Design of basic digital circuit blocks based on an OFET device charge model

Size: px
Start display at page:

Download "Design of basic digital circuit blocks based on an OFET device charge model"

Transcription

1 Vol. 34, No. 5 Journal of Semiconductors May 2013 Design of basic digital circuit blocks based on an OFET device charge model Shen Shu( 沈澍 ) School of Computer Science & Technology, Nanjing University of Posts and Telecommunication, Nanjing , China Abstract: An OFET charge model, as well as its parameter extraction method are presented. The fitting results are also discussed and different OFET model characters are compared. Some basic OFET based digital circuit blocks, including the inverter, NAND, and ring oscillator are also developed, which would be considered to be helpful to the design of relevant applications. Key words: OFET; SPICE; ADS; inverter; NAND; ring oscillator DOI: / /34/5/ EEACC: Introduction In the last decades, both academia and industries focused their interests on the development of electronic devices based on polymers and organic films. Mass printing technologies are promising technologies for the production of inexpensive electronics. Many applications like radio frequency identification (RFID) Œ1 and organic display benefit from the cheaper production costs of printing technologies. To avoid a trial and error strategy which would involve the fabrication of many different printing forms, it is very helpful and useful to use circuit simulation for low-cost organic circuits in the development and optimization of devices and process. Simulations provide relevant performance figures during device optimization without fabricating and measuring real devices. Nevertheless, adequate OFET models, which could accurately represent OFET behavior, are required in circuit simulation in this area. A library using an SPICE and Agilent ADS multiple platform for RFID application has already been presented in previous work Œ2 5. In this paper, a novel OFET model was applied, and at the same time we discuss its relevant basic digital circuit blocks, which will be of use to some applications. 2. The OFET charge model Cerdeira and Estrada et al. Œ6; 7 firstly developed a model which improves the fitting between the model and experiment data for organic thin film transistors. The model is based on hopping transport and is derived from the TFT model for amorphous silicon TFT (a-si TFT). In Ref. [7], it showed some pentacene OFETs can be very accurately modeled using the same expression for mobility as for a-si TFTs. Originally, a-si TFT model was only available in the above-threshold region Œ6. In this paper, this model is modified by considering the drain source current in the leakage region and named OFET charge model in the following context. The drain current in the linear and saturation regions is modeled as:.v GS V T / I D D K Œ1 C RK.V GS V T / V DS.1 C V DS / m 1=m C I leakage ; (1) VDS 1 C V DSSAT where K D C IW, W is the channel width, L is the channel L length, C I is the gate capacitance, V T is the threshold voltage, R is the source plus drain resistance, m and are fitting parameters related to the sharpness of the knee region and to the channel length modulation respectively. is the gate-voltage dependent mobility which is described by a fitting function as: VGS V T D 0 ; (2) V AA where 0 is usually taken as the low-field mobility, and V AA are empirical parameters defining the variation of mobility with V GS. V DSSAT stands for the saturation voltage, which is defined through the saturation modulation parameter : V DSSAT D.V GS V T /: (3) The drain source current in the leakage region I leakage is described by two terms Œ8 : (1) A term representing the intrinsic resistance between the drain and the source; (2) A term with exponential drain source and gate source dependence. 3. Parameter extraction method In this section, the extraction procedure for parameters of the OFET charge model is described Extraction of V T and Parameter V T and could be extracted from the function H.V GS / in the linear region Œ6; 9 : * Project supported by the NAMATECH Project of Regione Piemonte, Italy. Corresponding author. seth.shenshu@gmail.com Received 10 August 2012, revised manuscript received 18 November Chinese Institute of Electronics

