ECE 6323 Ridge Waveguide Laser homework

Size: px
Start display at page:

Download "ECE 6323 Ridge Waveguide Laser homework"

Transcription

1 ECE 633 Ridge Waveguide Laser homework Introduction This is a slide from a lecture we will study later on. It is about diode lasers. Although we haven t studied diode lasers, there is one aspect about them that we are studying right now: planar waveguide. Hence, the objectives of this HW is: 1- Reinforce your understanding of waveguide - Apply to a specific problem: semiconductor lasers so that you will get an early introduction to diode lasers that will help later on. Killing birds with one stone, so to speak... The most common structure of diode lasers is edge-emittinge ridge-waveguide laser. It starts out with a crystal wafer that is designed as an optical waveguide. Typical actual structures can be very complex with many layers, but can be optically approximated with a few layers as shown.

2 ECE633 - homework on ridge waveguide laser_s18_p.nb Figure below shows lateral cross section of the wafer structure. which has 3 layers as shown. The top layer is usually coated with thin Au. However, for simplicity and good approximation, we can just neglect the Au contact layer. Next, a ridge is fabricated by etching down two sides of a stripe as shown below: We can calculate the optical mode of such a waveguide. 1. (60 pts) Planar waveguide 1.1 Basic review: Let the wavelength of the laser be 1.55 m, what is its frequency in unit THz 10 1 Hz? Note that the speed of light (in vacuum of course, unless specified otherwise) is m ps 1. Basic planar modes A wafer has structure as indicated below

3 ECE633 - homework on ridge waveguide laser_s18_p.nb 3 top cladding core bottom cladding 3.4 infinite How many TE modes does it have? what are the effective indices of the modes, and show the mode profiles 1.3 Mode propagation Let the laser length be 3 mm. Calculate the travel time of the light of each mode from one end of the laser to the other. 1.4 Show the mode intensity - any observation? 1.5 Discussion We will learn later on that only the core region is designed to be active, which means it is the region that emits laser light (not the claddings). It is most desirable to have a single mode centered in the core. What do you think of the mode structure of this wafer? 1.6 Fix the wafer It is not uncommon that when a wafer is fabricated, errors occur in the control of layer thickness and refractive index. For this wafer, parasitic cladding mode is undesirable and there is one way to fix it. You cannot change the layer materials (because the wafer is already grown) and their refractive indices. But if a layer is exposed, it can be etched. Can you think of a way to salvage this wafer? Show your result after fixing.. (30 pts) Modal dispersion A wafer has structure as indicated below top cladding core bottom cladding 3.4 infinite.1 Calculate and plot modal propagation constant vs. Obtain n eff for the lowest order mode for ={1.4,1.45,1.45,1.475,1.5,1.55,1.55,1.575,1.6}, then calculate and plot modal propagation constant vs. frequency in unit of rad THz.. Fit the modal vs. Fit the above data of vs. with this Taylor s series expansion:

4 4 ECE633 - homework on ridge waveguide laser_s18_p.nb using 0 corresponding to =1.5 m. Then, plot the fit curve on top of the data points obtained in.1.3 Fit the modal vs. - quadratic only Replot the fit of. above, but only for the quadratic component, in other words, subtract both data and fit with its linear component and replot..4 Do you know the meaning of and in.? If you don t, it s OK, leave it blank or say I don t know. 3. (30 pts + 10 bonus) Generic waveguide properties Consider this planar waveguide: top cladding glass 1.45 core variable variable bottom cladding glass (10 pts) Number of modes as a function of core thickness Let wavelength be 1.5 m. Let the core index be.15 (zirconia). Vary the core thickness: d={., 4.,6., 8., 10,1.}. Plot the number of modes as a function of core thickness. What do you conclude? 3. (10 pts) Number of modes as a function of core index Let wavelength be 1.5 m. Let the core thickness be 10 m. Vary the core dielectric (not index) core 3., 5., 7., 9., 11., 13.. Plot the number of modes as a function of core dielectric. What do you conclude (approx)? 3.3 (10 pts) Number of modes as a function of k Let the core index be.45 (diamond). Let the core thickness be 10 m. Vary the wave number: k= {0.4, 0.8, 1., 1.6,.}. Plot the number of modes as a function of k. What do you conclude? 3.4 (10 pts bonus) What is the fundamental underlying mathematical relationship about the number of modes vs. core, d core, and k? (this is quite advanced in terms of Math - It s OK if you don t know). 4. (30 pts) TE vs. TM

