Bipolar Junction Transistor (BJT)

Size: px
Start display at page:

Download "Bipolar Junction Transistor (BJT)"

Transcription

1 Bipolar Junction Transistor (BJT) 1

2 Objectives To understand the structure of BJT. To explain and analyze the basic transistor circuits. To use transistors as an amplifier and electronic switch. To design the simple circuits using transistors. To study transistor parameters from datasheet. 2

3 What is Transistor? Invented in 1947 by John Bardeen, Walter Brattain and William Shockley Hugh revolution in field of electronics First solid-state device able to amplify electric signal Universally used is Bipolar Junction Transistor(BJT) Transistor in

4 Transistor Structure With diodes there is one p-n junction. With bipolar junction transistors (BJT), there are three layers and two p-n junctions.. 4

5 Conducting Current Direction 5

6 Basic Functions Signal Amplifier Electronic Switch 2 Types 6

7 Basic Operation Look at this one circuit as two separate circuits, the base-emitter(left side) circuit and the collector-emitter(right side) circuit. Note that the emitter leg serves as a conductor for both circuits. The amount of current flow in the base-emitter circuit controls the amount of current that flows in the collector circuit. Small changes in base-emitter current yields a large change in collector-current. 7

8 Transistor Characteristics and Parameters As previously discussed, base-emitter current changes yield large changes in collectoremitter current. The factor of this change is called beta(β). β = I C /I B Common Emitter Configuration The beta for a transistor is not always constant. Temperature and collector current both affect beta, not to mention the normal inconsistencies during the manufacture of the transistor. There are also maximum power ratings to consider. The data sheet provides information on these characteristics. 8

9 For proper operation, the base-emitter junction is forward-biased by V BB and conducts just like a diode. The collector-base junction is reverse biased by V CC and blocks current flow through it s junction just like a diode. Remember that current flow through the base-emitter junction will help establish the path for current flow from the collector to emitter. B-C Reverse biased B-E Forward biased 9

10 There are three key dc voltages and three key dc currents to be considered. Note that these measurements are important for troubleshooting. I B : dc base current I E : dc emitter current I C : dc collector current V BE : dc voltage across base-emitter junction V CB : dc voltage across collector-base junction V CE : dc voltage from collector to emitter 10

11 Analysis of this transistor circuit to predict the dc voltages and currents requires use of Ohm s law, Kirchhoff s voltage law and the beta for the transistor. Application of these laws begins with the base circuit to determine the amount of base current. Using Kirchhoff s voltage law, subtract the.7 V BE and the remaining voltage is dropped across R B. Determining the current for the base with this information is a matter of applying of Ohm s law. I B = V RB /R B The collector current is determined by multiplying the base current by beta. What we ultimately determine by use of Kirchhoff s voltage law for series circuits is that in the base circuit V BB is distributed across the base-emitter junction and R B in the base circuit. In the collector circuit we determine that V CC is distributed proportionally across R C and the transistor(v CE ). Note. V BE = 0.7 will be used in most analysis examples. 11

12 Collector characteristic curves give a graphical illustration of the relationship of collector current and V CE with specified amounts of base current. With greater increases of V CC, V CE continues to increase until it reaches breakdown, but the current remains about the same in the linear region from.7v to the breakdown voltage.

13 Transistor regions Flat I B V CE increased, I c increased until B Curve shown for one fixed base current (I B ) 13

14 Transistor Breakdown Voltage The breakdown voltage ratings of a transistor are the maximum voltages that a transistor can handle for each of its 3 junctions. If voltages are fed to the transistor exceeding this rating, the transistor can be destroyed. A datasheet for a transistor lists the breakdown voltage ratings for the emitter-base, collector-base, and collector-emitter junctions. For example, a 2N3904 small signal transistor has the following breakdown voltage ratings: V CBO =60Vdc V CEO =40Vdc V EBO =6Vdc The first 2 letters in the subscript indicate the two transistor terminals for which the voltage rating applies, and the third letter is in reference to the third unmentioned terminal which is left open. The first voltage, V CBO indicates the maximum allowable collector-to-base voltage with the emitter open. The second voltage, V CEO is the maximum allowable collector-emitter voltage with the base open. The voltage rating, V EBO is the maximum allowable emitter-base voltage with the collector open. Exceeding any of these voltages can destroy the transistor. Ref: 14

