Single-Stage MOSFET Amplifiers

Size: px
Start display at page:

Download "Single-Stage MOSFET Amplifiers"

Transcription

1 ECE 25 IX SingleStage MOSF ET A mplifiers Lab IX SingleStage MOSFET Amplifiers In this lab we will investigate the gain properties of a sourcefollower and a commonsource amplifier. IX.1 PreLab Calculations All calculations go in your notebook. No writing equations on a piece of paper and then copying them down in your notebook. Create tables for the two amplifiers discussed in this lab. Your prelab consists of the data contained in the tables and the calculations that support those values. IX.1.A CommonSource Amplifier We will use the current source of the previous lab to bias the commonsource amplifier below: Rc 7.5k C6 1U ZVN336A.1u 1u MPF12 CE 47u.1u 1u Obtain a data sheet for the ZVN336A transistor. Make the following calculations using the maximum and minimum current for the current source, resistor tolerances, VTmin =.8 volts, VTmax = 2.4 volts, and Kmin= 15 ma/v 2 and Kmax= 3 ma/v 2 o not use PSpice to make these calculations. Maximum and minimum values of the bias drain voltage (V). Maximum and minimum values of the bias source voltage (VS). Maximum and minimum values of the gain VO/VIN if = 1 MΩ. Maximum and minimum values of the gain VO/VIN if = 7.5 kω. ECE25 Lab IX Page 1 of 7

2 Create a table for prelab and laboratory results and record these values in the table. You may be chasing your tail for a long time while trying to figure out how to choose between using VTmin,VTmax, Kmin, and Kmax. If you remember, we have the following equations for the commonsource amplifier: 2 I = K V V ( ) gm = 2K( VGS VT ) vo = gm( RC ) vin The difficult equation to calculate with minimum and maximum values is the transconductance equation because K, VGS, and VT all have maximum and minimum values, and we are not sure how to plug them in to get maximum and minimum values for gm. We can avoid this problem by solving the top equation for VGS VT and then substituting the result into the center equation: I = K( V V ) 2 there fore ( V V ) Substituting this into our transconductance equation gives GS T GS T GS T = I gm = 2 K( VGS VT ) = 2K K which can be rewritten as gm = 2 K I In this form it is easy to calculate max and min values of gm because, for our circuit, I is determined by the current source and K is determined by the MOSFET. Even though K has max and min values, and I has max and min values, they are both completely independent of one another and can be easily chosen so maximize or minimize gm. IX.1.B SourceFollower Amplifier We will use the current source of the previous lab to bias the sourcefollower amplifier below: I K ECE25 Lab IX Page 2 of 7

3 .1u 1u ZVN336A Cs 47u MPF12.1u 1u Make the following calculations using the maximum and minimum current for the current source, resistor tolerances, VTmin =.8 volts, VTmax = 2.4 volts, and Kmin= 15 ma/v 2 and Kmax= 3 ma/v 2 o not use PSpice to make these calculations. Maximum and minimum values of the bias drain voltage (V). Maximum and minimum values of the bias source voltage (VS). Maximum and minimum values of the gain VO/VIN if = 1 MΩ. Maximum and minimum values of the gain VO/VIN if = 7.5 kω. Maximum and minimum values of the gain VO/VIN if = 1 kω. Create a table for prelab and laboratory calculations, and record these values in the table. IX.2 Laboratory Procedure CommonSource Amplifier IX.2.A Parts Measurement Measure the values of all of your resistors. Record the values in a table and compare them with their ±5% limits. IX.2.B Bias Verification The first thing we must do is check that the bias is correct. Wire the circuit below and verify that V, VS, and I are within the range you calculated in the Prelab. Enter the values in your table. ECE25 Lab IX Page 3 of 7

4 Rc 7.5k.1u 1u ZVN336A MPF12.1u 1u If your bias is correct, you can proceed to the next section. If the bias is not correct, you must have made a wiring error. o not continue until the bias is correct. IX.2.C Amplifier Gain Measurement If your bias is correct you can measure the gain characteristics of the amplifier. Wire the circuit below. Note that we have added a 1 to 1 voltage divider. This divider is not part of the amplifier. Since the gain of this amplifier is large, we need a small input so we do not saturate the amplifier. Measure the values of R4 and R5 and make sure that they are within ± 5% of their stated value. ECE25 Lab IX Page 4 of 7