5 ECE633 - homework on ridge waveguide laser_s18_p.nb 5 Consider this planar waveguide: top cladding glass 1.45 core diamond bottom cladding glass 1.45 Let =1.5 m. 4.1 (10 pts) TE vs. TM Efield profile Obtain the E y field mode profiles for TE modes and E x field mode profiles for TM modes. What do you observe the most significant difference between TE and TM and explain. 4. (10 pts) TM Hfield profile Obtain the E x field mode profiles and the associated H y field mode profiles for all TM modes. Compare them, what do you observe and explain. 4.3 (10 pts) Confinement Modal confinement is loosely defined as the fraction of light intensity that is located in the core vs the entire intensity of a mode. Mathematically, conf E x core x E x all x Plot the intensity profiles of the highest order mode of TE and TM and compare them. Which polarization, TE or TM do you think in general has higher modal confinement? 5. (50 pts) Pure-single-mode and multi-mode travel Consider this planar waveguide, let =1.5 m. top cladding glass 1.45 core diamond bottom cladding glass 1.45 For mode m, the E field can be written as: E m x, z F m x m z t Its intensity profile as function of travel distance z is roughly: P m x, z E m x, z. E m x, z F m x which is constant vs. z. In other words, it doesn t matter where we are along the travel direction, the light intensity profile is the same. However, we can have a wave like this: E x a 0 F 0 x 0 z a 1 F 1 x 1 z... a n F n x n z t

6 6 ECE633 - homework on ridge waveguide laser_s18_p.nb a 0 F 0 x z v p;0 a 1 F 1 x z v p;1... a n F n x z vp;n t (5.1) where a 0, a 1,.., a n are arbitrary coefficients, and v p;m m is known as the phase velocity of mode m. Note: this has a very important application known as MMI or multi-mode interference in numerous planar waveguide devices. 5.1 Discussion Given Eq. (5.1), what do you think of the light intensity profile as you travel along the z-direction? (just a general discussion). 5. Let a 0 1 and a 1 1. Observe the light. Write what you observe and what you think. Show either E-field or intensity profile to support your discussion. 5.3 Let a 0 1 and a 1. Observe the light. Write what you observe and what you think. Show either E-field or intensity profile to support your discussion. 5.4 Let a 1 1 and a 3 1. Observe the light. Write what you observe and what you think. Show either E-field or intensity profile to support your discussion coupler Consider this planar WG. Let =1.5 m top cladding 3.4 core core core bottom cladding 3.4 Consider multi-mode a 0 1; a 1 1. Show and discuss its behavior as it travels along the WG. What is its application? 6. Ridge waveguide - the effective index approx method A ridge waveguide is fabricated by etching down two sides of a stripe as shown below:

7 ECE633 - homework on ridge waveguide laser_s18_p.nb 7 w is the width of the ridge, and d is the etch depth. It turns out that one can use a very good approximation to calculate the ridge waveguide mode by using what is known as effective index method. However, since this HW is already long, we ll save this when we study diode lasers.

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved.