2 H.V GS / D R VGS 0 I D.V GS /dv GS D V GS V T I D.V GS / 2 C : (4) In this case, we could obtain V T from the intercept, and from the slope of the linear region in Eq. (4) Extraction of V AA From the experimental data, we could calculate the curve I DS 1=.1C/ versus V GS V T and get its slope S 1. The value of V AA can be extracted by Œ6; 9 : V AA D K 1V DS S 1C 1! 1= ; (5) where K 1 D K 0 D W L C I 0. Up to now, three parameters which determine the effective change of the field effect mobility in Eq. (2) have been extracted by the above procedures. Table 1. Parameters of the OFET charge model. Model parameter Notation Value Channel width W 100 m Channel length L 8 m Gate capacitance C I 3.6 nf/m 2 Threshold voltage V T 1.7 V Low field mobility cm 2 /(Vs) Source plus drain resistance R 186 k Mobility enhancement 0.96 Voltage overdrive V AA 33 V Channel modulation V 1 Saturation modulation Sharpness of the knee region m Extraction of In the next step, the saturation current characteristics for V DS > V GS V T are used to calculate the slope S 2 in the linear region of I 1=.2C/ DSSAT versus V GS V T. Parameter is obtained by: D S 2C 2 V AA p 2 : (6) K Extraction of m Then parameter m could be calculated by estimating Eq. (1) at the saturation voltage, neglecting R and Œ7; 10 : m D lg 2= lg 3.5. Extraction of K.V GS V T / Œ1 C K.V GS V T / I DSSAT : (7) The channel length modulation parameter is extracted evaluating the expression for the output current characteristic, Equation (1) at the maximum values of V DS and V GS voltages to fit the slope of the experimental data: m 1=m VDS I DS Œ1 C RK.V GS V T / 1 C V D DSSAT VDS 2 K.V 1 : GS V T / V DS (8) With the steps above, all important parameters in the model are extracted. 4. Results and discussion The OFET charge model can be used for both n and p type devices and provides good behavior in all the concerning linear regions, which is a really important aspect in digital applications. Actually the model is static since no dynamic effects have been involved as a result that only DC data are available, and therefore the identification of the dynamic part of the model could not be accomplished. If data concerning for instance the frequency or transient behavior were available, Fig. 1. Measured (symbols) and modeled (solid lines) output characteristics with V GS from 20:1 to 0:1 V. the model could be completed by inserting the reactive effects, for example extending the capacitance model represented in Refs. [4, 5]. The model was initially implemented only in SPICE Œ11, but was on purpose extended to Agilent ADS Œ12 to exploit its powerful optimization facilities to identify the parameters and fit the device characteristics descending from the given process. Meanwhile, we also use the Matlab program for parameter calculation and optimization. Here we adopted the OFET charge model for fitting the experiment data from an UK research institute. Table 1 resumes the extracted parameters, which allow a really good agreement with the data obtained from the measurement as shown in Figs. 1 and 2, which report comparisons between the modeled and measured data. From those figures, we can see that the fitting between the measurement and model is very promising, both in the output characteristics in Fig. 1 and the transfer characteristics reported in Fig. 2. The calculated mobility of a-si TFTs in Eq. (2) is mostly similar to the mobility calculation for organic FETs, so that comparable results can be expected. Iniguez and his colleagues developed this model further and present a framework of OFET modeling based on assumption that the mobile charge was localized and the charge transport was caused by hopping be

