiplexer ADV/ADV FEATURES Excellent ac performance db bandwidth 8 MHz ( mv p-p) 7 MHz ( V p-p) Slew rate: V/μs Low power: 7 mw, VS = ± V Excellent video performance MHz,. db gain flatness.%

More information

24-Bit, 8.5 mw, 109 db, 128/64/32 ksps ADCs AD7767

24-Bit, 8.5 mw, 109 db, 128/64/32 ksps ADCs AD7767 4-Bit, 8.5 mw, 9 db, 8/64/3 ksps ADCs FEATURES Oversampled successive approximation (SAR) architecture High performance ac and dc accuracy, low power 5.5 db dynamic range, 3 ksps (-).5 db dynamic range,

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

12-Bit Low Power Sigma-Delta ADC AD7170

12-Bit Low Power Sigma-Delta ADC AD7170 12-Bit Low Power Sigma-Delta ADC AD7170 FEATURES Output data rate: 125 Hz Pin-programmable power-down and reset Status function Internal clock oscillator Current: 135 μa Power supply: 2.7 V to 5.25 V 40

More information

Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output DAC AD5764-EP

Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output DAC AD5764-EP Enhanced Product Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output DAC FEATURES Complete quad, 16-bit digital-to-analog converter (DAC) Programmable output range: ±1 V, ±1.2564

More information

AD8218 REVISION HISTORY

AD8218 REVISION HISTORY Zero Drift, Bidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to 85 V survival Buffered output voltage Gain = 2 V/V Wide operating temperature range:

More information

Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825

Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825 Data Sheet Supervisory Circuits with Watchdog and Manual Reset in 5-Lead SC70 and SOT-23 ADM823/ADM824/ADM825 FEATURES FUNCTIONAL BLOCK DIAGRAM Precision 2.5 V to 5 V power supply monitor 7 reset threshold

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPDT Switch in SOT-23 ADG719-EP

CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPDT Switch in SOT-23 ADG719-EP CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPT Switch in SOT-23 AG719-EP FEATURES 1.8 V to 5.5 V single supply 4 Ω (max) on resistance.75 Ω (typ) on resistance flatness 3 db bandwidth > 2 MHz Rail-to-rail operation

More information

Dual Low Power 1.5% Comparator With 400 mv Reference ADCMP670

Dual Low Power 1.5% Comparator With 400 mv Reference ADCMP670 Dual Low Power.5% Comparator With mv Reference ADCMP67 FEATURES FUNCTIONAL BLOCK DIAGRAM mv ±.5% threshold Supply range:.7 V to 5.5 V Low quiescent current: 6.5 μa typical Input range includes ground Internal

More information

PLL Frequency Synthesizer ADF4106-EP

PLL Frequency Synthesizer ADF4106-EP Enhanced Product PLL Frequency Synthesizer ADF4-EP FEATURES. GHz bandwidth 2.7 V to 3.3 V power supply Separate charge pump supply (VP) allows extended tuning voltage in 3 V systems Programmable dual-modulus

More information

AD9512-EP. 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs. Enhanced Product FEATURES FUNCTIONAL BLOCK DIAGRAM

AD9512-EP. 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs. Enhanced Product FEATURES FUNCTIONAL BLOCK DIAGRAM Enhanced Product 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs FEATURES Two 1.6 GHz, differential clock inputs 5 programmable dividers, 1 to 32, all integers 3 independent 1.2 GHz

More information

Ultralow Power Voltage Comparator with Reference ADCMP380

Ultralow Power Voltage Comparator with Reference ADCMP380 Data Sheet Ultralow Power Voltage Comparator with Reference FEATURES Comparator with on-chip reference Ultralow power consumption with ICC = 92 na (typical) Precision low voltage monitoring down to.5 V