5 Vsig 7.5k C6 1U ZVN336A Rc R4 1 R5 1.1u 1u MPF12 CE 47u.1u 1u Note that Vsig and Vo will be large signals and easy to measure with the oscilloscope. VIN will be a small signal and hard to measure, but we do not need to measure it because we know the divider ratio of R4 and R5, and we are measuring Vsig. Measure Vo and Vsig using the scope, and then calculate the gain as: V o R5 R4 = Vo Vo 1 V in R5 Vsig Vsig Measure the gain for = 1 MΩ and = 7.5 kω and compare the values to your calculated values. Record the values in your table. When you measure the gain, make sure that the peaktopeak value of Vo is less that 1 V. Record a scope trace of the waveforms you use to measure the gain. IX.2. Amplifier Maximum Voltage Swing Start with a small value of Vsig so that the output is an undistorted sine wave. Slowly increase the input until either the top or the bottom of the sine wave clips. Reduce the input slightly so that the output waveform is not clipped. Record the scope waveform and then measure the peaktopeak swing of the output. Measure the maximum swing with no load on the output (remove C6 and and measure the output at the drain of ) IX.3 Laboratory Procedure SourceFollower Amplifier IX.3.A Parts Measurement Measure the values of all of your resistors. Record the values in a table and compare them with their ±5% limits. ECE25 Lab IX Page 5 of 7

6 IX.3.B Bias Verification The first thing we must do is check that the bias is correct. Wire the circuit below and verify that V, VS, and the current source drain current are within the range you calculated in the Prelab. Enter the values in your table..1u 1u ZVN336A MPF12.1u 1u If your bias is correct, you can proceed to the next section. If the bias is not correct, you must have made a wiring error. o not continue until the bias is correct. IX.3.C Amplifier Gain Measurement If your bias is correct, you can measure the gain characteristics of the amplifier. Wire the circuit below. Since the gain of this amplifier is close to 1, we do not need to use a voltage divider to reduce the input signal. ECE25 Lab IX Page 6 of 7

7 .1u 1u ZVN336A Cs 47u MPF12.1u 1u Measure the gain for = 1 MΩ, 7.5 kω, and 1 kω, and compare the values to your calculated values. Record the values in your table. When you measure the gain, make sure that the peaktopeak value of Vo is less that 1 V. Record a scope trace of the waveforms you use to measure the gain. IX.3. Amplifier Maximum Voltage Swing Start with a small value of so that the output is an undistorted sine wave. Slowly increase the input until either the top or the bottom of the sine wave clips. Reduce the input slightly so that the output waveform is not clipped. Record the scope waveform and then measure the peaktopeak swing of the output. Measure the maximum swing with no load on the output (remove CS and and measure the output at the source of ). ECE25 Lab IX Page 7 of 7

Single-Stage MOSFET Amplifiers

Single-Stage MOSFET Amplifiers ECE 25 8. SingleStage MOSFET Amplifiers Lab 8 SingleStage MOSFET Amplifiers n this lab we will investigate the gain properties of a sourcefollower and a commonsource amplifier. 8.A. PreLab Calculations

More information

Single-Stage Amplifiers

Single-Stage Amplifiers E 25 VIII SingleStage A mplifiers Lab 8 SingleStage Amplifiers In this lab we will investigate the gain properties of an emitterfollower and a commonemitter amplifier. VIII.1 PreLab Calculations All calculations

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

Experiment #8: Designing and Measuring a Common-Collector Amplifier

Experiment #8: Designing and Measuring a Common-Collector Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #8: Designing and Measuring a Common-Collector Amplifier

More information

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

Experiment #7: Designing and Measuring a Common-Emitter Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #7: Designing and Measuring a Common-Emitter Amplifier

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 MOSFET AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

Operation of a Differential Amplifier

Operation of a Differential Amplifier ECE 35 IV. Operation of a Differential Amplifier Lab IV Operation of a Differential Amplifier In this lab we will construct and test the differential amplifier shown in Figure IV. IV.A. Deices You must

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

ECE315 / ECE515 Lecture 9 Date:

ECE315 / ECE515 Lecture 9 Date: Lecture 9 Date: 03.09.2015 Biasing in MOS Amplifier Circuits Biasing using Single Power Supply The general form of a single-supply MOSFET amplifier biasing circuit is: We typically attempt to satisfy three

More information

Operational Amplifier Circuits

Operational Amplifier Circuits ECE VIII. Basic 5 Operational Amplifier Circuits Lab 8 In this lab we will verify the operation of inverting and noninverting amplifiers constructed using Operational Amplifiers. We will also observe the

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2005 Lab #2: MOSFET Inverting Amplifiers & FirstOrder Circuits Introduction

More information

The MOSFET can be easily damaged by static electricity, so careful handling is important.