3 Fig. 3. Zero-V GS load inverter schematic implementation. Fig. 2. Measured (symbols) and modeled (solid lines) transfer characteristics with V DS from 20:1 to 0:1 V. tween localized states Œ7; 9; 13. Approximating the density of state (DOS) by a Gaussian, they found an analytical and explicit expression of the channel current. Moreover, temperature dependence is also taken into account: D 2 T 0 2; (9) T where T is the absolute temperature, and T 0 is the characteristic temperature of the exponential DOS. The OFET charge model mainly describes the behavior in the above-threshold conditions, for subthreshold conditions the current is assumed to have a small constant value I leakage. There is a variation factor for the onset of saturation in the output characteristics I D versus V DS. Seen from Figs. 1 and 2, we could reach a conclusion that the accuracy of the model with respect to pentacene transistors is good. Compared with another OFET model (named the OFET compact DC model to distinguish), which has been introduced in our previous work Œ4; 5 and other literature Œ14; 15, there are some common factors as well as differences. Concerning the common factors for example, the mobility enhancement factor and the low-field mobility 0 as well as the channel length modulation factor are the same in both models. The values for the reference voltages (V in the OFET compact DC model and V AA in the OFET charge model) are proportional Œ14, following: V AA D V. C 2/: (10) Therefore, V AA and V have essentially the same meaning. As for differences, one difference concerns parameter m in the OFET charge model. This parameter is used to control the sharpness of the transition between the linear and saturation region in the OFET charge model, while the OFET compact DC model does not have this parameter. This is mainly because VD m interferes with V D when varying V D, which can cause an unrealistic estimated value for (a negative value for example) Œ7; 15. The second difference is about the contact effects. In an OFET charge model, the source plus drain resistance R is assumed to be nearly constant. In contrast, the contact resistance has a separate model in the OFET compact DC model. Furthermore, in the OFET charge model, fitting parameter is used to reduce the saturation point of V D to less than V G V T, which is not found in the OFET compact DC model Œ7; 14; 15. Lastly, we need to mention that the OFET compact DC model is symmetrical, while the OFET charge model is source referenced and can be used only if the potential of the source terminal is taken as zero potential Œ7; Design of digital circuit blocks We conclude this section reporting a few examples on model usage to design some basic circuits with OFET, oriented to the realization of RFID building blocks, based on the OFET charge model introduced in the above sections. These topics have already been addressed by our research group, in fact, we have already developed a design kit library to support the RFID efforts of the designers putting a set of basic elements/cell models at our disposal Œ2 4. The library is available for users that intend to test the model accuracy and effectiveness. A set of examples with increasing complexity to test the model behavior is hereafter reported. As a first example we present the results obtained simulating an OFET based inverter, then we will deal with the more complex NAND gate, while the last, and more interesting and ambitious example refers to an eleven stage ring oscillator able to generate a square wave signal with a frequency around 2 khz, that could be exploited within a RFID tag to drive all digital and analog operations required Inverter The zero-v GS load architecture is applied to the build inverter because of its lower complexity, which electrical scheme is reported in Fig. 3, which is simulated here by the OFET model above. An input output characteristic is illustrated in Fig. 4. The separation of logic levels mainly depends on the ratio between the width of the load M2 and of the driver transistor M1 if they have the same channel length. In our study, the aspect ratio r w has been optimized using SPICE and the Monte Carlo analysis available in the Agilent ADS suite to obtain the best trade-off between the noise margin and port gain. The final optimized aspect ratio between the load and drive transistors is 15. Figure 5 shows the transient time input and output voltage of a NOT driven with a square wave input between 10 V and 0 V at a

4 Fig. 6. Zero-V GS NAND2 schematic implementation. Fig. 4. Input output static inverter characteristic. Fig. 7. Transient simulation (V SS D 0 V, V DD D 10 V), with two 500 Hz symmetrical square wave inputs with different delays. Fig. 5. Transient simulation (V SS D 0 V, V DD D 10 V ), with a 500 Hz symmetrical square wave at the input. frequency of 500 Hz NAND All the combinational systems based on NAND logic gates, compared with the NOR based approach, allow better performances, especially concerning the noise margin. The NAND architecture is simply derived from the inverter gate adding one or more driver transistors to the high side of a zeroload inverter. The schematic of the NAND2, reported in Fig. 6, is obtained from the NOT scheme paralleling more pull-ups and optimizing the device aspect ratio according to the NAND gate functionalities. The device aspect ratio between the transistors ML and MD (MD1 and MD2 are identical) thus obtained is 20. Figure 7 reports the transient simulation when both inputs are square waves at 500 Hz Ring oscillator A ring oscillator consists of a cascade of an odd number of inverter stages, where the last inverter connects the input of the first, determining the classical ring topology. An RC filter, connected between the input and the output of several inverters, ensures the correct selection of the oscillation frequency, while the odd stage number prevents the system reaching a DC stable operating point. To test the capabilities of our simulation Fig. 8. Ring oscillator electrical scheme. approach, we have set up an 11-stage ring oscillator, using the optimized inverter discussed in the previous section. The output of the multiple inverter ring cannot be directly connected to an external load without compromising its behavior, due to the small current driving capabilities of OFETs. A proper buffer stage expressly conceived to increase the oscillator output current level must be provided; the best trade-off between current level, time delay and power consumption is obtained with a multistage progressive, exponential buffer, with a tapering profile accurately optimized through SPICE and Agilent ADS simulations. The overall circuit is demonstrated in Fig. 8. The simulated oscillation frequency is around 2 khz shown in Fig. 9 and strongly depends on the magnitude of the load capacitances