More information

Single 0.275% Comparator and Reference with Dual Polarity Outputs ADCMP361

Single 0.275% Comparator and Reference with Dual Polarity Outputs ADCMP361 Data Sheet FEATURES mv ±.275% threshold Supply range:.7 V to 5.5 V Low quiescent current: 6.5 µa typical Input range includes ground Internal hysteresis: 9.3 mv typical Low input bias current: ±5 na maximum

More information

1 Ω Typical On Resistance, ±5 V, +12 V, +5 V, and +3.3 V Dual SPDT Switches ADG1636

1 Ω Typical On Resistance, ±5 V, +12 V, +5 V, and +3.3 V Dual SPDT Switches ADG1636 FEATURES Ω typical on resistance.2 Ω on resistance flatness ±3.3 V to ±8 V dual supply operation 3.3 V to 6 V single supply operation No VL supply required 3 V logic-compatible inputs Rail-to-rail operation

More information

ADG1606/ADG Ω RON, 16-Channel, Differential 8-Channel, ±5 V,+12 V,+5 V, and +3.3 V Multiplexers FEATURES FUNCTIONAL BLOCK DIAGRAMS

ADG1606/ADG Ω RON, 16-Channel, Differential 8-Channel, ±5 V,+12 V,+5 V, and +3.3 V Multiplexers FEATURES FUNCTIONAL BLOCK DIAGRAMS 4.5 Ω RON, 6-Channel, Differential 8-Channel, ±5 V,+2 V,+5 V, and +3.3 V Multiplexers ADG66/ADG67 FEATURES 4.5 Ω typical on resistance. Ω on resistance flatness ±3.3 V to ±8 V dual supply operation 3.3

More information

1.5 Ω On Resistance, ±15 V/12 V/±5 V, icmos, Dual SPDT Switch ADG1436

1.5 Ω On Resistance, ±15 V/12 V/±5 V, icmos, Dual SPDT Switch ADG1436 Data Sheet.5 Ω On Resistance, ±5 V/2 V/±5 V, icmos, Dual SPDT Switch ADG436 FEATURES.5 Ω on resistance.3 Ω on-resistance flatness. Ω on-resistance match between channels Continuous current per channel

More information

Triple Processor Supervisors ADM13307

Triple Processor Supervisors ADM13307 Triple Processor Supervisors ADM337 FEATURES Triple supervisory circuits Supply voltage range of 2. V to 5.5 V Pretrimmed threshold options:.8 V, 2.5 V, 3.3 V, and 5 V Adjustable.6 V and.25 V voltage references

More information

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643 Data Sheet Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD864/AD8642/AD8643 FEATURES Low supply current: 25 μa max Very low input bias current: pa max Low offset voltage: 75 μv max Single-supply

More information

ADG1411/ADG1412/ADG1413

ADG1411/ADG1412/ADG1413 .5 Ω On Resistance, ±5 V/+2 V/±5 V, icmos, Quad SPST Switches ADG4/ADG42/ADG43 FEATURES.5 Ω on resistance.3 Ω on-resistance flatness. Ω on-resistance match between channels Continuous current per channel

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

700 MHz to 4200 MHz, Tx DGA ADL5335

700 MHz to 4200 MHz, Tx DGA ADL5335 FEATURES Differential input to single-ended output conversion Broad input frequency range: 7 MHz to 42 MHz Maximum gain: 12. db typical Gain range of 2 db typical Gain step size:.5 db typical Glitch free,

More information

AD5292-EP Position, Digital Potentiometer with Maximum ±1% R-Tolerance Error and 20-TP Memory. Data Sheet FUNCTIONAL BLOCK DIAGRAM V DD FEATURES

AD5292-EP Position, Digital Potentiometer with Maximum ±1% R-Tolerance Error and 20-TP Memory. Data Sheet FUNCTIONAL BLOCK DIAGRAM V DD FEATURES 24-Position, Digital Potentiometer with Maximum ±% R-Tolerance Error and 2-TP Memory FEATURES Single-channel, 24-position resolution 2 kω nominal resistance Maximum ±% nominal resistor tolerance error