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved. Figure 7-1 (p. 339) Non-TEM mmode waveguide structures include (a) rectangular waveguide, (b) circular waveguide., (c) dielectric slab waveguide, and (d) fiber optic waveguide. Figure 7-2 (p. 340) Cross

More information

ECSE 352: Electromagnetic Waves

ECSE 352: Electromagnetic Waves December 2008 Final Examination ECSE 352: Electromagnetic Waves 09:00 12:00, December 15, 2008 Examiner: Zetian Mi Associate Examiner: Andrew Kirk Student Name: McGill ID: Instructions: This is a CLOSED

More information

Module 16 : Integrated Optics I

Module 16 : Integrated Optics I Module 16 : Integrated Optics I Lecture : Integrated Optics I Objectives In this lecture you will learn the following Introduction Electro-Optic Effect Optical Phase Modulator Optical Amplitude Modulator

More information

Chapter 5 5.1 What are the factors that determine the thickness of a polystyrene waveguide formed by spinning a solution of dissolved polystyrene onto a substrate? density of polymer concentration of polymer

More information

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS J. Piprek, Y.-J. Chiu, S.-Z. Zhang (1), J. E. Bowers, C. Prott (2), and H. Hillmer (2) University of California, ECE Department, Santa Barbara, CA 93106

More information

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS DIELECTRIC WAVEGUIDES and OPTICAL FIBERS Light Light Light n 2 n 2 Light n 1 > n 2 A planar dielectric waveguide has a central rectangular region of higher refractive index n 1 than the surrounding region

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Lecture #3 Microstrip lines

Lecture #3 Microstrip lines November 2014 Ahmad El-Banna Benha University Faculty of Engineering at Shoubra Post-Graduate ECE-601 Active Circuits Lecture #3 Microstrip lines Instructor: Dr. Ahmad El-Banna Agenda Striplines Forward

More information

SIGNAL DEGRADATION IN OPTICAL FIBERS

SIGNAL DEGRADATION IN OPTICAL FIBERS Volume Issue January 04, ISSN 348 8050 SIGNAL DEGRADATION IN OPTICAL FIBERS Gyan Prakash Pal, Manishankar Gupta,,, Assistant Professor, Electronics & Communication Engineering Department, Shanti Institute

More information

Fiber Optic Communication Systems. Unit-04: Theory of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-04: Theory of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-04: Theory of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Limitations of Ray theory Ray theory describes only the direction

More information

Guided Propagation Along the Optical Fiber

Guided Propagation Along the Optical Fiber Guided Propagation Along the Optical Fiber The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic wave Ray Theory Light

More information

Fiber Optic Communications Communication Systems

Fiber Optic Communications Communication Systems INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

More information

Silicon Photonic Device Based on Bragg Grating Waveguide

Silicon Photonic Device Based on Bragg Grating Waveguide Silicon Photonic Device Based on Bragg Grating Waveguide Hwee-Gee Teo, 1 Ming-Bin Yu, 1 Guo-Qiang Lo, 1 Kazuhiro Goi, 2 Ken Sakuma, 2 Kensuke Ogawa, 2 Ning Guan, 2 and Yong-Tsong Tan 2 Silicon photonics

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 4

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 4 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 4 Modal Propagation of Light in an Optical Fiber Fiber Optics, Prof. R.K. Shevgaonkar,

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee. Lecture - 04 Salient features of optical fiber II

Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee. Lecture - 04 Salient features of optical fiber II Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee Lecture - 04 Salient features of optical fiber II In the last lecture we had understood the propagation characteristics

More information

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers June 26, 2012 Dr. Lukas Chrostowski Directional Couplers Eigenmode solver approach Objectives Model the power coupling in a directional

More information

Study of Optical Fiber Design Parameters in Fiber Optics Communications

Study of Optical Fiber Design Parameters in Fiber Optics Communications Kurdistan Journal of Applied Research (KJAR) Print-ISSN: 2411-7684 Electronic-ISSN: 2411-7706 kjar.spu.edu.iq Volume 2 Issue 3 August 2017 DOI: 10.24017/science.2017.3.52 Study of Optical Fiber Design

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Waveguides and Optical Fibers