5 Fig. 9. Time domain response of the 11-stage ring oscillator with an oscillation frequency around 2 khz. 6. Conclusions In summary, we have presented an OFET charge model, as well as its parameter extraction method. Although this model derived from the TFT model for amorphous silicon TFT, it is very suitable for OFET modeling after comparing modeling and experiment data. We also developed some basic OFET based digital circuit blocks, including an inverter, NAND, and ring oscillator. The design would be considered to be effectively used to design relevant applications such as an RFID transponder. References [1] Cantatore E, Geuns T C T, Gelinck G H, et al. A MHz RFID system based on organic transponders. IEEE J Solid-State Circuits, 2007, 42(1): 84 [2] Shen S, Tinivella R, Pirola M, et al. SPICE library for low-cost RFID applications based on pentacene organic FET. Proc 6th International Conference on Wireless Communication, Networking and Mobile Computing, 2010 [3] Tinivella R, Shen S, Pirola M, et al. A device-level analog and digital subsystem SPICE library for the design of low-cost pentacene OFET RFIDs. Proc IMS Conference, 2010: 848 [4] Tinivella R, Camarchia V, Pirola M, et al. Simulation and design of OFET RFIDs through an analog/digital physics-based library. Org Electron, 2011, 12: 1328 [5] Shen S. Low cost RFID system based on all organic technology. PhD Thesis, Politecnico di Torino, Italy, 2012 [6] Cerdeira A, Estrada M, Garcia R, et al. New procedure for the extraction of basic a-si:h TFT model parameters in the linear and saturation regions. Solid-State Electron, 2001, 45: 1077 [7] Estrada M, Cerdeira A, Puigdollers J, et al. Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron, 2005, 49: 1009 [8] Yasghmaszxasdeh O, Bonnasasasieuzx Y, Saboundji A, et al. A SPICE-like DC model for organic thin-film transistors. Korean Physical Society, 2007, 54(1): 523 [9] Iniguez B, Picos R, Veksler D, et al. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electron, 2008, 52: 400 [10] Estrada M, Cerdeira A, Pallares J, et al. Mobility model for compact device modeling of OTFTs made with different materials. Solid-State Electron, 2008, 52: 787 [11] Spice Freeware online, Available from: [12] Agilent ADS, Version 2009, Agilent Technol., Palo Alto, CA, 2009 [13] Iniguez B, Pallares J, Marsal L F, et al. Compact modeling of organic thin-film transistors. Proc ICSICT, 2010: 1268 [14] Marinov O, Deen M J, Zschieschang U, et al. Organic thin-film transistors: Part I compact DC modeling. IEEE Trans Electron Devices, 2009, 56: 2952 [15] Deen M J, Marinov O, Zschieschang U, et al. Organic thin-film transistors: Part II parameter extraction. IEEE Trans Electron Devices, 2009, 56:

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Simulation of Organic Thin Film Transistor at both Device and Circuit Levels

Simulation of Organic Thin Film Transistor at both Device and Circuit Levels 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors Chapter 4 New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors ---------------------------------------------------------------------------------------------------------------

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2011. Supporting Information for Small, DOI: 10.1002/smll.201101677 Contact Resistance and Megahertz Operation of Aggressively Scaled

More information

Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials

Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials Anuradha Yadav, Savita Yadav, Sanjay Singh, Nishant Tripathi Abstract The Organic thin film transistor has