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

10-Channel Gamma Buffer with VCOM Driver ADD8710

10-Channel Gamma Buffer with VCOM Driver ADD8710 1-Channel Gamma Buffer with VCOM Driver ADD871 FEATURES Single-supply operation: 4.5 V to 18 V Upper/lower buffers swing to VS/GND Gamma continuous output current: >1 ma VCOM peak output current: 25 ma

More information

Dual, 3 V, CMOS, LVDS High Speed Differential Driver ADN4663

Dual, 3 V, CMOS, LVDS High Speed Differential Driver ADN4663 Dual, 3 V, CMOS, LVDS High Speed Differential Driver ADN4663 FEATURES ±15 kv ESD protection on output pins 600 Mbps (300 MHz) switching rates Flow-through pinout simplifies PCB layout 300 ps typical differential

More information

24-Bit, 8.5 mw, 109 db, 128 ksps/64 ksps/32 ksps ADCs AD7767

24-Bit, 8.5 mw, 109 db, 128 ksps/64 ksps/32 ksps ADCs AD7767 4-Bit, 8.5 mw, 19 db, 18 ksps/64 ksps/3 ksps ADCs FEATURES Oversampled successive approximation (SAR) architecture High performance ac and dc accuracy, low power 115.5 db dynamic range, 3 ksps (-) 11.5

More information

12-Bit High Output Current Source ADN8810

12-Bit High Output Current Source ADN8810 Data Sheet 12-Bit High Output Current Source FEATURES High precision 12-bit current source Low noise Long term stability Current output from 0 ma to 300 ma Output fault indication Low drift Programmable

More information

Low Power, Adjustable UV and OV Monitor with 400 mv, ±0.275% Reference ADCMP671

Low Power, Adjustable UV and OV Monitor with 400 mv, ±0.275% Reference ADCMP671 Data Sheet Low Power, Adjustable UV and Monitor with mv, ±.7% Reference ADCMP67 FEATURES Window monitoring with minimum processor I/O Individually monitoring N rails with only N + processor I/O mv, ±.7%

More information

4 GHz to 18 GHz Divide-by-4 Prescaler ADF5001

4 GHz to 18 GHz Divide-by-4 Prescaler ADF5001 4 GHz to 18 GHz Divide-by-4 Prescaler ADF5001 FEATURES Divide-by-4 prescaler High frequency operation: 4 GHz to 18 GHz Integrated RF decoupling capacitors Low power consumption Active mode: 30 ma Power-down

More information

4 GHz to 18 GHz Divide-by-8 Prescaler ADF5002

4 GHz to 18 GHz Divide-by-8 Prescaler ADF5002 4 GHz to 18 GHz Divide-by-8 Prescaler ADF5002 FEATURES Divide-by-8 prescaler High frequency operation: 4 GHz to 18 GHz Integrated RF decoupling capacitors Low power consumption Active mode: 30 ma Power-down

More information

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo FEATURES Low supply current: 25 µa max Very low input bias current: pa max Low offset voltage: 75 µv max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Unity-gain

More information

ISM Band FSK Receiver IC ADF7902

ISM Band FSK Receiver IC ADF7902 ISM Band FSK Receiver IC FEATURES Single-chip, low power UHF receiver Companion receiver to ADF7901 transmitter Frequency range: 369.5 MHz to 395.9 MHz Eight RF channels selectable with three digital inputs

More information

Dual Processor Supervisors with Watchdog ADM13305

Dual Processor Supervisors with Watchdog ADM13305 Dual Processor Supervisors with Watchdog ADM335 FEATURES Dual supervisory circuits Supply voltage range of 2.7 V to 5.5 V Pretrimmed threshold options:.8 V, 2.5 V, 3.3 V, and 5 V Adjustable.6 V voltage

More information

AD9512-EP. 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs. Enhanced Product FEATURES FUNCTIONAL BLOCK DIAGRAM

