Metrology and Sensing

Size: px
Start display at page:

Download "Metrology and Sensing"

Transcription

1 Metrology and Sensing Lecture 5: Confocal sensors Herbert Gross Winter term 06

2 Preliminary Schedule No Date Subject Detailed Content 8.0. Introduction Introduction, optical measurements, shape measurements, errors, definition of the meter, sampling theorem 9.0. Wave optics (ACP) Basics, polarization, wave aberrations, PSF, OTF Sensors Introduction, basic properties, CCDs, filtering, noise Fringe projection Moire principle, illumination coding, fringe projection, deflectometry Interferometry I (ACP) Introduction, interference, types of interferometers, miscellaneous 6.. Interferometry II Examples, interferogram interpretation, fringe evaluation methods Wavefront sensors Hartmann-Shack WFS, Hartmann method, miscellaneous methods Geometrical methods Tactile measurement, photogrammetry, triangulation, time of flight, Scheimpflug setup Speckle methods Spatial and temporal coherence, speckle, properties, speckle metrology Holography Introduction, holographic interferometry, applications, miscellaneous Measurement of basic system properties Bssic properties, knife edge, slit scan, MTF measurement 0.0. Phase retrieval Introduction, algorithms, practical aspects, accuracy Metrology of aspheres and freeforms Aspheres, null lens tests, CGH method, freeforms, metrology of freeforms OCT Principle of OCT, tissue optics, Fourier domain OCT, miscellaneous Confocal sensors Principle, resolution and PSF, microscopy, chromatical confocal method

3 3 Content Principle of confocal imaging Resolution and PSF Pinhole size Impact of aberrations Scanning Examples / applications Chromatical confocal method

4 Confocal Microscope Laser scan microscope Depth resolution (sectioning) with confocal pinhole Transverse scan on field of view Digital image Only light comming out of the conjugate plane is detected Perfect system: scan mirrors conjugate to pupil location System needs a good correction of the objective lens, symmetric 3D distribution of intensity laser illumination objective lens in focus out of focus pinhole lens pinhole CCD '

5 Confocal Microscope General Aspects Laser scan microscope produces only images in combination with software for the image processing Realtime image gathering is possible today Usually the illumination is a scanning laser beam Usually the detection/observation uses the same lens The confocal pinhole detection guarantees: - a z-sectioning capability - a good suppression of straylight out of other planes in the sample In scanning systems: - the field is generated by transverse scanning with a mirror in a pupil-conjugated plane - in case of volume imaging, the z-scan is performed by moving the stage - the signal beam is descanned after a beam splitter - primary image gathering is monochromatic in a plane-by-plane z-scan Due to the very small pinhole, the sensitivity of the microscope is high: - strong impact on residual aberrations - large environmental sensitivity

6 Confocal Laser Scan Microscope Complete setup: objective / tube lens / scan lens / pinhole lens Scanning of illumination / descanning of signal Scan mirror conjugate to system pupil plane Digital image processing necessary object plane objective lens pupil plane tube lens intermediate image scan lens scan mirror pinhole lens field point axis point pupil imaging beam forming laser source

7 Confocal Laser Scan -Microscope Fourier optical model: - illumination with point spread function h ill - object function plane, t obj, scanned - detection with point spread function h det - detector function by pinhole size D ph General transform of amplitudes U U U U ' U U h ill t obj 3 U' hdet ' 3 U 3 D ph source object t obj scan pinhole detector D ph U illumination U U detection U 3 U 3 h ill h det

8 Image in Confocal Laser Scan Microscope Amplitude of PSF: h Illumination and observation with same lens: identical PSF Confocal intensity in image Real conditions: - thick sample, straylight from other z-planes - apodization of source due to laser illumination - residual aberrations of lenses - finite size of the pinhole - special shapes of detectors (circle, square, slit,..) - Partial coherence of illumination - high-na, vectorial PSF - wavelength shift for fluorescence Other/different imaging modes: - -photon - 4p - interference - structured illumination -... H H H I psf ill obs conf H psf 4 Ref: M. Wald

9 Image Formation Confocal LSM Special cases: Brightfield, perfectly small pinhole D=d(x)d(y), imaging coherent I ima h ill h det t obj Fluorescence, coherence destroyed perfectly small pinhole I ima hill hdet tobj ill det Point like object t obj = d(x) d(y) I ima h ill h det D ph Point object and perfectly small pinhole I ima h ill h det Plane mirror object t obj = const. perfectly small pinhole I ima h det ( x, y,z) ill det dx dy h ill hdet Ref: M.Wald