More information

ISSCC 2006 / SESSION 15 / ORGANIC DEVICES AND CIRCUITS / 15.2

ISSCC 2006 / SESSION 15 / ORGANIC DEVICES AND CIRCUITS / 15.2 ISSCC 26 / SESSION 15 / ORGANIC DEVICES AND CIRCUITS / 15.2 15.2 A 13.56MHz RFID System based on Organic Transponders E. Cantatore 1, T. C. T. Geuns 1, A. F. A Gruijthuijsen 1, G. H. Gelinck 1, S. Drews

More information

UOTFT: Universal Organic TFT Model for Circuit Design

UOTFT: Universal Organic TFT Model for Circuit Design UOTFT: Universal Organic TFT Model for Circuit Design S. Mijalković, D. Green, A. Nejim Silvaco Europe, St Ives, Cambridgeshire, UK A. Rankov, E. Smith, T. Kugler, C. Newsome, J. Halls Cambridge Display

More information

A 13.56MHz RFID system based on organic transponders

A 13.56MHz RFID system based on organic transponders A 13.56MHz RFID system based on organic transponders Cantatore, E.; Geuns, T.C.T.; Gruijthuijsen, A.F.A.; Gelinck, G.H.; Drews, S.; Leeuw, de, D.M. Published in: Proceedings of the IEEE International Solid-State

More information

Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits

Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits Separation and Extraction of Short-Circuit Power Consumption in Digital CMOS VLSI Circuits Atila Alvandpour, Per Larsson-Edefors, and Christer Svensson Div of Electronic Devices, Dept of Physics, Linköping

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 831 A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design Gerhard Knoblinger, Member, IEEE,

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Organic RFID tags for MHz

Organic RFID tags for MHz Organic RFID tags for 13.56 MHz Kris Myny, Soeren Steudel, Dieter Bode, Sarah Schols, Paul Heremans N.A.J.M. van Aerle (Polymer Vision) Gerwin Gelinck (TNO) Results of the R&D technology program Organic

More information

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Annals of the Academy of Romanian Scientists Series on Science and Technology of Information ISSN 2066-8562 Volume 3, Number 2/2010 7 LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Vlad ANGHEL

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA Analog Integrated Circuits and Signal Processing, 43, 127 136, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA IVAN

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Low-voltage high dynamic range CMOS exponential function generator

Low-voltage high dynamic range CMOS exponential function generator Applied mathematics in Engineering, Management and Technology 3() 015:50-56 Low-voltage high dynamic range CMOS exponential function generator Behzad Ghanavati Department of Electrical Engineering, College

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators

Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators Poornima Mittal 1, 4, Anuradha Yadav 2, Y. S. Negi 3, R. K. Singh 4 and Nishant Tripathi 2 1 Graphic Era University

More information

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 94 CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 6.1 INTRODUCTION The semiconductor digital circuits began with the Resistor Diode Logic (RDL) which was smaller in size, faster

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

IN digital circuits, reducing the supply voltage is one of

IN digital circuits, reducing the supply voltage is one of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 61, NO. 10, OCTOBER 2014 753 A Low-Power Subthreshold to Above-Threshold Voltage Level Shifter S. Rasool Hosseini, Mehdi Saberi, Member,

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Direct-written polymer field-effect transistors operating at 20 MHz Andrea Perinot 1,2, Prakash Kshirsagar 3, Maria Ada Malvindi 3, Pier Paolo Pompa 3,4, Roberto Fiammengo 3,*,

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes Petros Alexakis, Olayiwola Alatise, Li Ran and Phillip Mawby School of Engineering, University of Warwick

More information

CDTE and CdZnTe detector arrays have been recently

CDTE and CdZnTe detector arrays have been recently 20 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 44, NO. 1, FEBRUARY 1997 CMOS Low-Noise Switched Charge Sensitive Preamplifier for CdTe and CdZnTe X-Ray Detectors Claudio G. Jakobson and Yael Nemirovsky

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #1: Ultra Low Voltage and Subthreshold Circuit Design Rajeevan Amirtharajah University of California, Davis Opportunities for Ultra Low Voltage Battery Operated and Mobile Systems Wireless

