# Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Size: px
Start display at page:

Download "Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University"

## Transcription

1 Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun

2 Last Lecture Topics Course introduction Ray optics & optical beams Lab work Printable photonics Waveguides / optical fibers Optical amplifiers Structural coloration Plasmonics Quantum photonics Silicon photonics Poster Presentation & discussion

3 Light Propagation in Optical Fiber E z does not couple to E r or E φ. Therefore it is possible to write the scalar wave equation for E z directly in cylindrical coordinates. Wave equation for E z : Similarly, We can we can obtain E r, E φ, H r and H φ from E z and H z.

4 Light Propagation in Fiber Core: Bessel Functions Bessel functions of the first kind

5 Light Propagation in Fiber Cladding: Bessel Functions Modified Bessel functions of the second kind

6 Graphical Determination of the Propagation constants of TE modes (ν = 0): The eigenvalue equation for TE modes: Using Bessel function relations:

7 Normalized Propagation Constant as a Function of Normalized Frequency A fiber becomes single-mode when its V number < (the first root of the J0 Bessel function). In a single-mode fiber only the HE 11 mode can propagate. This mode is often called the fundamental mode of the fiber, or LP 01 mode (weakly Usingguiding approximation).

8 Single Mode Fiber & Single Mode Condition A cutoff wavelength defines the boundary between multi-mode and single-mode operation of a fiber. The fiber is single-mode with wavelengths longer than the cutoff wavelength: Single mode condition: V number < 2.405

9 Transmission properties of Optical Fibers Attenuation (loss) Silica-based fibers have ~0.2dB/km (i.e., ~95% launched power remains after 1 km fiber transmission Bandwidth Bandwidth determines the number of bits of information transmitted in a given time period (mainly depends on dispersion).

10 Attenuation in Fiber 1. Material absorption 2. Scattering loss 3. Nonlinear loss 4. Bending loss 5. Mode coupling loss (Splice and connection)

11 Attenuation in Fiber

12 Dispersion In optics, dispersion is the phenomenon in which the phase velocity (and group velocity) of a wave depends on its frequency (wavelength). 60 kmph 59 kmph Start: 0 sec. diff After 1 km: ~1 sec. diff After 100 km: ~100 sec. diff Wiki

13 Dispersion in Waveguides Material dispersion: Different wavelengths travel at different velocities due to the wavelength dependence of the index of refraction. Modal dispersion: Different waveguide modes propagate at different velocities. This is not an issue in modern systems that use single-mode fibers Waveguide dispersion: Different wavelengths travel at different velocities due to the wavelength dependence of the propagation constant β (caused by the waveguide structure, i.e. index profile). Polarization mode dispersion: Fiber birefringence causes different polarizations to propagate at different speeds.

14 Dispersion Compensation Dispersion compensation fiber (DCF) Chirped Fiber Bragg Grating Dispersion Compensator

15 Optical Fiber Fabrication Fabrication of silica fibers by a two-step process 1. Preform fabrication Modified Chemical Vapor Deposition (MCVD) Method Outside Vapor Deposition (OVD) Method Vapor-phase Axial (VAD) Method 2. Drawing into an optical fiber

16 Fiber Devices Fiber Connectors / Fusion Splicing Isolators Optical Circulators Wavelength division multiplexer Wavelength selective devices (filters) Fused Fiber Couplers Optical Modulators Polarization controllers

17 Advantages of Fiber Integration Fiber collimator WDM Fiber Reflector Fiber Bragg Grating Isolators Modulators Circulators Polarization Controllers

18 Isolators

19 Advantages of Integration Fiber Connectors Fiber Fusion Splicing

20 Types of WDM Operation wavelength 980nm 1550nm Insertion loss 980& 1550nm Isolation Bandwidth Max power 980/1550nm <0.55dB >20dB 20nm 300mW 1550/1560 <0.4dB >16dB 5nm 300mW

21 Today s Lecture Topics Course introduction Ray optics & Optical beams Lab work Optical fibers Optical amplifiers Fundamentals: integrated optics Integrated optics devices Silicon photonics Optical communication systems Presentation & Discussion