AD9512-EP. 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs. Enhanced Product FEATURES FUNCTIONAL BLOCK DIAGRAM Enhanced Product 1.2 GHz Clock Distribution IC, 1.6 GHz Inputs, Dividers, Five Outputs FEATURES Two 1.6 GHz, differential clock inputs 5 programmable dividers, 1 to 32, all integers 3 independent 1.2 GHz

More information

4 Ω RON, 4-/8-Channel ±15 V/+12 V/±5 V icmos Multiplexers ADG1408-EP/ADG1409-EP

4 Ω RON, 4-/8-Channel ±15 V/+12 V/±5 V icmos Multiplexers ADG1408-EP/ADG1409-EP Enhanced Product 4 Ω RON, 4-/-Channel ±5 V/+2 V/±5 V icmos Multiplexers AG4-EP/AG49-EP FEATURES 4.7 Ω maximum on resistance @ 25 C.5 Ω on resistance flatness Up to 9 ma continuous current Fully specified

More information

Nonreflective, Silicon SP4T Switch, 0.1 GHz to 6.0 GHz HMC7992

Nonreflective, Silicon SP4T Switch, 0.1 GHz to 6.0 GHz HMC7992 Nonreflective, Silicon SP4T Switch,.1 GHz to 6. GHz FEATURES Nonreflective, 5 Ω design High isolation: 45 db typical at 2 GHz Low insertion loss:.6 db at 2 GHz High power handling 33 dbm through path 27

More information

Low Capacitance, Low Charge Injection, ±15 V/+12 V icmos Dual SPST Switches ADG1221/ADG1222/ADG1223

Low Capacitance, Low Charge Injection, ±15 V/+12 V icmos Dual SPST Switches ADG1221/ADG1222/ADG1223 Data Sheet Low Capacitance, Low Charge Injection, ±15 V/+12 V icmos Dual SPST Switches ADG1221/ADG1222/ADG1223 FEATURES

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 FEATURES ±4 V human body model (HBM) ESD High common-mode voltage range V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead SOIC: 4 C to + C Excellent

More information

High Temperature, High Voltage, Latch-Up Proof, 8-Channel Multiplexer ADG5298

High Temperature, High Voltage, Latch-Up Proof, 8-Channel Multiplexer ADG5298 Data Sheet High Temperature, High Voltage, Latch-Up Proof, 8-Channel Multiplexer FEATURES Extreme high temperature operation up to 2 C Latch-up proof JESD78D Class II rating Low leakage Ultralow capacitance

More information

OBSOLETE. Digital Output, High Precision Angular Rate Sensor ADIS Data Sheet FEATURES GENERAL DESCRIPTION APPLICATIONS FUNCTIONAL BLOCK DIAGRAM

OBSOLETE. Digital Output, High Precision Angular Rate Sensor ADIS Data Sheet FEATURES GENERAL DESCRIPTION APPLICATIONS FUNCTIONAL BLOCK DIAGRAM Data Sheet Digital Output, High Precision Angular Rate Sensor FEATURES Low noise density: 0.0125 o /sec/ Hz Industry-standard serial peripheral interface (SPI) 24-bit digital resolution Dynamic range:

More information

High Temperature, Low Drift, Micropower 2.5 V Reference ADR225

High Temperature, Low Drift, Micropower 2.5 V Reference ADR225 Data Sheet FEATURES Extreme high temperature operation 4 C to + C, 8-lead FLATPACK 4 C to +75 C, 8-lead SOIC Temperature coefficient 4 ppm/ C, 8-lead FLATPACK ppm/ C, 8-lead SOIC High output current: ma

More information

24-Bit, Pin-Programmable, Ultralow Power Sigma-Delta ADC AD7780

24-Bit, Pin-Programmable, Ultralow Power Sigma-Delta ADC AD7780 24-Bit, Pin-Programmable, Ultralow Power Sigma-Delta ADC AD778 FEATURES Pin-programmable filter response Update rate: 1 Hz or 16.7 Hz Pin-programmable in-amp gain Pin-programmable power-down and reset