The MOSFET can be easily damaged by static electricity, so careful handling is important. ECE 3274 MOSFET CS Amplifier Project Richard Cooper 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of the MOSFET common source (CS) amplifiers. 2. Components

More information

ELEC 2210 EXPERIMENT 8 MOSFETs

ELEC 2210 EXPERIMENT 8 MOSFETs ELEC 10 EXPERIMENT 8 MOSFETs Objectives: The experiments in this laboratory exercise will provide an introduction to the MOSFET. You will use the Bit Bucket breadboarding system to build and test several

More information

Figure 1: JFET common-source amplifier. A v = V ds V gs

Figure 1: JFET common-source amplifier. A v = V ds V gs Chapter 7: FET Amplifiers Switching and Circuits The Common-Source Amplifier In a common-source (CS) amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

Chapter 4 Single-stage MOS amplifiers

Chapter 4 Single-stage MOS amplifiers Chapter 4 Single-stage MOS amplifiers ELEC-H402/CH4: Single-stage MOS amplifiers 1 Single-stage MOS amplifiers NMOS as an amplifier: example of common-source circuit NMOS amplifier example Introduction

More information

EE351 Laboratory Exercise 4 Field Effect Transistors

EE351 Laboratory Exercise 4 Field Effect Transistors Oct. 28, 2007, rev. July 26, 2009 Introduction The purpose of this laboratory exercise is for students to gain experience making measurements on Junction (JFET) to confirm mathematical models and to gain

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Name: Date: Score: / (75)

Name: Date: Score: / (75) Name: Date: Score: / (75) This lab MUST be done in your normal lab time NO LATE LABS Bring Textbook to Lab. You don t need to use your lab notebook, just fill in the blanks, you ll be graded when you re

More information

MOSFET Amplifier Design

MOSFET Amplifier Design MOSFET Amplifier Design Introduction In this lab, you will design a basic 2-stage amplifier using the same 4007 chip as in lab 2. As a reminder, the PSpice model parameters are: NMOS: LEVEL=1, VTO=1.4,

More information

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER Hand Analysis P1. Determine the DC bias for the BJT Common Emitter Amplifier circuit of Figure 61 (in this lab) including the voltages V B, V C and V

More information

INTRODUCTION TO ELECTRONICS EHB 222E

INTRODUCTION TO ELECTRONICS EHB 222E INTRODUCTION TO ELECTRONICS EHB 222E MOS Field Effect Transistors (MOSFETS II) MOSFETS 1/ INTRODUCTION TO ELECTRONICS 1 MOSFETS Amplifiers Cut off when v GS < V t v DS decreases starting point A, once

More information

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

ECE315 / ECE515 Lecture 7 Date:

ECE315 / ECE515 Lecture 7 Date: Lecture 7 ate: 01.09.2016 CG Amplifier Examples Biasing in MOS Amplifier Circuits Common Gate (CG) Amplifier CG Amplifier- nput is applied at the Source and the output is sensed at the rain. The Gate terminal

More information

Lecture 27: MOSFET Circuits at DC.

Lecture 27: MOSFET Circuits at DC. Whites, EE 30 Lecture 7 Page 1 of 8 Lecture 7: MOSFET Circuits at C. We will illustrate the C analysis of MOSFET circuits through a number of examples in this lecture. Example N7.1 (similar to text Example

More information

Building Blocks of Integrated-Circuit Amplifiers

Building Blocks of Integrated-Circuit Amplifiers Building Blocks of ntegrated-circuit Amplifiers 1 The Basic Gain Cell CS and CE Amplifiers with Current Source Loads Current-source- or active-loaded CS amplifier Rin A o R A o g r r o g r 0 m o m o Current-source-

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 5 : The Class A Common-Emitter Power Amplifier Name Matrix No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

Lab 2: Common Emitter Design: Part 2

Lab 2: Common Emitter Design: Part 2 Lab 2: Common Emitter Design: Part 2 ELE 344 University of Rhode Island, Kingston, RI 02881-0805, U.S.A. 1 Linearity in High Gain Amplifiers The common emitter amplifier, shown in figure 1, will provide