15 Example Sketch the transistor characteristic curve for I B =5 ua to 25 ua with 5 ua increment Assume V CE does not exceed breakdown. 15

16 17

17 Cut-off Mode With no I B the transistor is in the cutoff region and just as the name implies there is practically no current flow in the collector part of the circuit. This results in only an extremely small leakage current(i CEO ) in the collector circuit. With the transistor in a cutoff state the full V CC can be measured across the collector and emitter(v CE ). 18

18 Saturation Mode Current flow in the collector part of the circuit is, as stated previously, determined by I B multiplied by β. However, there is a limit to how much current can flow in the collector circuit regardless of additional increases in I B. Once this maximum is reached, the transistor is said to be in saturation. Note that saturation can be determined by application of Ohm s law, I C(sat) =(V CC - V CE ) /R C. For Ideal case, the measured voltage across the now shorted collector and emitter(v CE ) is 0V. The practical value is around 0.2V In saturation, an increase of base current has no effect on collector circuit and the relationship I C =β.i B is no longer valid. Figure. Saturation: As I B increases due to increasing V BB, I C also increases and V CE decreases due to the increased voltage drop across R C. When the transistor reaches saturation, I C can increase no further regardless of further increase in I B. 19

19 Example Determine whether or not the transistor is in saturation. Assume V CE(sat) =0.2V and V BE(ON) =0.7V. 20

20 Example From a given circuit, determine I B,I C,I E,V BE,V CE and V CB. The transistor has a β DC =150. Assume V BE(ON) =0.7V and V CE(sat) =0.2V. 21

21 Transistor as Amplifier Amplification of a relatively small ac voltage can be had by placing the ac signal source in the base circuit. Recall that small changes in the base current circuit causes large changes in collector current circuit. The small ac voltage causes the base current to increase and decrease accordingly and with this small change in current the collector current will mimic the input only with greater amplitude. 22

22 Transistor as (Electronic)Switch A transistor when used as a switch is simply being biased so that it is in cutoff (switched off) or saturation (switched on). Remember that the V CE in cutoff is V CC and 0 V in saturation. 23

23 Electronic Switch Electronic switch uses electrical control signal for operation. The electronic switch does not contain mechanical contacts but semiconductor devices such as bipolar junction transistors or field-effect transistors. For the design, input voltage should be selected such that the output is either completely off, or completely on i.e transistor works in saturation mode. A A R on I = C I B β dc Control voltage Control voltage B Switch is open B Switch is closed I C sat = [ V V sat] CC R L CE 24

24 Application (as electronic switch) The LED in a given circuit requires 30mA to emit a sufficient light. Determine the amplitude of square wave necessary to make sure the LED emit sufficient Light. Use double the minimum value of base current as a safety margin to ensure saturation. V CC =9V,V CE(SAT) =0.3V, R C =220Ω, R B =3.3kΩ, β DC = 50, and V LED =1.6V. 25

25 Application (driving relay) From a relay driving circuit below, assume relay coil resistance = 250 Ohms, V DC = 12 V, DC current gain of transistor = 100 and V CE(SAT) = 0.1 V. V in is 0-5 V. If this relay requires 40 ma for operation, calculate R B. coil +V DC Relay NC C AC bulb NO V in R B AC 26

26 Plastic cases for general-purpose/small-signal transistors. 27

27

28 Example Find beta or h FE or dc current gain = 29

29 Example Refer to the datasheet. Determine whether or not the transistor is saturated in each circuit based on the maximum specific value of h FE. 30

30

31 Hint for h FE Selection The datasheet shows that the h FE can not be specified precisely by the manufacturer, because it varies very much between transistors and with electrical and thermal conditions. However, it is possible to get an approximated value. Students can start with the roughly calculation of I c. For example, if I c =20mA, we can take an intermediate value between the h FE for I c =2mA (500) and the h FE for I c =100mA (400), so let's take h FE =

32 Example Determine I B,I C,I E and β DC. 33

33 Example Find V CE,V BE,V CB in both circuits. 34

34 Testing Transistors Testing a transistor can be viewed more simply if you view it as testing two diode junctions. Forward bias having low resistance and reverse bias having infinite resistance. 35

35 The diode test function of a multimeter is more reliable than using an ohmmeter. Make sure to note whether it is an npn or pnp and polarize the test leads accordingly. In addition to the traditional DMMs there are also transistor testers. Some of these have the ability to test other parameters of the transistor, such as leakage and gain. Curve tracers give us even more detailed information about a transistors characteristics. 36