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

MODELLING AND IMPLEMENTATION OF SUBTHRESHOLD CURRENTS IN SCHOTTKY BARRIER CNTFETs FOR DIGITAL APPLICATIONS

MODELLING AND IMPLEMENTATION OF SUBTHRESHOLD CURRENTS IN SCHOTTKY BARRIER CNTFETs FOR DIGITAL APPLICATIONS www.arpapress.com/volumes/vol11issue3/ijrras_11_3_03.pdf MODELLING AND IMPLEMENTATION OF SUBTHRESHOLD CURRENTS IN SCHOTTKY BARRIER CNTFETs FOR DIGITAL APPLICATIONS Roberto Marani & Anna Gina Perri Electrical

More information

Emulation of junction field-effect transistors for real-time audio applications

Emulation of junction field-effect transistors for real-time audio applications This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Emulation of junction field-effect transistors

More information

Robust Ultra-Low Power Sub-threshold DTMOS Logic Λ

Robust Ultra-Low Power Sub-threshold DTMOS Logic Λ Robust Ultra-Low Power Sub-threshold DTMOS Logic Λ Hendrawan Soeleman, Kaushik Roy, and Bipul Paul Purdue University Department of Electrical and Computer Engineering West Lafayette, IN 797, USA fsoeleman,

More information

Output Waveform Evaluation of Basic Pass Transistor Structure*

Output Waveform Evaluation of Basic Pass Transistor Structure* Output Waveform Evaluation of Basic Pass Transistor Structure* S. Nikolaidis, H. Pournara, and A. Chatzigeorgiou Department of Physics, Aristotle University of Thessaloniki Department of Applied Informatics,

More information

DESIGN AND SIMULATION OF A HIGH PERFORMANCE CMOS VOLTAGE DOUBLERS USING CHARGE REUSE TECHNIQUE

DESIGN AND SIMULATION OF A HIGH PERFORMANCE CMOS VOLTAGE DOUBLERS USING CHARGE REUSE TECHNIQUE Journal of Engineering Science and Technology Vol. 12, No. 12 (2017) 3344-3357 School of Engineering, Taylor s University DESIGN AND SIMULATION OF A HIGH PERFORMANCE CMOS VOLTAGE DOUBLERS USING CHARGE

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Progress In Electromagnetics Research Letters, Vol. 38, 151 16, 213 ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Ahmed Tanany, Ahmed Sayed *, and Georg Boeck Berlin Institute of Technology,

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

The Design of SET-CMOS Hybrid Logic Style of 1-Bit Comparator

The Design of SET-CMOS Hybrid Logic Style of 1-Bit Comparator The Design of SET-CMOS Hybrid Logic Style of 1-Bit Comparator A. T. Fathima Thuslim Department of Electronics and communication Engineering St. Peters University, Avadi, Chennai, India Abstract: Single

More information

Higher School of Economics, Moscow, Russia. Zelenograd, Moscow, Russia

Higher School of Economics, Moscow, Russia. Zelenograd, Moscow, Russia Advanced Materials Research Online: 2013-07-31 ISSN: 1662-8985, Vols. 718-720, pp 750-755 doi:10.4028/www.scientific.net/amr.718-720.750 2013 Trans Tech Publications, Switzerland Hardware-Software Subsystem

More information

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters C. H. Chen and M. J. Deen a) Engineering Science, Simon Fraser University, Burnaby, British Columbia

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics. Information: Information:  0331a/ 0442/ Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

More information

GENERALLY speaking, to decrease the size and weight of

GENERALLY speaking, to decrease the size and weight of 532 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 2009 A Low-Consumption Regulated Gate Driver for Power MOSFET Ren-Huei Tzeng, Student Member, IEEE, and Chern-Lin Chen, Senior Member,

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

THE GROWTH of the portable electronics industry has

THE GROWTH of the portable electronics industry has IEEE POWER ELECTRONICS LETTERS 1 A Constant-Frequency Method for Improving Light-Load Efficiency in Synchronous Buck Converters Michael D. Mulligan, Bill Broach, and Thomas H. Lee Abstract The low-voltage