10 Confocal Microscopy Imaging Simple model of confocal imaging: - illumination with coherent PSF H ill - object function T obj - observation with coherent PSF H obs I H H T conf obs ill object Rearrangement spatial domain transfer in frequency domain p i x x y y I ( x, y) T (, ) H (, ) e d d conf obj x y conf x y x y H (, ) H (, ) H (, ) conf x y ill x y obs x y laser source object scan pinhole detector objective lens illumination objective lens observation

11 Confocal Resolution Confocal microscope: - lateral resolution is complicated function - not only optical influence functions digitization pixels noise sensor object ideal theory lateral resolution image residual aberrations lenses noise optic pinhole size apodisation

12 Lateral and Axial Resolution Intensity distributions lateral axial Ref: U. Kubitschek

13 3 Confocal PSF Change of intensity distributions by confocal mode. lateral. axial Ref: A. Szameit

14 Confocal Microscopy: PSF and Lateral Resolution Normalized transverse coordinate v Usual PSF: Airy Confocal imaging: Identical PSF for illumination and observation assumed p v x' sin J I( v) v I(v) ( v) J I( v) v ( v) Resolution improvement be factor.4 for FWhM 4 0,9 0,8 0,7 0,6 0,5 0,4 incoherent coherent 0,3 0, 0,

15 Confocal Microscopy: Axial Sectioning Normalized axial coordinate Conventional wide field imaging: Intensity on axis sin( u / ) I( u) u / Axial resolution Confocal imaging: Intensity on axis ( ) z approx wide sin( u / ) I( u) u / Axial resolution improved by factor.4 for FWhM z confo 0.45 n' cos 0.39 n' cos 4 8 p u z sin ( / ), 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, I(u) incoherent coherent 0, u

16 6 Microscopic Resolution Signal, lateral and axial resolution depends on imaging mode Imaging mode signal lateral resolution axial resolution classical wide field S I ill 0.6 x 0. 5 nsin D airy z nsin R E confocal photon S I I ill S I ill obs 0.40 x 0.33 D airy nsin 0.70 x 0.43 D airy nsin.4 z n sin.3 z n sin photon confocal S I I ill obs Approximation in these formulas: wavelength shift by fluorescence Lateral resolution and coherence general formula: x k nsin u factors coherent incoherent Rayleigh Sparrow Abbe Rayleigh Sparrow Abbe Classical confocal

17 7 Lateral and Axial Resolution Tradeoff between:. lateral resolution. axial resolution 3. signal to noise ratio (detection yield) axial detection yield lateral Ref: U. Kubitschek

18 Confocal Microscopy: Laterale Transfer Function Ideal coherent transfer function: complex pupil function H coh ( v) xp P f Confocal transfer function: product in spatial domain, convolution in frequency domain identical to incoherent OTF H conf ( v) v arccos p v v H Confocal system has higher spatial resolution coherent confocal 0

19 9 CTF in Microscopy x x Brightfield P* xmax zmax PxP* P z z Incoherent laser scan microscope s x s x s zmax ( PxP* ) x ( QxQ* ) Coherent laser scan microscope PxP* QxQ* s xmax x x s z s z zmax Q P xmax z z PxQ

20 Lateral Resolution in Confocal Imaging Comparison of PSF in wide field and confocal imaging Improved -point resolution in confocal mode conventional wide field confocal

21 Generalized Depth Criterion H CTF : coherent transfer function/psf Integration over spatial frequencies function of the defocussing z Depth discrimination: FWhM of function J(z) decrease with z J(z) J (z) H (,z) d z 0 CTF x x p n sin o J (z) / 0.5 pinhole large z FWhM z FWhM pinhole small z

22 OCT - Microscope Large NA: confocal, depth discrimination by NA Small NA: OCT, depth discrimination by axial coherence I(z) z -3 x OCT, coherence limited NA = exact aperture limited, confocal NA = z NA

23 3 Confocal Depth Signal Measurement of the axial confocal signal by using a lateral shifted tilted mirror Detection of spherical aberration degradation tilted mirror objective lens field y z defocussing

24 4 Confocal Pinhole Size Change of pinhole size: Observation PSF changed Changing relative sizes of illumination and observation PSFs decreasing pinhole, detection PSF shrinking geometrical optical confocality illumination PSF quite smaller transition range wave optical confocality PSF of observation and illumination of nearly same size z obs z ill x ill x obs