36 Conclusions The bipolar junction transistor (BJT) is constructed of three regions: base, collector, and emitter. The BJT has two pn junctions, the base-emitter junction and the base-collector junction. The two types of transistors are pnp and npn. For the BJT to operate as an amplifier, the base-emitter junction is forward-biased and the collector-base junction is reverse-biased. Of the three currents I B is very small in comparison to I E and I C. Beta is the current gain of a transistor. This the ratio of I C /I B. A transistor can be operated as an electronics switch. When the transistor is off it is in cutoff condition (no current). When the transistor is on, it is in saturation condition (maximum current). Beta can vary with temperature and also varies from transistor to transistor. 37

37 Supplement 38

38 Relays A relay is an electrically operated switch. Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil current can be on or off so relays have two switch positions and they are double throw (changeover) switches. Symbol SPDT Relays DPDT Relays 39

39 40

40 Solid State Relays(SSRs) Solid state relay (SSR) is a solid state electronic component that provides a similar function to an electromechanical relay but does not have any moving components, increasing long-term reliability. have become commercially available. The types of SSR are photo-coupled SSR, transformer-coupled SSR, and hybrid SSR. A photo-coupled SSR is controlled by a low voltage signal which is isolated optically from the load. The control signal in a photo-coupled SSR typically energizes an LED which activates a photo-sensitive diode. The diode turns on switching devices i.e. a back-to-back thyristor, silicon controlled rectifier, or MOSFET transistor to power on the load. Control input can be AC,DC, 4-20 ma, etc Adv: fast, smaller,lifetime Disadv: false triggering, expensive 41

41

42 Isolated drive circuit For a safety consideration, an isolation between control circuit(low voltage, i.e. 5V triggering pulse) and power circuit(high voltage, i.e. 220V-few kv power plant) is very necessary. The isolation circuit prevents a damage of expensive devices used in control part. The isolation circuit can be implemented by Optoisolator and Transformer. Power Circuit Control Circuit Optocoupler/Optoisolator 43

43 Optocoupler 44

44 Example Note: This opto-isolator/driver should not be used to drive a load directly. It is intended to be a trigger for power device. Snubber Circuit Limit I F (LED input current) For Sensitive gate(optional) Snubber Circuit 45

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 7 ทรานซ สเตอร Bipolar Junction Transistor สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Objectives Describe

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

ET215 Devices I Unit 4A

ET215 Devices I Unit 4A ITT Technical Institute ET215 Devices I Unit 4A Chapter 3, Section 3.1-3.2 This unit is divided into two parts; Unit 4A and Unit 4B Chapter 3 Section 3.1 Structure of Bipolar Junction Transistors The basic

More information

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections ITT Technical Institute ET215 Devices 1 Unit 6 Chapter 3, Sections 3.7-3.9 Chapter 3 Section 3.7 The Bipolar Transistor as a Switch Objectives: Explain how a transistor can be used as a switch 1. Compute

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Analog Electronics: Bipolar Junction Transistors Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Chapter 4 DC Biasing BJTs. BJTs

Chapter 4 DC Biasing BJTs. BJTs hapter 4 D Biasing BJTs BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system

More information

Electronics II Lecture 2(a): Bipolar Junction Transistors

Electronics II Lecture 2(a): Bipolar Junction Transistors Lecture 2(a): Bipolar Junction Transistors A/Lectr. Khalid Shakir Dept. Of Engineering Engineering by Pearson Transistor! Transistor=Transfer+Resistor. When Transistor operates in active region its input

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 3 RTL and DTL Gates Ch06L3-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Resistor transistor logic (RTL) RTL Circuit Characteristics

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Figure1: Basic BJT construction.

Figure1: Basic BJT construction. Chapter 4: Bipolar Junction Transistors (BJTs) Bipolar Junction Transistor (BJT) Structure The BJT is constructed with three doped semiconductor regions separated by two pn junctions, as in Figure 1(a).