More information

Lab 6: Instrumentation Amplifier

Lab 6: Instrumentation Amplifier Lab 6: Instrumentation Amplifier INTRODUCTION: A fundamental building block for electrical measurements of biological signals is an instrumentation amplifier. In this lab, you will explore the operation

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

In a cascade configuration, the overall voltage and current gains are given by:

In a cascade configuration, the overall voltage and current gains are given by: ECE 3274 Two-Stage Amplifier Project 1. Objective The objective of this lab is to design and build a direct coupled two-stage amplifier, including a common-source gain stage and a common-collector buffer

More information

ECE315 / ECE515 Lecture 5 Date:

ECE315 / ECE515 Lecture 5 Date: Lecture 5 ate: 20.08.2015 MOSFET Small Signal Models, and Analysis Common Source Amplifier Introduction MOSFET Small Signal Model To determine the small-signal performance of a given MOSFET amplifier circuit,

More information

Laboratory #9 MOSFET Biasing and Current Mirror

Laboratory #9 MOSFET Biasing and Current Mirror Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output

More information

6.002 Circuits and Electronics Final Exam Practice Set 1

6.002 Circuits and Electronics Final Exam Practice Set 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.002 Circuits and Electronics Set 1 Problem 1 Figure 1 shows a simplified small-signal model of a certain

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

ECE 3274 Common-Emitter Amplifier Project

ECE 3274 Common-Emitter Amplifier Project ECE 3274 Common-Emitter Amplifier Project 1. Objective The objective of this lab is to design and build three variations of the common- emitter amplifier. 2. Components Qty Device 1 2N2222 BJT Transistor

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

ITT Technical Institute. ET215 Devices 1. Chapter

ITT Technical Institute. ET215 Devices 1. Chapter ITT Technical Institute ET215 Devices 1 Chapter 4.6 4.7 Chapter 4 Section 4.6 FET Linear Amplifiers Transconductance of FETs The output drain current is controlled by the input signal voltage. As we earlier

More information

Lab Project EE348L. Spring 2005

Lab Project EE348L. Spring 2005 Lab Project EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 7 EE348L, Spring 2005 1 Lab Project 1.1 Introduction Based on your understanding of band pass filters and single transistor

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

The Field Effect Transistor

The Field Effect Transistor FET, OPAmps I. p. 1 Field Effect Transistors and Op Amps I The Field Effect Transistor This lab begins with some experiments on a junction field effect transistor (JFET), type 2N5458, and then continues

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

When you have completed this exercise, you will be able to determine ac operating characteristics of a

When you have completed this exercise, you will be able to determine ac operating characteristics of a When you have completed this exercise, you will be able to determine ac operating characteristics of a multimeter and an oscilloscope. A sine wave generator connected between the transistor base and ground

More information

Lab Experiment #2 Differential Amplifiers. Group Members

Lab Experiment #2 Differential Amplifiers. Group Members Lab Experiment #2 Differential Amplifiers Group Members Student 1 Student 2 Student 3 Student Name Surname First Name Student ID # Pre-Lab Mark (out of 30) Lab Demo and performance (out of 70) Total Lab

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007 assachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 2: OSFET Inverting Amplifiers & FirstOrder Circuits Handout S07034

More information

Lab 6: MOSFET AMPLIFIER

Lab 6: MOSFET AMPLIFIER Lab 6: MOSFET AMPLIFIER NOTE: This is a "take home" lab. You are expected to do the lab on your own time (still working with your lab partner) and then submit your lab reports. Lab instructors will be

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 BJT AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

ECEN 325 Lab 11: MOSFET Amplifier Configurations

ECEN 325 Lab 11: MOSFET Amplifier Configurations ECEN 325 Lab : MOFET Amplifier Configurations Objective The purpose of this lab is to examine the properties of the MO amplifier configurations. C operating point, voltage gain, and input and output impedances

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open

V o. ECE2280 Homework #1 Fall Use: ignore r o, V BE =0.7, β=100 V I = sin(20t) For DC analysis, assume that the capacitors are open ECE2280 Homework #1 Fall 2011 1. Use: ignore r o, V BE =0.7, β=100 V I = 200.001sin(20t) For DC analysis, assume that the capacitors are open (a) Solve for the DC currents: a. I B b. I E c. I C (b) Solve

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

Page 1 of 7. Power_AmpFal17 11/7/ :14

Page 1 of 7. Power_AmpFal17 11/7/ :14 ECE 3274 Power Amplifier Project (Push Pull) Richard Cooper 1. Objective This project will introduce two common power amplifier topologies, and also illustrate the difference between a Class-B and a Class-AB