22 Esko Kauppinen

23 Signal Attenuation & Loss of Optical Fibers Fiber loss: ~4.5% per kilometer (0.2dB per km) Distance between Otaniemi & London: ~ 1826 kilometers The total fiber loss (between Helsinki & London) =1826 km * 0.2 db/km = 365 db (corresponding to ) 0

24 One possible strategy: as the signal becomes weak Optical-to-Electrical-to-Optical (OEO) conversions Convert the weak optical signal into electronic form Amplifier the converted electronic signal Recreate the optical signal with the electronic signal Problems: Inefficient, performances limited by slow speed electronics, expensive, complicated.

25 Optical Amplifiers: Loss compensation An optical amplifier is a device which amplifies the optical signal directly without ever changing it to electricity. The light itself is amplified (typically every 20-50km).

26 Why Do We Need Optical Amplifiers? Typical fiber loss at 1.5um is ~0.2dB/km (20dB for 100km) The signal needs to be amplified or signal-to-noise ratio (SNR) of detected signals is too low and bit error rate (BER) becomes too high (typically want BER<10-9 ) Optical-to-electrical-to-optical conversions requires costly high-speed electronics (>10GHz) Best way to amplify is optically, and best optical method is fiber amplifier (lowest loss, most efficient, most stable).

27 Types of Optical Amplifiers a) A booster (or power) amplifier - just after the transmitter to increase the output power from the laser diode. b) An in-line amplifier -to eliminate the need for Optical-to-Electrical-to-Optical (OEO) conversions along the transmission link (the most important application). c) A preamplifier - to improve the receiver s sensitivity.

28 Key Characteristics of Optical Amplifiers There are several performance parameters for optical amplifiers. The importance of each parameter depends on the application. For example, a booster amplifier should have a high saturation output power, whereas low noise is important in preamplifiers. In-line amplifiers need to have broad (and flat) gain bandwidth. The most important characteristics are: 1) Small signal gain - Small signal gain describes the amplifier gain, G 0, at very low input power levels (when the output power is much less than the saturation output power). 2) Saturation output power - Each amplifier has a saturation output power. With increasing input power levels, the gain starts to saturate. The saturation output power is defined as the output power for which the amplifier gain has reduced by a factor of 2 (or 3 db). 3) Gain bandwidth - In DWDM systems the amplifiers need to amplify wavelengths within a very broad range, thus the gain bandwidth is very important. The wavelength dependence of gain should also be as flat as possible. Typically gain flattening filters are used to improve the flatness. 4) Noise properties - All amplifiers decrease the signal-to-noise (S/N) ratio because of spontaneous emission that adds noise to the signal during its amplification. The degradation of S/N is quantified through a parameter called noise figure NF, defined as:

29 Different Types of Optical Amplifiers Various techniques have been investigated and are increasingly developed for optical amplifiers for optical communications. At present, the three most important types of amplifiers are following: 1) Semiconductor optical amplifiers (SOAs) 2) Raman amplifiers 3) Er-doped fiber amplifiers (EDFAs)

30 Semiconductor Optical Amplifiers: Process

31 Design of SOA Semiconductor chip

32 Characteristics of SOAs Only a small semiconductor chip with electrical and fiber connections (i.e., compact) Directly electronically pumping The gain bandwidth is smaller, but devices operating in different wavelength regions can be made with bandgap engineering The upper-state lifetime and thus the stored energy are much smaller, so the gain reacts too changes in pump power or signal power within nanoseconds Changes in gain also cause phase changes, leading to linewidth enhancement factor SOAs exhibit much stronger nonlinear distortion (self-phase modulation and four-wave-mixing The noise figure is typically higher The amplification is normally polarization-sensitive.