25 Size of Pinhole and Confocality Large pinhole: geometrical optic Small pinhole: - Diffraction dominates - Scaling by Airy diameter a = D/D Airy - diffraction relevant for pinholes D < D airy Confocal signal: Integral over pinhole size x / D Airy a S( u) U( u, v) p v dv NA = 0.30 NA = 0.60 NA = 0.75 NA = S(u) a = 3 a = a = a = u.5.5 geometrical D PH / D Airy

26 Confocal Signal for Different Pinhole Sizes Numerical result for different sizes a of the fiber radius The width increases with the fiber diameter The diffraction fine structure disappears with growing a S() a = 0 a = 5 mm a = 0 mm a = 0 mm

27 Confocal Signal and Pinhole Size Confocal signal S(z) without aberrations as a function of the pinhole size a Smaller pinhole: - low signal (bad SNR) - better z-resolution (sectioning) - centroid remains constant in case of perfect imaging S(z,a) a/d airy S(z,a) z / R u a/d airy z / R u

28 Wilsons Formula T. Wilson, Jour. of Microsc. 44 (0) p3, Resolution and optical sectioning in the confocal microscope Empirical formula for the width of the confocal signal in the case of a finite size pinhole and a fluorescence object ( self luminous, phase information lost ) 0.67 D ph 3 First factor: diffraction D.47 FWHM n n NA Second factor: finite size object Dairy 3 z Fwhm = 675 nm geometrical regime diffraction regime = 450 nm D ph /D airy

29 Wilsons Formula: Critical Review Formula is valid for:. one wavelength. self luminous object (fluorescence molecule) 3. perfect corrected spherical aberration A different object interaction changes the pre-factor: mirror: S confocal D FWHM n 0.45 n NA 3 D.47 D ph airy numerical point reflector: D FWHM n 0.6 n NA 3 D.47 D ph airy 3 3 Wilson at l peak D pinhole /D airy This causes errors of the first factor in the range of 30% Incorporation of spherical aberration: t.b.d., PCA analysis as approach seems to be promising

30 Variable Pinhole Diaphragm Real shape of pinhole: quadratic or circular signal depends on shape Variable pinhole easy to realy quadratic Typical size: D pinhole = D airy y y y Kreis x Quadrat senkrecht x Quadrat 45 gekippt x Easy to fabricate: approx. 30 mm very small numerical aperture in pinhole objective lens helps moving part D D

31 Confocal Signal with Spherical Aberration Spherical aberration: - PSF broadened - PSF no longer symmetrical around image plane during defocus Confocal signal: - loss in contrast - decreased resolution S(u) spherical aberration relative pinhole size: a = 3 a = a = a = u

32 Confocal Signal with Spherical Aberration Spherical aberration with Zernike coefficient W 40 Integration over finite size pinhole with radius a Asymmetry and width depends on a and W 40 Large pinhole: - depth discrimination decreased - fine structure disappears Sphärische Aberration mit Koeffizient W 40 S(z) Pinhole : a = D Airy / 4 W 40 = 0.0 W 40 = 0. W 40 = 0. W 40 = 0.5 W 40 = S(z) Pinhole : a = D Airy / W 40 = 0.0 W 40 = 0. W 40 = 0. W 40 = 0.5 W 40 = z z S(z) Pinhole : a = D Airy W 40 = 0.0 W 40 = 0. W 40 = 0. W 40 = 0.5 W 40 = z

33 Confocal Signal with Spherical Aberration. c 9 = 0.3 re-normalized c9 =. c 9 =.0 re-normalized S(z,a) a/aairy z c 9 =.0 not normalized

34 Signal Errors due to Spherical Aberration In the case of spherical aberration the confocal signal curve S(z) is degraded:. in position measurement error possible criteria: a) centroid b) midpoint of 50% threshold c 9 = c 9 = 0.7 gauss correlation centroid 50% threshold a. in width loss of accuracy possible criteria: a) nd moment b) 50% threshold (FWHM) c 9 = c 9 = % threshold nd moment a

35 Numerical Results Width of the confocal signal in the spectral domain width 0 8 Fwhm 6 4 nd moment Location of the sample z position position D ph [mm] centroid peak D ph [mm]

36 Confocal Distance Sensor Principle of the confocal distance sensor Illumination beam splitter pinhole detector pinhole objective in focus out of focus objective lens S [a.u.] 0.8 a) ds/dz [a.u.] linearity b) D PH = 0.3 D airy D PH =.0 D airy D PH =.8 D airy z [R u ] z [R u ]