More information

ECE 3274 MOSFET CD Amplifier Project

ECE 3274 MOSFET CD Amplifier Project ECE 3274 MOSFET CD Amplifier Project 1. Objective This project will show the biasing, gain, frequency response, and impedance properties of the MOSFET common drain (CD) amplifier. 2. Components Qty Device

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NMOS transistors (or NPN transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NMOS transistors (or NPN transistors). 1 Lab 03: Differential Amplifiers (MOSFET) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Experiment 9- Single Stage Amplifiers with Passive Loads - MOS

Experiment 9- Single Stage Amplifiers with Passive Loads - MOS Experiment 9- Single Stage Amplifiers with Passive oads - MOS D. Yee,.T. Yeung, M. Yang, S.M. Mehta, and R.T. Howe UC Berkeley EE 105 1.0 Objective This is the second part of the single stage amplifier

More information

Digital Electronic Circuits

Digital Electronic Circuits ECE 25 VI Diode Circuits Lab VI Digital Electronic Circuits In this lab we will look at two different kinds of inverters: nmos versus CMOS. VI.1 PreLab 1) Power consideration of inverters: a. Using PSICE,

More information

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system

More information

BJT Differential Amplifiers

BJT Differential Amplifiers Instituto Tecnológico y de Estudios Superiores de Occidente (), OBJECTIVES The general objective of this experiment is to contrast the practical behavior of a real differential pair with its theoretical

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

Common-source Amplifiers

Common-source Amplifiers Lab 1: Common-source Amplifiers Introduction The common-source amplifier is one of the basic amplifiers in CMOS analog circuits. Because of its very high input impedance, relatively high gain, low noise,

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB Experiment # 11 MOSFET Amplifiers testing and designing Equipment:

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

Lecture 19 - Transistor Amplifiers (I) Common-Source Amplifier. April 24, 2001

Lecture 19 - Transistor Amplifiers (I) Common-Source Amplifier. April 24, 2001 6.012 Microelectronic Devices and Circuits Spring 2001 Lecture 191 Lecture 19 Transistor Amplifiers (I) CommonSource Amplifier April 24, 2001 Contents: 1. Amplifier fundamentals 2. Commonsource amplifier

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - MOSFET Amplifier Configurations Overview: The purpose of this experiment is to familiarize

More information

Amplifier Design Using an Active Load

Amplifier Design Using an Active Load THE PENNSYLVANIA STATE UNIVERSITY EE 310 : ELECTRONIC CIRCUIT DESIGN I Amplifier Design Using an Active Load William David Stranburg 1 Introduction: In Part 1 of this lab, we used an NMOS amplifying transistor

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB Experiment # 6 (Part I) Bipolar Junction Transistors Common Emitter

More information

EE 2274 MOSFET BASICS

EE 2274 MOSFET BASICS Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

EECE 2413 Electronics Laboratory

EECE 2413 Electronics Laboratory EECE 2413 Electronics Laboratory Lab #5: MOSFETs and CMOS Goals This lab will introduce you to MOSFETs (metal-oxide-semiconductor field effect transistors). You will build a MOSFET inverter and determine

More information

Lab #8 Boost Converters Week of 31 March 2015

Lab #8 Boost Converters Week of 31 March 2015 ECE214: Electrical Circuits Laboratory Lab #8 Boost Converters Week of 31 March 2015 1 Introduction This is the first in a series of three labs that will culminate in a circuit that will convert a olt

More information

LAB 4 : FET AMPLIFIERS

LAB 4 : FET AMPLIFIERS LEARNING OUTCOME: LAB 4 : FET AMPLIFIERS In this lab, students design and implement single-stage FET amplifiers and explore the frequency response of the real amplifiers. Breadboard and the Analog Discovery

More information

Unit 5 - Operational Amplifiers

Unit 5 - Operational Amplifiers X reviewer2@nptel.iitm.ac.in Courses» Integrated Circuits, MOSFETs, OP-Amps and their Unit 5 - Amplifiers Announcements Course Ask a Question Progress Mentor Course outline Introduction to IC Technology

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier 3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

More information

Lab 2 Operational Amplifier

Lab 2 Operational Amplifier Lab 2 Operational Amplifier Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Note: The Pre-Lab section must be completed prior to the lab session.

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information