33 SOA Vs Semiconductor lasers Both are very similar in principle and construction Essentially Fabry-perot cavities, with amplification achieved by external pumping The key in SOA is preventing selfoscillations generating laser output This is accomplished by blocking cavity reflections using both an antireflection (AR) coating and the technique of angle cleaving the chip facets

34 Stimulated Raman Scattering C. V. Raman ( )

35 Raman Amplifiers Topologically simpler to design no special doping is required, as it uses intrinsic optical nonlinearity of fiber (no need of special fiber). High energy pump Raman pumping is usually done backwards, Gain is higher at the end of the fiber. Raman gain depends on the pump power and frequency offset between pump and signal.

36 Raman Gain in Fiber Depends mainly on the optical frequencies; but also on the pump frequency and polarization There is a maximum Raman gain for a frequency offset of 13.2THz. pump =1066nm, Peak-signal =1116nm; pump =1456nm, Peak-signal =1550nm. The peaks in the Raman spectrum correspond to certain vibration modes of the silica structure. The usable gain bandwidth is ~48nm

37 Raman Amplifier: Advantages Vs Disadvantages Advantages: Variable wavelength amplification possible Compatible with installed SM fiber Can result in a lower average power over a span, good for lower crosstalk Very broadband operation may be possible Disadvantages: High pump power requirement Sophisticated gain control needed Noise is also an issue

38 Optical Amplifiers Erbium-doped fiber amplifier (EDFA) Commercially available since the early 1990 s Works best in the range 1530 to 1565 nm Gain up to 60 db (10 6 photons out per photon in!)

39 Origin of EDFA (Who, When and Where) Prof. David Payne and the team Published the research paper in the year 1987 At the University of Southampton, UK

40 Simplified Physics of an EDFA 1550nm 980nm

41 Detailed process of an EDFA µm

42 Detailed process of an EDFA Erbium-doped fiber is usually pumped by semiconductor lasers at 980nm or 1480nm. A three-level model can be used for 980nm pump, while a two-level model usually suffices for 1480nm pump. Complete inversion can be achieved with 980-nm pumping but not with 1480-nm pump The spontaneous lifetime of the metastable energy level ( 4 I 13/2 ) is about 10 ms, which is much slower than the signal bit rates of practical interest. A stimulated emission dominates over spontaneous, amplification is more efficient. µm

43 Pump wavelength of EDFA Higher the population inversion lower the amplifier noise. 980nm pump is preferred for low noise amplification. More powerful 1480nm diodes are available At 1480nm, silica fibers have low loss, therefore residual pump can co-propagate with the signal. 1480nm pump may even be placed remotely.

44 Operation Wavelength of EDFA Typically operating in the C-band ( nm). EDF, has a relatively long tail to the gain shape extending well beyond this range to ~1605nm (i.e., L-band from nm)

45 Gain Flatness of EDFA Population levels vary at different bands, leading to the gain variation Serious affects WDM systems

46 Gain Flatting in EDFA

47 Erbium Doped Fiber: Profile

48 Power level Operation Setup of an EDFA Power level Input 980 nm signal Isolator 1550 nm data signal WDM Power interchange between pump and data signals 980 nm signal Isolator 1550 nm data signal Output 980 nm Pump Laser Erbium Doped Fiber

49 Interior of an Erbium Doped Fiber Amplifier (EDFA) WDM Fibre coupler Pump laser Erbium doped fibre loop Fibre input/output

50 EDFA: Advantages Vs Disadvantages Advantages: EDFAs have high pump power utilization (>50%). Directly and simultaneously amplify a wide wavelength band Flatness can be improved by gain-flattening optical filters Gain in excess of 50 db Low noise figure suitable for long haul applications Disadvantages: EDFAs are not small Cannot be integrated with other semiconductor devices

51 Other doped fiber amplifiers 1.55um S. D. Jackson, Nat. Photonics 6, 423 (2012).

52 Optical Amplifier Comparison

53 Considerations Power booster: Placed immediately after transmitter. Help increase the power of the signal, noise may not be the major issue: SOA In-line amplifier: Compensate for the signal attenuation as it propagates. Needed in long-haul networks. Noise plays a considerable role as the signal weakens: Combination of EDFA, Filters and Raman Amplifiers Pre-amplifier: A weak optical signal is usually amplified before it enters the receiver. Noise is a crucial factor