37 Confocal Depth Measuring System The system is described by - Zernike c 4, gives the defocus - Zernikes c 9, c 6,... describe the correction of the system The point spread function is calculated with the help of the Zernike coefficients as h psf ( a, z) ra A o e p i c4z4 ( x, y) c9z9 ( x, y) c6z6 ( x, y)... dx dy Approximations of the model:. psf considered as shift invariant. perfectly incoherent fiber source 3. perfectly homogeneous fiber source 4. in reality, the sample is not a perfect mirror but introduces scattering contributions I(x) total profile finite size PSF finite object size pinhole diameter

38 Change Over Measuring Range Polychromatic illumination Airy diameter changes of measuring range Measuring accuracy varies over range Larger relative influence for small pinholes z/z x D ph = 0. D airy D ph =.0 D airy D ph = 5.0 D airy [mm]

39 Surface Smoothness Smooth / polished surface: - only reflected light is measured - maximum acceptable slope of the sampe surface max arcsin( NA) NA maximum angle max max sample max max Diffuse surface: - larger slopes can be measured - quantitatively the BRDF determines the limit sample

40 Ghost Foci If parts of a polished sample are spherical in shape: - ghost foci with high intensity - wrong interpretation of the depth out of the signal wrong distance right distance sample

41 4 Measurement of Focal Length by Confocal Setup Setup with fiber and plane mirror for autocollimation Change of distance between test lens and fiber Analysis of the recoupled power into the fiber (confocal) gives the focal point lens under test plane mirror recoupled energy autocollimation case z lens position z

42 Confocal Images Depth resolved images Ref.: M. Kempe

43 Confocal Microscopy 3-D volume imaging with reconstruction in confocal Laser scan microscope a) Classical microscopy depth of object : 300 mm b) Confocal microscopy with 3-D reconstruction Ref: M. Kempe

44 Examples Microelectronic circuit Abbrasive paper Smooth paper Ref.: R. Leach

45 Examples Silicon surface with stitching Microlens array

46 Chromatical Confocal Sensor Spectral sensitive sensor white light source Objective lens with large axial chromatical aberration grating pinhole measuring range confocale pinhole focussing objective chromatical objective E detector nm 546 nm 656 nm nm nm nm z [mm] z [mm]

47 Confocal Imaging with Hyper Chromate Wide field 0x0.5 Confocal with chromate at low aperture 0x0.5 Confocal with chromate at high aperture 50x0.9 Ref: R. Semmler

48 Principle Goal:. large chromatical spreading (large CHL) z. large numerical aperture 3. corrected spherochromatism In the case of a large ratio z / f, the numerical aperture shows a considerable change in the measuring interval Design approach:. Achromate with positive flint and negative crown. Achromates cascaded 3. Improved spherochromatism by asphere 4. monochromatic lens with buried surface adapter = 644 nm = 546 nm = 480 nm z

49 Comparison Confocal signal as a function of distance and wavelength Cases:. single lens / gauss-aberration corrected. pinhole size Airy 3. no quadrature of confocal psf z + z z. single lens, D ph = D airy +. corrected, colors inverted +.5 D ph = D airy 3. corrected, D ph = D airy

50 on 3=z 3.0=AN 50 XMZ.telbuod noitarugifnoc g i f n o C A M I ) g e d ( : e c a f r u S fo mm tuoyal :htgnel latot laixa etamorhc repyh XMZ.telbuod noitarugifnoc xmz.telbuod noitarugifnoc noitarreba 7/3/30 :htgnelevaw noitarreba sretemillim lanidutignol etamorhc ledies M XMZ.telbuod :noitarugifnoc tops noitarugifnoc e t a m o r h c fo lla 5 3 on 4 on g i f n o C 3=z 3=z 3.0=AN 3 3.0=AN sretemillim margaid m µ y a R g i f n o C f e i h C : s u i d a R xirtam : :suidar e c n e r e f e R y r i A lipup m µ e r a :shtgnelevaw 4 s t i n U : 5 - r a b repyh e l a c S r e p y H 3 roloc fo laretal U S on 3=z roloc laixa 3.0=AN O T S noitrotsid margaid erutavruc.sretemillim.sretemillim dleif msitamgitsa si elacs.mµ decaps a m o C era etamorhc dirg senil mumixam lacirehps repyh Optical Design Case - NA image = 0.3, NA object = 0. Δz = 3 mm, f = 3 mm z free = 6.3 mm st surface: aspherical