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays

Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays Advances in Materials Science and Engineering Volume 1, Article ID 75, 5 pages doi:1.1155/1/75 Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

Functional Integration of Parallel Counters Based on Quantum-Effect Devices

Functional Integration of Parallel Counters Based on Quantum-Effect Devices Proceedings of the th IMACS World Congress (ol. ), Berlin, August 997, Special Session on Computer Arithmetic, pp. 7-78 Functional Integration of Parallel Counters Based on Quantum-Effect Devices Christian

More information

New LDMOS Model Delivers Powerful Transistor Library Part 1: The CMC Model

New LDMOS Model Delivers Powerful Transistor Library Part 1: The CMC Model From October 2004 High Frequency Electronics Copyright 2004, Summit Technical Media, LLC New LDMOS Model Delivers Powerful Transistor Library Part 1: The CMC Model W. Curtice, W.R. Curtice Consulting;

More information

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs GaN Essentials AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs NITRONEX CORPORATION 1 OCTOBER 2008 GaN Essentials: Bias Sequencing and Temperature Compensation of GaN HEMTs 1. Table

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Nonideal Effect The experimental characteristics of MOSFETs deviate to some degree from the ideal relations that have been theoretically derived. Semiconductor Physics and Devices Chapter 11. MOSFET: Additional

More information

8. Combinational MOS Logic Circuits

8. Combinational MOS Logic Circuits 8. Combinational MOS Introduction Combinational logic circuits, or gates, witch perform Boolean operations on multiple input variables and determine the output as Boolean functions of the inputs, are the

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L02: Design Metrics Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-03f

More information

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS B. Lakshmi 1 and R. Srinivasan 2 1 School of Electronics Engineering, VIT University, Chennai,

More information

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) CSE 493/593 Test 2 Fall 2011 Solution 1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) Decreasing of W to make the gate slower,

More information

Operational Amplifiers Part I of VI What Does Rail-to-Rail Input Really Mean? by Bonnie C. Baker Microchip Technology, Inc.

Operational Amplifiers Part I of VI What Does Rail-to-Rail Input Really Mean? by Bonnie C. Baker Microchip Technology, Inc. Operational Amplifiers Part I of VI What Does Rail-to-Rail Input Really Mean? by Bonnie C. Baker Microchip Technology, Inc. bonnie.baker@microchip.com Some single-supply operational amplifier advertisements

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Simulation and Analysis of Dual Gate Organic Thin Film Transistor and its inverter circuit using SILVACO

Simulation and Analysis of Dual Gate Organic Thin Film Transistor and its inverter circuit using SILVACO Simulation and Analysis of Dual Gate Organic Thin Film Transistor and its inverter circuit using SILVACO Kavery Verma, Anket Kumar Verma Jaypee Institute of Information Technology, Noida, India Abstract:-This

More information

Stanford University. Virtual-Source Carbon Nanotube Field-Effect Transistors Model. Quick User Guide

Stanford University. Virtual-Source Carbon Nanotube Field-Effect Transistors Model. Quick User Guide Stanford University Virtual-Source Carbon Nanotube Field-Effect Transistors Model Version 1.0.1 Quick User Guide Copyright The Board Trustees of the Leland Stanford Junior University 2015 Chi-Shuen Lee

More information

Electronics Basic CMOS digital circuits

Electronics Basic CMOS digital circuits Electronics Basic CMOS digital circuits Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED October 21, 2014 1 / 30 Introduction The topics covered today: The inverter: the simplest

More information

Supporting Information

Supporting Information Supporting Information Fabrication and Transfer of Flexible Few-Layers MoS 2 Thin Film Transistors to any arbitrary substrate Giovanni A. Salvatore 1, *, Niko Münzenrieder 1, Clément Barraud 2, Luisa Petti

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

California Eastern Laboratories

California Eastern Laboratories California Eastern Laboratories AN143 Design of Power Amplifier Using the UPG2118K APPLICATION NOTE I. Introduction Renesas' UPG2118K is a 3-stage 1.5W GaAs MMIC power amplifier that is usable from approximately