More information

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data FEATURES Ultra Low Power 90mW @ 0MSPS; 135mW @ 40MSPS; 190mW @ 65MSPS SNR = 66.5 dbc (to Nyquist); SFDR = 8 dbc @.4MHz Analog Input ENOB = 10.5 bits DNL=± 0.5 LSB Differential Input with 500MHz Full Power

More information

3 MSPS, 12-Bit SAR ADC AD7482

3 MSPS, 12-Bit SAR ADC AD7482 3 MSPS, 12-Bit SAR ADC AD7482 FEATURES Fast throughput rate: 3 MSPS Wide input bandwidth: 40 MHz No pipeline delays with SAR ADC Excellent dc accuracy performance 2 parallel interface modes Low power:

More information

High Resolution, Zero-Drift Current Shunt Monitor AD8217

High Resolution, Zero-Drift Current Shunt Monitor AD8217 High Resolution, Zero-Drift Current Shunt Monitor AD8217 FEATURES High common-mode voltage range 4.5 V to 8 V operating V to 85 V survival Buffered output voltage Wide operating temperature range: 4 C

More information

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe NC NC NC NC 5 6 7 8 6 NC 4 PD 3 PD FEATURES Ultralow power-down current: 5 na/amplifier maximum Low quiescent current:.4 ma/amplifier High speed 75 MHz, 3 db bandwidth V/μs slew rate 85 ns settling time

More information

High Isolation, Silicon SPDT, Nonreflective Switch, 0.1 GHz to 6.0 GHz HMC8038W

High Isolation, Silicon SPDT, Nonreflective Switch, 0.1 GHz to 6.0 GHz HMC8038W 5 6 7 8 6 5 4 3 FEATURES Nonreflective, 50 Ω design High isolation: 60 db typical Low insertion loss: 0.8 db typical High power handling 34 dbm through path 29 dbm terminated path High linearity P0.dB:

More information

Quad 7 ns Single Supply Comparator AD8564

Quad 7 ns Single Supply Comparator AD8564 Quad 7 ns Single Supply Comparator AD8564 FEATURES 5 V single-supply operation 7 ns propagation delay Low power Separate input and output sections TTL/CMOS logic-compatible outputs Wide output swing TSSOP,

More information

Low Cost 6-Channel HD/SD Video Filter ADA4420-6

Low Cost 6-Channel HD/SD Video Filter ADA4420-6 Low Cost 6-Channel HD/SD Video Filter FEATURES Sixth-order filters Transparent input sync tip clamp 1 db bandwidth of 26 MHz typical for HD HD rejection @ 75 MHz: 48 db typical NTSC differential gain:.19%

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

Single, 3 V, CMOS, LVDS Differential Line Receiver ADN4662

Single, 3 V, CMOS, LVDS Differential Line Receiver ADN4662 Data Sheet FEATURES ±15 kv ESD protection on input pins 400 Mbps (200 MHz) switching rates Flow-through pinout simplifies PCB layout 2.5 ns maximum propagation delay 3.3 V power supply High impedance outputs

More information

1 MHz to 8 GHz, 70 db Logarithmic Detector/Controller AD8318-EP

1 MHz to 8 GHz, 70 db Logarithmic Detector/Controller AD8318-EP Enhanced Product FEATURES Wide bandwidth: MHz to 8 GHz High accuracy: ±. db over db range (f

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Preliminary Technical Data FEATURES TL082 / TL08 compatible Low input bias current: 0 pa max Offset voltage: 5mV max (ADTL082A/ADTL08A) 9 mv max (ADTL082/ADTL08) ±5 V to ±5 V operation Low noise: 5 nv/

More information

12.92 GHz to GHz MMIC VCO with Half Frequency Output HMC1169

12.92 GHz to GHz MMIC VCO with Half Frequency Output HMC1169 Data Sheet 12.92 GHz to 14.07 GHz MMIC VCO with Half Frequency Output FEATURES Dual output frequency range fout = 12.92 GHz to 14.07 GHz fout/2 = 6.46 GHz to 7.035 GHz Output power (POUT): 11.5 dbm SSB