54 Hand-on Practice in Making EDFA A Check list of components 1. Isolators (two) 2. Laser Diode (one) 3. WDM (one) 4. Erbium doped fiber ( 0.3 meter) 5. Coupler 6. Manuals of the components

55 Hand-on Practice in Making EDFA Fiber splicing Lab practice Good! Bad!

56 Hand-on Practice in Making EDFA EDFA Setup: List of components needed 1. Isolators (two) 2. Pump laser diode (one) 3. WDM (one) 4. Erbium doped fiber ( 0.3 meter) 5. Manuals of the components Input Isolator WDM Isolator Output 980 nm Pump Laser Erbium Doped Fiber

57 How to build a fiber laser? Amplifier VS Laser (Light amplification by stimulated emission of radiation) Gain >2 Optical Amplifier Partially Reflective Mirror (R=50%; T=50%) High Reflectivity Mirror (R=100%)

58 Let us make a EDF baser Laser (EDFL)! EDFL Setup: List of components needed 1. Isolators (two) 2. Pump laser diode (one) 3. WDM (one) 4. Erbium doped fiber ( 0.3 meter) 5. Coupler

59 Last Lecture Topics Course introduction Ray optics & optical beams Lab work Printable photonics Waveguides / optical fibers Optical amplifiers Structural coloration Plasmonics Quantum photonics Silicon photonics Poster Presentation & discussion

60 Any questions?

### Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

### Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

### Optical Fibre Amplifiers Continued

1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

### Elements of Optical Networking

Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

### Introduction Fundamental of optical amplifiers Types of optical amplifiers

ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

### Optical Communications and Networking 朱祖勍. Oct. 9, 2017

Optical Communications and Networking Oct. 9, 2017 1 Optical Amplifiers In optical communication systems, the optical signal from the transmitter are attenuated by the fiber and other passive components

### OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

### Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

### Chapter 9 GUIDED WAVE OPTICS

[Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

### Optical Fiber Amplifiers

Optical Fiber Amplifiers Yousif Ahmed Omer 1 and Dr. Hala Eldaw Idris 2 1,2 Department of communication Faculty of Engineering, AL-Neelain University, Khartoum, Sudan Publishing Date: June 15, 2016 Abstract

### Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

### S Optical Networks Course Lecture 2: Essential Building Blocks

S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

### EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

EE 233. LIGHTWAVE SYSTEMS Chapter 2. Optical Fibers Instructor: Ivan P. Kaminow PLANAR WAVEGUIDE (RAY PICTURE) Agrawal (2004) Kogelnik PLANAR WAVEGUIDE a = (n s 2 - n c2 )/ (n f 2 - n s2 ) = asymmetry;

### Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

### Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

### Fiber Amplifiers. Fiber Lasers. 1*5 World Scientific. Niloy K nulla. University ofconnecticut, USA HONG KONG NEW JERSEY LONDON

LONDON Fiber Amplifiers Fiber Lasers Niloy K nulla University ofconnecticut, USA 1*5 World Scientific NEW JERSEY SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI Contents Preface v 1. Introduction 1

### EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

### OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

OFC SYSTEMS Performance & Simulations BC Choudhary NITTTR, Sector 26, Chandigarh High Capacity DWDM OFC Link Capacity of carrying enormous rates of information in THz 1.1 Tb/s over 150 km ; 55 wavelengths

### Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

### OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

### Lecture 15 Semiconductor Optical Amplifiers and OTDR

Lecture 15 Semiconductor Optical Amplifiers and OTDR Introduction Where are we? Using semiconductors as amplifiers. Amplifier geometry Cross talk Polarisation dependence Gain clamping Real amplifier performance

### Module 19 : WDM Components

Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

### Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

### CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

### Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

### Introduction Fundamentals of laser Types of lasers Semiconductor lasers

ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

### OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components 4. Transmitters and Receivers 5. Fiber-Optic Measurements