51 5 Specifications lenses with asphere Only spherical lenses Extension in Δz NA=0.3, Δz=3mm z free = 6 mm Δz=3.9mm NA=0.4, Δz=0.4mm z free = 0 mm XMZ.telbuod noitarugifnoc 3 fo on 3=z 3.0=AN mm tuoyal :htgnel latot laixa etamorhc repyh OVERVIEW NA=0.4, Δz=mm z free = 0 mm xmz.4.0=z fo lacirehps noitarugifnoc xmz.serehps X M Z. s e r e h p s noitarugifnoc noitarugifnoc repyh repyh snel fo fo 4---6v f 40 AN eerht r u o f =z tamorhc 3 = z repyh 3.0=AN 3. 0 = A N mm tuoyal mm tuoyal mm tuoyal :htgnel :htgnel :htgnel latot laixa etamorhc latot laixa etamorhc latot laixa etamorhc repyh Optical Design Δz=.5mm NA=0.7, Δz=0.mm z free = 3 mm Δz=0.5mm

52 Confocal Depth Measuring System Fourier optical model: - object/sample to be assumed as a plane mirror - fiber source incoherent, diameter D fib, uniformly radiating - optical system with point spread function h psf - confocal detection by fiber (pinhole) size D fib Incoherent imaging model to get the intensity of at the fiber Calculation of the confocal signal by integration over the pinhole I ima ( a, z) I ( a) h ( z) fib ra psf S ( a, z) I ( a, z) dx dy conf ima hyperchromatic system sample surface fiber D recoupling into fiber confocal selection focal plane for selected z

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Confocal sensors 08-0-08 Herbert Gross Winter term 07 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 9.0. Introduction Introduction, optical

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 15: Confocal sensors 018-0-08 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 7: Wavefront sensors 2016-11-29 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 10: Holography 2017-12-21 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 1: Phase retrieval 018-01-18 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction, optical

More information

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term Microscopy Lecture 2: Optical System of the Microscopy II 212-1-22 Herbert Gross Winter term 212 www.iap.uni-jena.de Preliminary time schedule 2 No Date Main subject Detailed topics Lecturer 1 15.1. Optical

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Volume 5: Metrology of Optical Components and Systems von Herbert Gross, Bernd Dörband, Henriette Müller 1. Auflage Handbook of Optical Systems Gross / Dörband / Müller schnell

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 13: Metrology of aspheres and freeforms 017-01-17 Herbert Gross Winter term 016 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Aberrations I 214-11-4 Herbert Gross Winter term 214 www.iap.uni-jena.de 2 Preliminary Schedule 1 21.1. Basics Paraxial optics, imaging, Zemax handling 2 28.1. Optical systems

More information

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch>

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch> Optical Information Processing Adolf W. Lohmann Edited by Stefan Sinzinger Ch> Universitätsverlag Ilmenau 2006 Contents Preface to the 2006 edition 13 Preface to the third edition 15 Preface volume 1 17

More information

Optical Design with Zemax for PhD

Optical Design with Zemax for PhD Optical Design with Zemax for PhD Lecture 7: Optimization II 26--2 Herbert Gross Winter term 25 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed content.. Introduction 2 2.2. Basic Zemax

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 3: Sensors 2016-11-01 Herbert ross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction, optical

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture : Correction II 3--9 Herbert Gross Summer term www.iap.uni-jena.de Correction II Preliminary time schedule 6.. Introduction Introduction, Zemax interface, menues, file

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2018-05-17 Herbert Gross Summer term 2018 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 2018 1 12.04. Basics 2 19.04. Properties of optical systems

More information

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude. Deriving the Lens Transmittance Function Thin lens transmission is given by a phase with unit magnitude. t(x, y) = exp[ jk o ]exp[ jk(n 1) (x, y) ] Find the thickness function for left half of the lens

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term Lens Design II Lecture 2: Structural modifications 26--26 Herbert Gross Winter term 26 www.iap.uni-jena.de 2 Preliminary Schedule 9.. Aberrations and optimization Repetition 2 26.. Structural modifications

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Basics of INTERFEROMETRY

Basics of INTERFEROMETRY Basics of INTERFEROMETRY P Hariharan CSIRO Division of Applied Sydney, Australia Physics ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Boston San Diego New York London Sydney Tokyo Toronto

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 26--2 Herbert Gross Winter term 25 www.iap.uni-ena.de Preliminary Schedule 2 2.. Aberrations and optimization Repetition 2 27.. Structural modifications Zero operands,