More information

ECE321 Electronics I Fall 2006

ECE321 Electronics I Fall 2006 ECE321 Electronics I Fall 2006 Professor James E. Morris Lecture 11 31 st October, 2006 Bipolar Junction Transistors (BJTs) 5.1 Device Structure & Physics 5.2 I-V Characteristics Convert 5.1 information

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh Chapter 3: TRANSISTORS Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh OUTLINE Transistors Bipolar Junction Transistor (BJT) Operation of Transistor Transistor parameters Load Line Biasing

More information

การไบอ สทรานซ สเตอร. Transistors Biasing

การไบอ สทรานซ สเตอร. Transistors Biasing การไบอ สทรานซ สเตอร Transistors iasing iasing iasing: Applying D voltages to a transistor in order to turn it on so that it can amplify A signals. The D input establishes an operating or quiescent point

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

Lecture (06) Bipolar Junction Transistor

Lecture (06) Bipolar Junction Transistor Lecture (06) Bipolar Junction Transistor By: Dr. Ahmed lshafee ١ Agenda BJT structure BJT operation BJT characteristics ٢ BJT structure The BJT is constructed with three doped semiconductor regions One

More information

output passes full first (positive) hump and 1/2-scale second hump

output passes full first (positive) hump and 1/2-scale second hump 3. For V i > 0, V o 0. For V i < 0, V o V i. The resulting waveform consists only of the negative "humps" of the original cosine wave. Each hump has a duration of 0.5s there is a 0.5s gap between each

More information

Lecture (09) Bipolar Junction Transistor 3

Lecture (09) Bipolar Junction Transistor 3 Lecture (09) Bipolar Junction Transistor 3 By: Dr. Ahmed ElShafee ١ I THE BJT AS AN AMPLIFIER Amplification is the process of linearly increasing the amplitude of an electrical signal and is one of the

More information

ECE 121 Electronics (1)

ECE 121 Electronics (1) ECE 121 Electronics (1) Lec. 1: Introduction to BJT Instructor Dr. Maher Abdelrasoul http://www.bu.edu.eg/staff/mahersalem3 1 Outline Course Information Course Objectives BJT Introduction Transistor Construction

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Electronic Component Applications

Electronic Component Applications Western Technical College 10660124 Electronic Component Applications Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 60.00 Solid

More information

Transistor Characteristics

Transistor Characteristics Transistor Characteristics Topics covered in this presentation: Transistor Construction Transistor Operation Transistor Characteristics 1 of 15 The Transistor The transistor is a semiconductor device that

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

The first transistor. (Courtesy Bell Telephone Laboratories.)

The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.1 The first transistor. (Courtesy Bell Telephone Laboratories.) Fig. 3.2 Types of transistors: (a) pnp; (b) npn. : (a) pnp; : (b) npn Fig. 3.3 Forward-biased junction of a pnp transistor. Fig. 3.4

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

Structure of Actual Transistors

Structure of Actual Transistors 4.1.3. Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

Chapter Two "Bipolar Transistor Circuits"

Chapter Two Bipolar Transistor Circuits Chapter Two "Bipolar Transistor Circuits" 1.TRANSISTOR CONSTRUCTION:- The transistor is a three-layer semiconductor device consisting of either two n- and one p-type layers of material or two p- and one

More information

MJ21195 PNP MJ21196 NPN

MJ21195 PNP MJ21196 NPN MJ21195 PNP MJ21196 NPN Preferred Devices Silicon Power Transistors The MJ21195 and MJ21196 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners

More information

TO-92 SOT-23 Mark: 3B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

TO-92 SOT-23 Mark: 3B. TA = 25 C unless otherwise noted. Symbol Parameter Value Units PN98 Discrete POWER & Signal Technologies MMBT98 C C B E TO-92 SOT-23 Mark: 3B B E This device is designed for use as RF amplifiers, oscillators and multipliers with collector currents in the.0 ma to 30

More information

TIP35A, TIP35B, TIP35C (NPN); TIP36A, TIP36B, TIP36C (PNP) Complementary Silicon High-Power Transistors

TIP35A, TIP35B, TIP35C (NPN); TIP36A, TIP36B, TIP36C (PNP) Complementary Silicon High-Power Transistors TIP35A, TIP35B, TIP35C (NPN); TIP36A, TIP36B, TIP36C (PNP) Complementary Silicon High-Power Transistors Designed for general purpose power amplifier and switching applications. Features 25 A Collector

More information

Analog Circuits Part 2 Semiconductors

Analog Circuits Part 2 Semiconductors Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network

NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network Preferred Devices NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network This new series of digital transistors is designed to replace a single device and its external resistor bias

More information

Diode and Bipolar Transistor Circuits

Diode and Bipolar Transistor Circuits Diode and Bipolar Transistor Circuits 2 2.1 A Brief Review of Semiconductors Semiconductors are crystalline structures in which each atom shares its valance electrons with the neighboring atoms. The simple