Waveguides and Optical Fibers Waveguides and Optical Fibers Dielectric Waveguides Light Light Light n n Light n > n A planar dielectric waveguide has a central rectangular region of higher refractive index n than the surrounding region

More information

Module 12 : System Degradation and Power Penalty

Module 12 : System Degradation and Power Penalty Module 12 : System Degradation and Power Penalty Lecture : System Degradation and Power Penalty Objectives In this lecture you will learn the following Degradation during Propagation Modal Noise Dispersion

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

OPTICAL GUIDED WAVES AND DEVICES

OPTICAL GUIDED WAVES AND DEVICES OPTICAL GUIDED WAVES AND DEVICES Richard Syms John Cozens Department of Electrical and Electronic Engineering Imperial College of Science, Technology and Medicine McGRAW-HILL BOOK COMPANY London New York

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

Fiber-Optic Polarizer Using Resonant Tunneling through a Multilayer Overlay

Fiber-Optic Polarizer Using Resonant Tunneling through a Multilayer Overlay Fiber-Optic Polarizer Using Resonant Tunneling through a Multilayer Overlay Arun Kumar, Rajeev Jindal, and R. K. Varshney Department of Physics, Indian Institute of Technology, New Delhi 110 016 India

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014 School of Electrical and Computer Engineering, Cornell University ECE 5330: Semiconductor Optoelectronics Fall 014 Homework 6 Due on Oct. 3, 014 Suggested Readings: i) Study lecture notes. Table of Parameter

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

Optical Waveguide Types

Optical Waveguide Types 8 Refractive Micro Optics Optical Waveguide Types There are two main types of optical waveguide structures: the step index and the graded index. In a step-index waveguide, the interface between the core

More information

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University Guided Propagation Along the Optical Fiber Xavier Fernando Ryerson University The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

Tunable Color Filters Based on Metal-Insulator-Metal Resonators

Tunable Color Filters Based on Metal-Insulator-Metal Resonators Chapter 6 Tunable Color Filters Based on Metal-Insulator-Metal Resonators 6.1 Introduction In this chapter, we discuss the culmination of Chapters 3, 4, and 5. We report a method for filtering white light

More information

This writeup is adapted from Fall 2002, final project report for by Robert Winsor.

This writeup is adapted from Fall 2002, final project report for by Robert Winsor. Optical Waveguides in Andreas G. Andreou This writeup is adapted from Fall 2002, final project report for 520.773 by Robert Winsor. September, 2003 ABSTRACT This lab course is intended to give students

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Chapter 3 Signal Degradation in Optical Fibers

Chapter 3 Signal Degradation in Optical Fibers What about the loss in optical fiber? Why and to what degree do optical signals gets distorted as they propagate along a fiber? Fiber links are limited by in path length by attenuation and pulse distortion.

More information

Grating-waveguide structures and their applications in high-power laser systems

Grating-waveguide structures and their applications in high-power laser systems Grating-waveguide structures and their applications in high-power laser systems Marwan Abdou Ahmed*, Martin Rumpel, Tom Dietrich, Stefan Piehler, Benjamin Dannecker, Michael Eckerle, and Thomas Graf Institut

More information

SPP waveguide sensors

SPP waveguide sensors SPP waveguide sensors 1. Optical sensor - Properties - Surface plasmon resonance sensor - Long-range surface plasmon-polariton sensor 2. LR-SPP waveguide - SPP properties in a waveguide - Asymmetric double-electrode

More information

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Bidirectional Optical Data Transmission 77 Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Martin Stach and Alexander Kern We report on the fabrication and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1. Theory of TPQI in a lossy directional coupler Following Barnett, et al. [24], we start with the probability of detecting one photon in each output of a lossy, symmetric beam

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian Institute of

More information

Lectureo5 FIBRE OPTICS. Unit-03

Lectureo5 FIBRE OPTICS. Unit-03 Lectureo5 FIBRE OPTICS Unit-03 INTRODUCTION FUNDAMENTAL IDEAS ABOUT OPTICAL FIBRE Multimode Fibres Multimode Step Index Fibres Multimode Graded Index Fibres INTRODUCTION In communication systems, there