More information

Sensitive measurement of partial coherence using a pinhole array

Sensitive measurement of partial coherence using a pinhole array 1.3 Sensitive measurement of partial coherence using a pinhole array Paul Petruck 1, Rainer Riesenberg 1, Richard Kowarschik 2 1 Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07747 Jena,

More information

Optical Design with Zemax for PhD - Basics

Optical Design with Zemax for PhD - Basics Optical Design with Zemax for PhD - Basics Lecture 3: Properties of optical sstems II 2013-05-30 Herbert Gross Summer term 2013 www.iap.uni-jena.de 2 Preliminar Schedule No Date Subject Detailed content

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 13: Metrology of aspheres and freeforms 018-01-5 Herbert Gross Winter term 017 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction

More information

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation J. C. Wyant Fall, 2012 Optics 513 - Optical Testing and Testing Instrumentation Introduction 1. Measurement of Paraxial Properties of Optical Systems 1.1 Thin Lenses 1.1.1 Measurements Based on Image Equation

More information

Design and Correction of optical Systems

Design and Correction of optical Systems 1 Design and Correction of optical Systems Part 11: Performance criteria Summer term 01 Herbert Gross Oeriew 1. Basics 01-04-18. Materials 01-04-5 3. Components 01-05-0 4. Paraial optics 01-05-09 5. Properties

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy. (Image: T. Wittman, Scripps) Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

More information

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009 Synopsis of METHOD AND APPARATUS FOR IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES by David R. Williams and Junzhong Liang from the US Patent Number: 5,777,719 issued in July 7, 1998 Ron Liu OPTI521-Introductory

More information

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]:

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]: Resolution [from the New Merriam-Webster Dictionary, 1989 ed.]: resolve v : 1 to break up into constituent parts: ANALYZE; 2 to find an answer to : SOLVE; 3 DETERMINE, DECIDE; 4 to make or pass a formal

More information

Solution of Exercises Lecture Optical design with Zemax Part 6

Solution of Exercises Lecture Optical design with Zemax Part 6 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax Part 6 6 Illumination

More information

Dynamic beam shaping with programmable diffractive optics

Dynamic beam shaping with programmable diffractive optics Dynamic beam shaping with programmable diffractive optics Bosanta R. Boruah Dept. of Physics, GU Page 1 Outline of the talk Introduction Holography Programmable diffractive optics Laser scanning confocal

More information

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Computer Aided Design Several CAD tools use Ray Tracing (see

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Abstract: Speckle interferometry (SI) has become a complete technique over the past couple of years and is widely used in many branches of

More information

Lens Design I Seminar 5

Lens Design I Seminar 5 Y. Sekman, X. Lu, H. Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Lens Design I Seminar 5 Exercise 5-1: PSF scaling (Homework) To check the Airy

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 5-6- Herbert Gross Summer term 5 www.iap.uni-jena.de Preliminary Schedule 3.. Basics.. Properties of optical systrems I 3 7.5..5. Properties of optical systrems

More information

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term Lens Design I Lecture : Optimization II 8-6- Herbert Gross Summer term 8 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 8.4. Basics 9.4. Properties of optical systems I 3 6.4. Properties of optical

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Sstems Part 5: Properties of Optical Sstems Summer term 2012 Herbert Gross Overview 2 1. Basics 2012-04-18 2. Materials 2012-04-25 3. Components 2012-05-02 4. Paraxial

More information

Shaping light in microscopy:

Shaping light in microscopy: Shaping light in microscopy: Adaptive optical methods and nonconventional beam shapes for enhanced imaging Martí Duocastella planet detector detector sample sample Aberrated wavefront Beamsplitter Adaptive

More information

Use of Computer Generated Holograms for Testing Aspheric Optics

Use of Computer Generated Holograms for Testing Aspheric Optics Use of Computer Generated Holograms for Testing Aspheric Optics James H. Burge and James C. Wyant Optical Sciences Center, University of Arizona, Tucson, AZ 85721 http://www.optics.arizona.edu/jcwyant,

More information

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable. 1 1.1 Singlet Optimize a single lens with the data λ = 546.07 nm, object in the distance 100 mm from the lens on axis only, focal length f = 45 mm and numerical aperture NA = 0.07 in the object space.