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Low Cost JFET Input Operational Amplifiers ADTL/ADTL FEATURES TL/TL compatible Low input bias current: pa maximum Offset voltage 5.5 mv maximum (ADTLA/ADTLA) 9 mv maximum (ADTLJ/ADTLJ) ±5 V operation Low

More information

Micropower Precision CMOS Operational Amplifier AD8500

Micropower Precision CMOS Operational Amplifier AD8500 Micropower Precision CMOS Operational Amplifier AD85 FEATURES Supply current: μa maximum Offset voltage: mv maximum Single-supply or dual-supply operation Rail-to-rail input and output No phase reversal

More information

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668 6 V, MHz RR Amplifiers AD8665/AD8666/AD8668 FEATURES Offset voltage:.5 mv max Low input bias current: pa max Single-supply operation: 5 V to 6 V Dual-supply operation: ±.5 V to ±8 V Low noise: 8 nv/ Hz

More information

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum FEATURES Offset voltage: 2.5 mv maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nv/ Hz Wide bandwidth: 24 MHz Slew rate: V/μs Short-circuit output current: 2 ma No phase reversal Low input

More information

Dual-Axis, High-g, imems Accelerometers ADXL278

Dual-Axis, High-g, imems Accelerometers ADXL278 FEATURES Complete dual-axis acceleration measurement system on a single monolithic IC Available in ±35 g/±35 g, ±50 g/±50 g, or ±70 g/±35 g output full-scale ranges Full differential sensor and circuitry

More information

12.17 GHz to GHz MMIC VCO with Half Frequency Output HMC1167

12.17 GHz to GHz MMIC VCO with Half Frequency Output HMC1167 9 0 3 4 5 6 9 7 6.7 GHz to 3.33 GHz MMIC VCO with Half Frequency Output FEATURES Dual output frequency range fout =.7 GHz to 3.330 GHz fout/ = 6.085 GHz to 6.665 GHz Output power (POUT): 0.5 dbm Single-sideband

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

Low Voltage, 400 MHz, Quad 2:1 Mux with 3 ns Switching Time ADG774A

Low Voltage, 400 MHz, Quad 2:1 Mux with 3 ns Switching Time ADG774A Low Voltage, 4 MHz, Quad 2:1 Mux with 3 ns Switching Time FEATURES Bandwidth: >4 MHz Low insertion loss and on resistance: 2.2 Ω typical On resistance flatness:.3 Ω typical Single 3 V/5 V supply operation

More information

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80 2-Bit Successive-Approximation Integrated Circuit ADC FEATURES True 2-bit operation: maximum nonlinearity ±.2% Low gain temperature coefficient (TC): ±3 ppm/ C maximum Low power: 8 mw Fast conversion time:

More information

Self-Contained Audio Preamplifier SSM2019

Self-Contained Audio Preamplifier SSM2019 a FEATURES Excellent Noise Performance:. nv/ Hz or.5 db Noise Figure Ultra-low THD:

More information

50 ma, High Voltage, Micropower Linear Regulator ADP1720

50 ma, High Voltage, Micropower Linear Regulator ADP1720 5 ma, High Voltage, Micropower Linear Regulator ADP72 FEATURES Wide input voltage range: 4 V to 28 V Maximum output current: 5 ma Low light load current: 28 μa at μa load 35 μa at μa load Low shutdown

More information

0.4 Ω CMOS, Dual DPDT Switch in WLCSP/LFCSP/TSSOP ADG888

0.4 Ω CMOS, Dual DPDT Switch in WLCSP/LFCSP/TSSOP ADG888 FEATURES.8 V to 5.5 V operation Ultralow on resistance.4 Ω typical.6 Ω maximum at 5 V supply Excellent audio performance, ultralow distortion.7 Ω typical.4 Ω maximum RON flatness High current carrying