More information

Analysis of characteristics of bent rib waveguides

Analysis of characteristics of bent rib waveguides D. Dai and S. He Vol. 1, No. 1/January 004/J. Opt. Soc. Am. A 113 Analysis of characteristics of bent rib waveguides Daoxin Dai Centre for Optical and Electromagnetic Research, Joint Laboratory of Optical

More information

Chapter 9 GUIDED WAVE OPTICS

Chapter 9 GUIDED WAVE OPTICS [Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

More information

Optical fibres. Outer protective

Optical fibres. Outer protective Optical fibres A thin flexible and transparent wire prepared for light propagation is called optical fibre. The optical fibre has been constructed for the following reasons: The light wave cannot traverse

More information

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab Guided Propagation Along the Optical Fiber Xavier Fernando Ryerson Comm. Lab The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Spontaneous Hyper Emission: Title of Talk

Spontaneous Hyper Emission: Title of Talk Spontaneous Hyper Emission: Title of Talk Enhanced Light Emission by Optical Antennas Ming C. Wu University of California, Berkeley A Science & Technology Center Where Our Paths Crossed Page Nanopatch

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

Unit Test Strand: The Wave Nature of Light

Unit Test Strand: The Wave Nature of Light 22K 11T 2A 3C Unit Test Strand: The Wave Nature of Light Expectations: E1. analyse technologies that use the wave nature of light, and assess their impact on society and the environment; E2. investigate,

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

Supporting Information: Plasmonic and Silicon Photonic Waveguides

Supporting Information: Plasmonic and Silicon Photonic Waveguides Supporting Information: Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides Ryan M. Briggs, *, Jonathan Grandidier, Stanley P. Burgos, Eyal Feigenbaum, and Harry A. Atwater,

More information

UC Santa Barbara UC Santa Barbara Previously Published Works

UC Santa Barbara UC Santa Barbara Previously Published Works UC Santa Barbara UC Santa Barbara Previously Published Works Title Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides Permalink https://escholarship.org/uc/item/959523wq

More information

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors 846 PIERS Proceedings, Cambridge, USA, July 6, 8 Design and Analysis of Resonant Leaky-mode Broadband Reflectors M. Shokooh-Saremi and R. Magnusson Department of Electrical and Computer Engineering, University

More information

Slot waveguide-based splitters for broadband terahertz radiation

Slot waveguide-based splitters for broadband terahertz radiation Slot waveguide-based splitters for broadband terahertz radiation Shashank Pandey, Gagan Kumar, and Ajay Nahata* Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 4 Spring 2016 Outline 1 Lateral confinement: index and gain guiding 2 Surface emitting lasers 3 DFB, DBR, and C3 lasers 4 Quantum well lasers 5 Mode locking P. Bhattacharya:

More information

Development of a LFLE Double Pattern Process for TE Mode Photonic Devices. Mycahya Eggleston Advisor: Dr. Stephen Preble

Development of a LFLE Double Pattern Process for TE Mode Photonic Devices. Mycahya Eggleston Advisor: Dr. Stephen Preble Development of a LFLE Double Pattern Process for TE Mode Photonic Devices Mycahya Eggleston Advisor: Dr. Stephen Preble 2 Introduction and Motivation Silicon Photonics Geometry, TE vs TM, Double Pattern

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability I. Introduction II. III. IV. SLED Fundamentals SLED Temperature Performance SLED and Optical Feedback V. Operation Stability, Reliability and Life VI. Summary InPhenix, Inc., 25 N. Mines Road, Livermore,

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article ANALYTICAL STUDY OF HELICALLY CLADDED OPTICAL WAVEGUIDE WITH DIFFERENT PITCH ANGLES Mishra V.* Gautam A. K. Taunk B. R. Address for Correspondence Sr. Member IEEE, Electronics Engineering