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

Lecture #3 BJT Transistors & DC Biasing

Lecture #3 BJT Transistors & DC Biasing November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #3 BJT Transistors & DC Biasing Instructor: Dr. Ahmad El-Banna Agenda Transistor

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Name & Surname: ID: Date: EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Objectives: 1. To determine transistor type (npn, pnp),terminals, and material using a DMM 2. To graph the

More information

4.1.3 Structure of Actual Transistors

4.1.3 Structure of Actual Transistors 4.1.3 Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

10 Semiconductors - Transistors

10 Semiconductors - Transistors 10 Semiconductors - Transistors The transistor was invented in the late 1940s. Credit for its invention is given to three Bell Laboratories scientists, John Bardeen, Walter Brattain, and William Shockley.

More information

CA3018, CA3018A. General Purpose Transistor Arrays. Features. Applications. Part Number Information. Pinout. [ /Title () /Autho.

CA3018, CA3018A. General Purpose Transistor Arrays. Features. Applications. Part Number Information. Pinout. [ /Title () /Autho. [ /Title /Subject /Autho /Keyords ) /Cretor /DOCI FO dfark /Pageode /Useutines /DOC- IEW dfark Semiconductor General Purpose Transistor Arrays The CA8 and CA8A consist of four general purpose silicon NPN

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

.dc Vcc Ib 0 50uA 5uA

.dc Vcc Ib 0 50uA 5uA EE 2274 BJT Biasing PreLab: 1. Common Emitter (CE) Transistor Characteristics curve Generate the characteristics curves for a 2N3904 in LTspice by plotting Ic by sweeping Vce over a set of Ib steps. Label

More information

Introduction PNP C NPN C

Introduction PNP C NPN C Introduction JT Transistors: A JT (or any transistor) can be used either as a switch with positions of on or off, or an amplifier that controls its output at all levels in between the extreme on or off

More information

Transistors CHAPTER 3.1 INTRODUCTION

Transistors CHAPTER 3.1 INTRODUCTION CHAPTER 3 Bipolar Junction Transistors 3. INTRODUCTION During the period 904 947, the vacuum tube was undoubtedly the electronic device of interest and development. In 904, the vacuum-tube diode was introduced

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB ELECTRONICS I Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB MOBILE STUDIO LAB Before We Start A transistor is a 3-terminal device available in two configurations, NPN and PNP. The transistor

More information

Chapter 3. Bipolar Junction Transistors

Chapter 3. Bipolar Junction Transistors Chapter 3. Bipolar Junction Transistors Outline: Fundamental of Transistor Common-Base Configuration Common-Emitter Configuration Common-Collector Configuration Introduction The transistor is a three-layer

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8 Bipolar Junction Transistor Aim: The aim of this experiment is to investigate the DC behavior

More information

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

More information

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Biasing. Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal. D iasing JT iasing iasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. The D input establishes an operating or quiescent point called the Q-point.

More information

Table of Contents. iii

Table of Contents. iii Table of Contents Subject Page Experiment 1: Diode Characteristics... 1 Experiment 2: Rectifier Circuits... 7 Experiment 3: Clipping and Clamping Circuits 17 Experiment 4: The Zener Diode 25 Experiment

More information

TIP3055 (NPN), TIP2955 (PNP) Complementary Silicon Power Transistors 15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS, 90 WATTS

TIP3055 (NPN), TIP2955 (PNP) Complementary Silicon Power Transistors 15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS, 90 WATTS TIP3055 (NPN), TIP2955 (PNP) Complementary Silicon Power Transistors Designed for general purpose switching and amplifier applications. Features DC Current ain h FE = 20 70 @ I C =.0 dc Collector Emitter

More information

5.1 BJT Device Structure and Physical Operation

5.1 BJT Device Structure and Physical Operation 11/28/2004 section 5_1 BJT Device Structure and Physical Operation blank 1/2 5.1 BJT Device Structure and Physical Operation Reading Assignment: pp. 377-392 Another kind of transistor is the Bipolar Junction

More information

Lecture #3 ( 2 weeks) Transistors

Lecture #3 ( 2 weeks) Transistors Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-291 Electronic Engineering Lecture #3 ( 2 weeks) Transistors Instructor: Dr. Ahmad El-Banna 1 Agenda BJT Structure Basic Operation Transistor

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT)

EE105 Fall 2014 Microelectronic Devices and Circuits. NPN Bipolar Junction Transistor (BJT) EE105 Fall 2014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 utardja Dai Hall (DH) 1 NPN Bipolar Junction Transistor (BJT) Forward Bias Reverse Bias Hole Flow Electron

More information

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor.