### S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

### International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website:

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages-3183-3188 April-2015 ISSN (e): 2321-7545 Website: http://ijsae.in Effects of Four Wave Mixing (FWM) on Optical Fiber in

### Optical Transport Tutorial

Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

### Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

### Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

### Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

### UNIT I INTRODUCTION TO OPTICAL FIBERS

UNIT I INTRODUCTION TO OPTICAL FIBERS 9 Evolution of fiber optic system Element of an Optical Fiber Transmission link Total internal reflection Acceptance angle Numerical aperture Skew rays Ray Optics

### LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

LW Technology Passive Components LW Technology (Passive Components).PPT - 1 Patchcords Jumper cables to connect devices and instruments Adapter cables to connect interfaces using different connector styles

### The absorption of the light may be intrinsic or extrinsic

Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

### Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

### Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

### Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

### EDFA-WDM Optical Network Analysis

EDFA-WDM Optical Network Analysis Narruvala Lokesh, kranthi Kumar Katam,Prof. Jabeena A Vellore Institute of Technology VIT University, Vellore, India Abstract : Optical network that apply wavelength division

### 2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

B.TECH IV Year I Semester (R09) Regular Examinations, November 2012 1 (a) Derive an expression for multiple time difference tt 2 in the multipath dispersion of the optical fibre. (b) Discuss the merits

### Erbium-Doper Fiber Amplifiers

Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

### FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar,

### AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

Journal of Non - Oxide Glasses Vol. 10, No. 3, July - September 2018, p. 65-70 AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER A. A. ALMUKHTAR a, A.

### DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

DESIGN TEMPLATE ISSUES performance, yield, reliability ANALYSIS FOR ROBUST DESIGN properties, figure-of-merit thermodynamics, kinetics, process margins process control OUTPUT models, options Optical Amplification

### UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film filters, active

### Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

### Fiber Optic Communications Communication Systems

INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

### Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Fiber Bragg Gratings for DWDM Optical Networks Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro Overview Introduction. Fabrication. Physical properties.

### Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

Introduction A communication system transmits information form one place to another. This could be from one building to another or across the ocean(s). Many systems use an EM carrier wave to transmit information.

### Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

### Optical communications

Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

### 1. Evolution Of Fiber Optic Systems

OPTICAL FIBER COMMUNICATION UNIT-I : OPTICAL FIBERS STRUCTURE: 1. Evolution Of Fiber Optic Systems The operating range of optical fiber system term and the characteristics of the four key components of

### Performance Investigation of Dispersion Compensation Techniques in 32-Channel DWDM System

Performance Investigation of Dispersion Compensation Techniques in 32-Channel DWDM System Deepak Sharma ECE Department, UIET, MDU Rohtak Payal ECE Department, UIET, MDU Rohtak Rajbir Singh ECE Department,

### OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is due today, HW #5 is assigned (due April 8)

### Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

### PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

### Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

### Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands Tadashi Sakamoto, Atsushi Mori, Hiroji Masuda, and Hirotaka Ono Abstract We are expanding the gain

### SYLLABUS Optical Fiber Communication

SYLLABUS Optical Fiber Communication Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 UNIT - 1 PART - A OVERVIEW OF OPTICAL FIBER

### Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate

Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 13 Issue 9 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

### Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

A Multi-wavelength Erbium Doped Fiber Laser for Free Space Optical Communication link S. Qhumayo, R. Martinez Manuel and J.J. M. Kaboko Photonics Research Group, Department of Electrical and Electronic

### EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

### FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

### Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

### Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

### A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

### Suppression of Stimulated Brillouin Scattering

Suppression of Stimulated Brillouin Scattering 42 2 5 W i de l y T u n a b l e L a s e r T ra n s m i t te r www.lumentum.com Technical Note Introduction This technical note discusses the phenomenon and

### International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

Simulation and Analysis of GFF at WDM Mux Bandwidth of 13GHz Warsha Balani Department of ECE, BIST Bhopal, India balani.warsha@gmail.com Manish Saxena Department of ECE,BIST Bhopal, India manish.saxena2008@gmail.com

### Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

### Fiber-based components. by: Khanh Kieu

Fiber-based components by: Khanh Kieu Projects 1. Handling optical fibers, numerical aperture 2. Measurement of fiber attenuation 3. Connectors and splices 4. Free space coupling of laser into fibers 5.

### Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Linear cavity erbium-doped fiber laser with over 100 nm tuning range Xinyong Dong, Nam Quoc Ngo *, and Ping Shum Network Technology Research Center, School of Electrical & Electronics Engineering, Nanyang

### Photonics and Optical Communication

Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

### Contents for this Presentation. Multi-Service Transport

Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform

### Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) ABSTRACT Neha Thakral Research Scholar, DAVIET, Jalandhar nthakral9@gmail.com Earlier

### Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, 96 10 and 128 10 Gbps DWDM transmission system Rashmi a, Anurag Sharma b, Vikrant Sharma c a Deptt. of Electronics & Communication

### CONTENTS. Chapter 1 Wave Nature of Light 19

CONTENTS Chapter 1 Wave Nature of Light 19 1.1 Light Waves in a Homogeneous Medium 19 A. Plane Electromagnetic Wave 19 B. Maxwell's Wave Equation and Diverging Waves 22 Example 1.1.1 A diverging laser

### An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

### Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

### Optical switches. Switching Technology S Optical switches

Optical switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 13-1 Optical switches Components and enabling technologies Contention resolution Optical switching schemes 13-2 1 Components

### Ph.D. Course Spring Wireless Communications. Wirebound Communications

Ph.D. Course Spring 2005 Danyo Danev associate professor Div. Data Transmission, Dept. Electrical Engineering Linköping University SWEDEN Wireless Communications Radio transmissions Mobile telephony Satellite

### International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

### Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

### Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

### Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre

Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre AMANDEEP KAUR (Assist. Prof.) ECE department GIMET Amritsar Abstract: In this paper, the polarization mode dispersion

### Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs Ramón Gutiérrez-Castrejón RGutierrezC@ii.unam.mx Tel. +52 55 5623 3600 x8824 Universidad Nacional Autonoma de Mexico Introduction A

### Ultra-long Span Repeaterless Transmission System Technologies

Ultra-long Span Repeaterless Transmission System Technologies INADA Yoshihisa Abstract The recent increased traffic accompanying the rapid dissemination of broadband communications has been increasing

### UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 LECTURE-1 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film

### Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

### S Optical Networks Course Lecture 4: Transmission System Engineering

S-72.3340 Optical Networks Course Lecture 4: Transmission System Engineering Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel:

### Signal Conditioning Parameters for OOFDM System

Chapter 4 Signal Conditioning Parameters for OOFDM System 4.1 Introduction The idea of SDR has been proposed for wireless transmission in 1980. Instead of relying on dedicated hardware, the network has

### Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

### DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University

DWDM Theory ZTE Corporation Transmission Course Team DWDM Overview Multiplexing Technology WDM TDM SDM What is DWDM? Gas Station High Way Prowl Car Definition l 1 l 2 l N l 1 l 2 l 1 l 2 l N OA l N OMU

### is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. The

### DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs) Ahmet Altuncu Arif Başgümüş Burçin Uzunca Ekim Haznedaroğlu e-mail: altuncu@dumlupinar.edu.tr e-mail:

### Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

Guided Propagation Along the Optical Fiber Xavier Fernando Ryerson Comm. Lab The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic

### Emerging Subsea Networks

Highly efficient submarine C+L EDFA with serial architecture Douglas O. M. de Aguiar, Reginaldo Silva (Padtec S/A) Giorgio Grasso, Aldo Righetti, Fausto Meli (Fondazione Cife) Email: douglas.aguiar@padtec.com.br

### Current Trends in Unrepeatered Systems

Current Trends in Unrepeatered Systems Wayne Pelouch (Xtera, Inc.) Email: wayne.pelouch@xtera.com Xtera, Inc. 500 W. Bethany Drive, suite 100, Allen, TX 75013, USA. Abstract: The current trends in unrepeatered