More information

Dual-frequency Characterization of Bending Loss in Hollow Flexible Terahertz Waveguides

Dual-frequency Characterization of Bending Loss in Hollow Flexible Terahertz Waveguides Dual-frequency Characterization of Bending Loss in Hollow Flexible Terahertz Waveguides Pallavi Doradla a,b, and Robert H. Giles a,b a Submillimeter Wave Technology Laboratory, University of Massachusetts

More information

Multimode Interference Waveguides

Multimode Interference Waveguides Multimode Interference Waveguides Jesus Perez Mechanical Engineering Major Santa Barbara City College Mentor: Akhilesh Khope Faculty Advisor: John Bowers ECE Department Why Integrated Photonics? Vast potential

More information

Fabrication Techniques of Optical ICs

Fabrication Techniques of Optical ICs Fabrication Techniques of Optical ICs Processing Techniques Lift off Process Etching Process Patterning Techniques Photo Lithography Electron Beam Lithography Photo Resist ( Microposit MP1300) Electron

More information

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers On-chip Si-based Bragg cladding waveguide with high index contrast bilayers Yasha Yi, Shoji Akiyama, Peter Bermel, Xiaoman Duan, and L. C. Kimerling Massachusetts Institute of Technology, 77 Massachusetts

More information

Glass Processing. Younès Messaddeq Centre d optique, Photonique et laser,québec, Canada Spring 2015 JIRU

Glass Processing. Younès Messaddeq Centre d optique, Photonique et laser,québec, Canada Spring 2015 JIRU Glass Processing Lecture 19 # Introduction to Dielectric Waveguide Younès Messaddeq Centre d optique, Photonique et laser,québec, Canada (younes.messaddeq@copl.ulaval.ca) Spring 2015 Lectures available

More information

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing Trung-Thanh Le Abstract--Chip level optical links based on VLSI photonic integrated circuits

More information

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS The Signal Transmitting through the fiber is degraded by two mechanisms. i) Attenuation ii) Dispersion Both are important to determine the transmission characteristics

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Waveguide Bragg Gratings and Resonators LUMERICAL SOLUTIONS INC

Waveguide Bragg Gratings and Resonators LUMERICAL SOLUTIONS INC Waveguide Bragg Gratings and Resonators JUNE 2016 1 Outline Introduction Waveguide Bragg gratings Background Simulation challenges and solutions Photolithography simulation Initial design with FDTD Band

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Scattering: The changes in direction of light confined within an OF, occurring due to imperfection in

More information

FINAL EXAM 12/12/03 EECS FALL 2003

FINAL EXAM 12/12/03 EECS FALL 2003 EECS 412 - FALL 2003 FINAL EXAM 12/12/03 NAME: CWRUnet e-mail address: IMPORTANT INFORMATION: 1. All questions are worth the same. 2. Exam is due December 12 th at 12 noon in Glennan 518. Possible 1. 10

More information

Ultra-Compact Photonic Crystal Based Water Temperature Sensor

Ultra-Compact Photonic Crystal Based Water Temperature Sensor PHOTONIC SENSORS / Vol. 6, No. 3, 2016: 274 278 Ultra-Compact Photonic Crystal Based Water Temperature Sensor Mahmoud NIKOUFARD *, Masoud KAZEMI ALAMOUTI, and Alireza ADEL Department of Electronics, Faculty

More information

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics PIERS ONLINE, VOL. 3, NO. 3, 27 329 Applications of Cladding Stress Induced Effects for Advanced Polarization Control in licon Photonics D.-X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature InP distributed feedback laser array directly grown on silicon Zhechao Wang, Bin Tian, Marianna Pantouvaki, Weiming Guo, Philippe Absil, Joris Van Campenhout, Clement Merckling and Dries