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor. Exercise 1: EXERCISE OBJECTIVE When you have completed this exercise, you will be able to test a transistor by forward biasing and reverse biasing the junctions. You will verify your results with an ohmmeter.

More information

Some frequently used transistor parameter symbols and their meanings are given here.

Some frequently used transistor parameter symbols and their meanings are given here. When you have completed this exercise, you will be familiar with several transistor parameter symbols. You will verify your knowledge with a list of common transistor parameter symbols and meanings. Some

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

EET1240/ET212 EET1240/ET212

EET1240/ET212 EET1240/ET212 EET1240/ET212 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

More information

LM3046 Transistor Array

LM3046 Transistor Array Transistor Array General Description The LM3046 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentiallyconnected

More information

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Page1 Name ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016) Problem 1 (15 points) You are given an NMOS amplifier with drain load resistor R D = 20 k. The DC voltage (V RD

More information

WPT2N32 WPT2N32. Descriptions. Features. Applications. Order information. Http//:

WPT2N32 WPT2N32. Descriptions. Features. Applications. Order information. Http//: Single, PNP, -30V, -A, Power Transistor with 20V N-MOSFET Http//:www.willsemi.com Descriptions The is PNP bipolar power transistor with 20V N-MOSFET. This device is suitable for use in charging circuit

More information

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit Common Collector Circuit When you have completed this exercise, you will be able to determine the dc operating conditions of a common collector (CC) transistor circuit by using a typical CC circuit. You

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

7X = Device Marking. Symbol

7X = Device Marking. Symbol The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a baseemitter resistor. These digital transistors

More information

b b Fig. 1 Transistor symbols

b b Fig. 1 Transistor symbols TRANSISTORS Transistors have three terminals which are referred to as emitter (e), base (b) and collector (c). Fig 1 shows the symbols used for the two types of transistors in common use. c c b b e e npn

More information

2N3055A (NPN), MJ15015 (NPN), MJ15016 (PNP) Complementary Silicon High Power Transistors

2N3055A (NPN), MJ15015 (NPN), MJ15016 (PNP) Complementary Silicon High Power Transistors (NPN), MJ (NPN), MJ6 (PNP) MJ and MJ6 are Preferred Devices Complementary Silicon HighPower Transistors These PowerBase complementary transistors are designed for high power audio, stepping motor and other

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com Unit 1: Transistor, UJT s, and Thyristors In the Diode tutorials we saw that simple diodes are made up from two pieces of semiconductor material, either silicon or germanium to form a simple PN-junction

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Semiconductor analyser AS4002P User Manual

Semiconductor analyser AS4002P User Manual Semiconductor analyser AS4002P User Manual Copyright Ormelabs (C) 2010 http://www.ormelabs.com 1 CONTENTS SECTION Page SECTION 1: Introduction... 3 SECTION 2: Features... 3 SECTION 3: Component analysis...

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

10 AMPERE DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS VOLTS 125 WATTS MAXIMUM RATINGS THERMAL CHARACTERISTICS TIP141 TIP142

10 AMPERE DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS VOLTS 125 WATTS MAXIMUM RATINGS THERMAL CHARACTERISTICS TIP141 TIP142 ... designed for general purpose amplifier and low frequency switching applications. High DC Current Gain Min h FE = 1000 @ I C = 5 A, V CE = 4 V Collector Emitter Sustaining Voltage @ 30 ma V CEO(sus)

More information

CA3096, CA3096A, CA3096C

CA3096, CA3096A, CA3096C January OBSOLETE PRODUCT POSSIBLE SUBSTITUTE PRODUCT HFA39 CA39, CA39A, CA39C NPN/PNP Transistor Arrays Applications Five-Independent Transistors - Three NPN and - Two PNP Differential Amplifiers DC Amplifiers

More information

7. Bipolar Junction Transistor

7. Bipolar Junction Transistor 41 7. Bipolar Junction Transistor 7.1. Objectives - To experimentally examine the principles of operation of bipolar junction transistor (BJT); - To measure basic characteristics of n-p-n silicon transistor

More information