More information

11.41 GHz to GHz MMIC VCO with Half Frequency Output HMC1166

11.41 GHz to GHz MMIC VCO with Half Frequency Output HMC1166 9 6 3 30 29 VTUNE 28 27 26.4 GHz to 2.62 GHz MMIC VCO with Half Frequency Output FEATURES Dual output frequency range fout =.4 GHz to 2.62 GHz fout/2 = 5.705 GHz to 6.3 GHz Output power (POUT): dbm Single-sideband

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

9.25 GHz to GHz MMIC VCO with Half Frequency Output HMC1162

9.25 GHz to GHz MMIC VCO with Half Frequency Output HMC1162 9.5 GHz to 10.10 GHz MMIC VCO with Half Frequency Output HMC116 FEATURES FUTIONAL BLOCK DIAGRAM Dual output f OUT = 9.5 GHz to 10.10 GHz f OUT / = 4.65 GHz to 5.050 GHz Power output (P OUT ): 11 dbm (typical)

More information

High Voltage Current Shunt Monitor AD8211

High Voltage Current Shunt Monitor AD8211 High Voltage Current Shunt Monitor AD8211 FEATURES Qualified for automotive applications ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 High Voltage, Current Shunt Monitor AD825 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead

More information

Comparators and Reference Circuits ADCMP350/ADCMP354/ADCMP356

Comparators and Reference Circuits ADCMP350/ADCMP354/ADCMP356 Data Sheet Comparators and Reference Circuits ADCMP35/ADCMP354/ADCMP356 FEATURES Comparators with.6 V on-chip references Output stages Open-drain active low (ADCMP35) Open-drain active high (ADCMP354)

More information

Dual, 3 V, CMOS, LVDS Differential Line Receiver ADN4664

Dual, 3 V, CMOS, LVDS Differential Line Receiver ADN4664 Dual, 3 V, CMOS, LVDS Differential Line Receiver ADN4664 FEATURES ±15 kv ESD protection on output pins 400 Mbps (200 MHz) switching rates Flow-through pinout simplifies PCB layout 100 ps channel-to-channel

More information

High Isolation, Silicon SP4T, Nonreflective Switch, 9 khz to 12.0 GHz ADRF5040

High Isolation, Silicon SP4T, Nonreflective Switch, 9 khz to 12.0 GHz ADRF5040 RF4 RF3 7 8 9 1 11 12 21 2 19 RF2 High Isolation, Silicon SP4T, Nonreflective Switch, 9 khz to 12. GHz ADRF54 FEATURES FUNCTIONAL BLOCK DIAGRAM Nonreflective 5 Ω design Positive control range: V to 3.3

More information

Triple, 6-Channel LCD Timing Delay-Locked Loop AD8389

Triple, 6-Channel LCD Timing Delay-Locked Loop AD8389 Triple, 6-Channel LCD Timing Delay-Locked Loop PRODUCT FEATURES High speed Up to 85 MHz clock rate Triple (R, G, B) output Matched delay lines Low power dissipation: 40 mw Reference to rising or falling

More information

OBSOLETE. Charge Pump Regulator for Color TFT Panel ADM8830

OBSOLETE. Charge Pump Regulator for Color TFT Panel ADM8830 FEATURES 3 Output Voltages (+5.1 V, +15.3 V, 10.2 V) from One 3 V Input Supply Power Efficiency Optimized for Use with TFT in Mobile Phones Low Quiescent Current Low Shutdown Current (

More information

Low Cost, 14-Bit, Dual Channel Synchro/Resolver-to-Digital Converter AD2S44

Low Cost, 14-Bit, Dual Channel Synchro/Resolver-to-Digital Converter AD2S44 Data Sheet Low Cost, 14-Bit, Dual Channel Synchro/Resolver-to-Digital Converter FEATURES Low per-channel cost 3-lead DIL hybrid package.6 arc minute accuracy 14-bit resolution Built-in test Independent

More information