More information

Optical Interconnection in Silicon LSI

Optical Interconnection in Silicon LSI The Fifth Workshop on Nanoelectronics for Tera-bit Information Processing, 1 st Century COE, Hiroshima University Optical Interconnection in Silicon LSI Shin Yokoyama, Yuichiro Tanushi, and Masato Suzuki

More information

GaAs/A1GaAs Traveling Wave Electro-optic Modulators

GaAs/A1GaAs Traveling Wave Electro-optic Modulators GaAs/A1GaAs Traveling Wave Electro-optic Modulators R. Spickermann, S. R. Sakamoto, and N. Dagli Department of Electrical and Computer Engineering University of California Santa Barbara, CA 9316 ABSTRACT

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Fiber Optic Communication Systems. Unit-05: Types of Fibers. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-05: Types of Fibers. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-05: Types of Fibers https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Optical Fiber Department of Telecommunication, MUET UET Jamshoro

More information

Department of Electrical Engineering and Computer Science

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161/6637 Practice Quiz 2 Issued X:XXpm 4/XX/2004 Spring Term, 2004 Due X:XX+1:30pm 4/XX/2004 Please utilize

More information

Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion

Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion Oleg Mitrofanov 1 * and James A. Harrington 2 1 Department of Electronic and Electrical Engineering, University College

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

LECTURE 26: Interference

LECTURE 26: Interference ANNOUNCEMENT *Final: Thursday December 14, 2017, 1 PM 3 PM *Location: Elliot Hall of Music *Covers all readings, lectures, homework from Chapters 28.6 through 33. *The exam will be multiple choice. Be

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 Scool of Electrical and Computer Engineering, Cornell University ECE 303: Electromagnetic Fields and Waves Fall 007 Homework 11 Due on Nov. 9, 007 by 5:00 PM Reading Assignments: i) Review te lecture notes.

More information

The electric field for the wave sketched in Fig. 3-1 can be written as

The electric field for the wave sketched in Fig. 3-1 can be written as ELECTROMAGNETIC WAVES Light consists of an electric field and a magnetic field that oscillate at very high rates, of the order of 10 14 Hz. These fields travel in wavelike fashion at very high speeds.

More information

Section B Lecture 5 FIBER CHARACTERISTICS

Section B Lecture 5 FIBER CHARACTERISTICS Section B Lecture 5 FIBER CHARACTERISTICS Material absorption Losses Material absorption is a loss mechanism related to material composition and fabrication process for the fiber. This results in dissipation

More information

Lateral leakage of TM-like mode in thin-ridge Silicon-on-Insulator bent waveguides and ring resonators

Lateral leakage of TM-like mode in thin-ridge Silicon-on-Insulator bent waveguides and ring resonators Lateral leakage of TM-like mode in thin-ridge Silicon-on-Insulator bent waveguides and ring resonators Thach G. Nguyen *, Ravi S. Tummidi 2, Thomas L. Koch 2, and Arnan Mitchell School of Electrical and

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 29 Integrated Optics Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Propagation, Dispersion and Measurement of sub-10 fs Pulses

Propagation, Dispersion and Measurement of sub-10 fs Pulses Propagation, Dispersion and Measurement of sub-10 fs Pulses Table of Contents 1. Theory 2. Pulse propagation through various materials o Calculating the index of refraction Glass materials Air Index of

More information

Design and Simulation of Optical Power Splitter By using SOI Material

Design and Simulation of Optical Power Splitter By using SOI Material J. Pure Appl. & Ind. Phys. Vol.3 (3), 193-197 (2013) Design and Simulation of Optical Power Splitter By using SOI Material NAGARAJU PENDAM * and C P VARDHANI 1 * Research Scholar, Department of Physics,

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

Keywords: Photonic crystal fibers (PCFs), Chromatic dispersion, Confinement losses, SVEI Method. Linear waveguide.

Keywords: Photonic crystal fibers (PCFs), Chromatic dispersion, Confinement losses, SVEI Method. Linear waveguide. Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analysis of

More information