More information

OCT Spectrometer Design Understanding roll-off to achieve the clearest images

OCT Spectrometer Design Understanding roll-off to achieve the clearest images OCT Spectrometer Design Understanding roll-off to achieve the clearest images Building a high-performance spectrometer for OCT imaging requires a deep understanding of the finer points of both OCT theory

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA

Optical Design of. Microscopes. George H. Seward. Tutorial Texts in Optical Engineering Volume TT88. SPIE PRESS Bellingham, Washington USA Optical Design of Microscopes George H. Seward Tutorial Texts in Optical Engineering Volume TT88 SPIE PRESS Bellingham, Washington USA Preface xiii Chapter 1 Optical Design Concepts /1 1.1 A Value Proposition

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 7: Waveront sensors 2017-11-30 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction,

More information

Exercise 1 - Lens bending

Exercise 1 - Lens bending Exercise 1 - Lens bending Most of the aberrations change with the bending of a lens. This is demonstrated in this exercise. a) Establish a lens with focal length f = 100 mm made of BK7 with thickness 5

More information

Today. next week. MIT 2.71/ /04/09 wk13-a- 1

Today. next week. MIT 2.71/ /04/09 wk13-a- 1 Today Spatially coherent and incoherent imaging with a single lens re-derivation of the single-lens imaging condition ATF/OTF/PSF and the Numerical Aperture resolution in optical systems pupil engineering

More information

Study of self-interference incoherent digital holography for the application of retinal imaging

Study of self-interference incoherent digital holography for the application of retinal imaging Study of self-interference incoherent digital holography for the application of retinal imaging Jisoo Hong and Myung K. Kim Department of Physics, University of South Florida, Tampa, FL, US 33620 ABSTRACT

More information

Wavefront Sensing Under Unique Lighting Conditions

Wavefront Sensing Under Unique Lighting Conditions Wavefront Sensing Under Unique Lighting Conditions Shack-Hartmann wavefront sensors prove critical in detecting light propagation properties of noncoherent light sources. BY JOHANNES PFUND, RALF DORN and

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term Lens Design I Lecture 5: Advanced handling I 2015-05-11 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. Properties

More information

Parallel Mode Confocal System for Wafer Bump Inspection

Parallel Mode Confocal System for Wafer Bump Inspection Parallel Mode Confocal System for Wafer Bump Inspection ECEN5616 Class Project 1 Gao Wenliang wen-liang_gao@agilent.com 1. Introduction In this paper, A parallel-mode High-speed Line-scanning confocal

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

Reflecting optical system to increase signal intensity. in confocal microscopy

Reflecting optical system to increase signal intensity. in confocal microscopy Reflecting optical system to increase signal intensity in confocal microscopy DongKyun Kang *, JungWoo Seo, DaeGab Gweon Nano Opto Mechatronics Laboratory, Dept. of Mechanical Engineering, Korea Advanced

More information

Tutorial Zemax 3 Aberrations

Tutorial Zemax 3 Aberrations Tutorial Zemax 3 Aberrations 2012-08-14 3 Aberrations 1 3.1 Exercise 3-1: Strehl ratio and geometrical vs Psf spot size... 1 3.2 Exercise 3-2: Performance of an achromate... 3 3.3 Exercise 3-3: Anamorphotic

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 4: Optimization III 2013-11-04 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8

Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 2013-06-17 Prof. Herbert Gross Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str 15 07745 Jena Solution of Exercises Lecture Optical design with Zemax for PhD Part 8 8.1

More information

Basics of INTERFEROMETRY

Basics of INTERFEROMETRY Basics of INTERFEROMETRY Second Edition P. HARIHARAN School ofphysics, Sydney, Australia University of Sydney CPi AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Study of Graded Index and Truncated Apertures Using Speckle Images

Study of Graded Index and Truncated Apertures Using Speckle Images Study of Graded Index and Truncated Apertures Using Speckle Images A. M. Hamed Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566 Egypt amhamed73@hotmail.com Abstract- In this

More information

Testing Aspherics Using Two-Wavelength Holography

Testing Aspherics Using Two-Wavelength Holography Reprinted from APPLIED OPTICS. Vol. 10, page 2113, September 1971 Copyright 1971 by the Optical Society of America and reprinted by permission of the copyright owner Testing Aspherics Using Two-Wavelength

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Testing Aspheric Lenses: New Approaches

Testing Aspheric Lenses: New Approaches Nasrin Ghanbari OPTI 521 - Synopsis of a published Paper November 5, 2012 Testing Aspheric Lenses: New Approaches by W. Osten, B. D orband, E. Garbusi, Ch. Pruss, and L. Seifert Published in 2010 Introduction

More information

Modulation Transfer Function

Modulation Transfer Function Modulation Transfer Function The Modulation Transfer Function (MTF) is a useful tool in system evaluation. t describes if, and how well, different spatial frequencies are transferred from object to image.