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

Simulation of digital and analog/mixed signal circuits employing Tunnel-FETs

Simulation of digital and analog/mixed signal circuits employing Tunnel-FETs Simulation of digital and analog/mixed signal circuits employing Tunnel-FETs P.Palestri, S.Strangio, F.Settino, F.Crupi*, D.Esseni, M.Lanuzza*, L.Selmi IUNET-University of Udine, * IUNET-University of

More information

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Preface to Third Edition p. xiii Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Design p. 6 Basic Logic Functions p. 6 Implementation

More information

Transistor Characterization

Transistor Characterization 1 Transistor Characterization Figure 1.1: ADS Schematic of Transistor Characterization Circuit 1.1 Question 1 The bias voltage, width, and length of a single NMOS transistor (pictured in Figure 1.1) were

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

An accurate track-and-latch comparator

An accurate track-and-latch comparator An accurate track-and-latch comparator K. D. Sadeghipour a) University of Tabriz, Tabriz 51664, Iran a) dabbagh@tabrizu.ac.ir Abstract: In this paper, a new accurate track and latch comparator circuit

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Simulation of GaAs MESFET and HEMT Devices for RF Applications olume, Issue, January February 03 ISSN 78-6856 Simulation of GaAs MESFET and HEMT Devices for RF Applications Dr.E.N.GANESH Prof, ECE DEPT. Rajalakshmi Institute of Technology ABSTRACT: Field effect transistor

More information

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s.

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. http:// DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. Shivam Mishra 1, K. Suganthi 2 1 Research Scholar in Mech. Deptt, SRM University,Tamilnadu 2 Asst.

More information

Drive performance of an asymmetric MOSFET structure: the peak device

Drive performance of an asymmetric MOSFET structure: the peak device MEJ 499 Microelectronics Journal Microelectronics Journal 30 (1999) 229 233 Drive performance of an asymmetric MOSFET structure: the peak device M. Stockinger a, *, A. Wild b, S. Selberherr c a Institute

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 7: MOS-FET Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Enhancement N-MOS Modes of Operation Mode V GS I DS V DS Cutoff

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Variation-Aware Design for Nanometer Generation LSI

Variation-Aware Design for Nanometer Generation LSI HIRATA Morihisa, SHIMIZU Takashi, YAMADA Kenta Abstract Advancement in the microfabrication of semiconductor chips has made the variations and layout-dependent fluctuations of transistor characteristics

More information

HDL-A MODELLING OF SWITCHED-CURRENT DELTA SIGMA A/D CONVERTERS

HDL-A MODELLING OF SWITCHED-CURRENT DELTA SIGMA A/D CONVERTERS HDL-A MODELLING OF SWITCHED-CURRENT DELTA SIGMA A/D CONVERTERS C. Rubio, S. Bota, J.G. Macías, J. Samitier Lab. Sistemes d Instrumentació i Comunicacions Dept. Electrònica. Universitat de Barcelona C/

More information

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering

University of Southern C alifornia School Of Engineering Department Of Electrical Engineering University of Southern C alifornia School Of Engineering Department Of Electrical Engineering EE 348: Homework Assignment #08 Spring, 2001 (Due 04/26/2001) Choma Problem #35: The NMOS transistors in the

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Design of a CMOS Distributed Power Amplifier with Gradual Changed Gain Cells

Design of a CMOS Distributed Power Amplifier with Gradual Changed Gain Cells Chinese Journal of Electronics Vol.27, No.6, Nov. 2018 Design of a CMOS Distributed Power Amplifier with Gradual Changed Gain Cells ZHANG Ying 1,2,LIZeyou 1,2, YANG Hua 1,2,GENGXiao 1,2 and ZHANG Yi 1,2

More information

Lecture 21: Voltage/Current Buffer Freq Response

Lecture 21: Voltage/Current Buffer Freq Response Lecture 21: Voltage/Current Buffer Freq Response Prof. Niknejad Lecture Outline Last Time: Frequency Response of Voltage Buffer Frequency Response of Current Buffer Current Mirrors Biasing Schemes Detailed

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information