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

OPTICAL PRINCIPLES OF MICROSCOPY. Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University

OPTICAL PRINCIPLES OF MICROSCOPY. Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University OPTICAL PRINCIPLES OF MICROSCOPY Interuniversity Course 28 December 2003 Aryeh M. Weiss Bar Ilan University FOREWORD This slide set was originally presented at the ISM Workshop on Theoretical and Experimental

More information

In-line digital holographic interferometry

In-line digital holographic interferometry In-line digital holographic interferometry Giancarlo Pedrini, Philipp Fröning, Henrik Fessler, and Hans J. Tiziani An optical system based on in-line digital holography for the evaluation of deformations

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI)

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI) Liang-Chia Chen 1#, Chao-Nan Chen 1 and Yi-Wei Chang 1 1. Institute of Automation Technology,

More information

Design of a digital holographic interferometer for the. ZaP Flow Z-Pinch

Design of a digital holographic interferometer for the. ZaP Flow Z-Pinch Design of a digital holographic interferometer for the M. P. Ross, U. Shumlak, R. P. Golingo, B. A. Nelson, S. D. Knecht, M. C. Hughes, R. J. Oberto University of Washington, Seattle, USA Abstract The

More information

Tutorial Zemax 8: Correction II

Tutorial Zemax 8: Correction II Tutorial Zemax 8: Correction II 2012-10-11 8 Correction II 1 8.1 High-NA Collimator... 1 8.2 Zoom-System... 6 8.3 New Achromate and wide field system... 11 8 Correction II 8.1 High-NA Collimator An achromatic

More information

Confocal principle for macro- and microscopic surface and defect analysis

Confocal principle for macro- and microscopic surface and defect analysis Confocal principle for macro- and microscopic surface and defect analysis Hans J. Tiziani, FELLOW SPIE Michael Wegner Daniela Steudle Institut für Technische Optik Pfaffenwaldring 9 70569 Stuttgart, Germany

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions Difrotec Product & Services Ultra high accuracy interferometry & custom optical solutions Content 1. Overview 2. Interferometer D7 3. Benefits 4. Measurements 5. Specifications 6. Applications 7. Cases

More information

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA Gerhard K. Ackermann and Jurgen Eichler Holography A Practical Approach BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XVII Part 1 Fundamentals of Holography 1 1 Introduction

More information

Practical Flatness Tech Note

Practical Flatness Tech Note Practical Flatness Tech Note Understanding Laser Dichroic Performance BrightLine laser dichroic beamsplitters set a new standard for super-resolution microscopy with λ/10 flatness per inch, P-V. We ll

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Medical Photonics Lecture 1.2 Optical Engineering

Medical Photonics Lecture 1.2 Optical Engineering Medical Photonics Lecture 1.2 Optical Engineering Lecture 10: Instruments III 2018-01-18 Michael Kempe Winter term 2017 www.iap.uni-jena.de 2 Contents No Subject Ref Detailed Content 1 Introduction Gross

More information

Exercises Advanced Optical Design Part 5 Solutions

Exercises Advanced Optical Design Part 5 Solutions 2014-12-09 Manuel Tessmer M.Tessmer@uni-jena.dee Minyi Zhong minyi.zhong@uni-jena.de Herbert Gross herbert.gross@uni-jena.de Friedrich Schiller University Jena Institute of Applied Physics Albert-Einstein-Str.

More information

CCAM s Selection of. Zeiss Microscope Objectives

CCAM s Selection of. Zeiss Microscope Objectives CCAM s Selection of Zeiss Microscope Objectives 1. Magnification Image scale 2. Resolution The minimum separation distance between two points that are clearly resolved. The resolution of an objective is

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS IMPORTANT PARAMETERS Pixel dwell time Zoom and pixel number PIXEL DWELL TIME How much time signal is collected at every pixel Very small values,

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Interference [Hecht Ch. 9]

Interference [Hecht Ch. 9] Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 7: Distortion and coma 2014-12-11 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental

More information

BASICS OF CONFOCAL IMAGING (PART I)

BASICS OF CONFOCAL IMAGING (PART I) BASICS OF CONFOCAL IMAGING (PART I) INTERNAL COURSE 2012 LIGHT MICROSCOPY Lateral resolution Transmission Fluorescence d min 1.22 NA obj NA cond 0 0 rairy 0.61 NAobj Ernst Abbe Lord Rayleigh Depth of field

More information

Reflectors vs. Refractors

Reflectors vs. Refractors 1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

More information