Lecture 8 Camera Models

Size: px
Start display at page:

Download "Lecture 8 Camera Models"

Transcription

1 Lecture 8 Caera Models Professor Silvio Savarese Coputational Vision and Geoetr Lab Silvio Savarese Lecture 8-5-Oct-4

2 Lecture 8 Caera Models Pinhole caeras Caeras & lenses The geoetr of pinhole caeras Other caera odels Reading: Silvio Savarese [FP] Chapter Caeras [FP] Chapter 2 Geoetric Caera Models [HZ] Chapter 6 Caera Models Soe slides in this lecture are courtes to Profs. J. Ponce, S. Seit, F-F Li Lecture 8-5-Oct-4

3 How do we see the world? Let s design a caera Idea : put a piece of fil in front of an object Do we get a reasonable iage?

4 Pinhole caera Add a barrier to block off ost of the ras This reduces blurring The opening known as the aperture

5 Soe histor Milestones: Leonardo da Vinci (452-59): first record of caera obscura

6 Soe histor Milestones: Leonardo da Vinci (452-59): first record of caera obscura Johann Zahn (685): first portable caera

7 Soe histor Milestones: Leonardo da Vinci (452-59): first record of caera obscura Johann Zahn (685): first portable caera Joseph Nicephore Niepce (822): first photo - birth of photograph Photograph (Niepce, La Table Servie, 822)

8 Soe histor Milestones: Leonardo da Vinci (452-59): first record of caera obscura Johann Zahn (685): first portable caera Joseph Nicephore Niepce (822): first photo - birth of photograph Daguerréotpes (839) Photographic Fil (Eastan, 889) Cinea (Luière Brothers, 895) Color Photograph (Luière Brothers, 98) Photograph (Niepce, La Table Servie, 822)

9 Let s also not forget Motu ( BC) Oldest eistent book on geoetr in China Aristotle ( BC) Also: Plato, Euclid Al-Kindi (c ) Ibn al-haitha (965-4)

10 Pinhole caera Pinhole perspective projection f o f = focal length o = aperture = pinhole = center of the caera

11 f ' f ' P P Pinhole caera Derived using siilar triangles

12 Pinhole caera k f i P = [, ] P =[, f ] O f

13 Pinhole caera f f Coon to draw iage plane in front of the focal point. What s the transforation between these 2 planes? ' ' f f

14 Pinhole caera Is the sie of the aperture iportant? Kate lauka

15 Shrinking aperture sie - Ras are ied up -Wh the aperture cannot be too sall? -Less light passes through -Diffraction effect Adding lenses!

16 Caeras & Lenses A lens focuses light onto the fil

17 Caeras & Lenses circle of confusion A lens focuses light onto the fil There is a specific distance at which objects are in focus Related to the concept of depth of field

18 Caeras & Lenses A lens focuses light onto the fil There is a specific distance at which objects are in focus Related to the concept of depth of field

19 Caeras & Lenses focal point f A lens focuses light onto the fil All parallel ras converge to one point on a plane located at the focal length f Ras passing through the center are not deviated

20 Caeras & Lenses Z - f o Fro Snell s law: ' ' ' ' f ' f R 2(n ) o

21 Thin Lenses o ' f o f R 2(n ) Snell s law: Focal length n sin = n 2 sin 2 Sall angles: n n 2 2 n = n (lens) n = (air) ' ' ' '

22 Issues with lenses: Radial Distortion Deviations are ost noticeable for ras that pass through the edge of the lens No distortion Pin cushion Barrel (fishee lens) Iage agnification decreases with distance fro the optical ais

23 Lecture 2 Caera Models Pinhole caeras Caeras & lenses The geoetr of pinhole caeras Intrinsic Etrinsic Other caera odels Silvio Savarese Lecture 8-5-Oct-4

24 Pinhole caera Pinhole perspective projection f o f = focal length o = center of the caera (,, ) 3 E 2 (f,f )

25 Fro retina plane to iages Piels, botto-left coordinate sstes

26 Coordinate sstes c c

27 Converting to piels c. Off set C=[c, c ] c (,, ) (f c, f c )

28 Converting to piels c c. Off set 2. Fro etric to piels (,, ) (f k c, f l c ) C=[c, c ] Units: k,l : piel/ f : Non-square piels, : piel

29 Converting to piels c (,, ) ( c, c ) C=[c, c ] c Matri for? A related question: Is this a linear transforation?

30 (,, ) (f,f ) Is this a linear transforation? No division b is nonlinear How to ake it linear?

31 Hoogeneous coordinates hoogeneous iage coordinates hoogeneous scene coordinates Converting fro hoogeneous coordinates

32 Caera Matri ) c, c ( ),, ( c c c c X c c C=[c, c ]

33 Perspective Projection Transforation f f f f X f f X i X M X M 3 H 4

34 X M X X K I Caera Matri c c X Caera atri K

35 Finite projective caeras c c s X Skew paraeter c c C=[c, c ] K has 5 degrees of freedo!

36 Lecture 2 Caera Models Pinhole caeras Caeras & lenses The geoetr of pinhole caeras Intrinsic Etrinsic Other caera odels Silvio Savarese Lecture 8-5-Oct-4

37 World reference sste R,T j w k w O w i w The apping so far is defined within the caera reference sste What if an object is represented in the world reference sste

38 3D Rotation of Points Rotation around the coordinate aes, counter-clockwise: cos sin sin cos ) ( cos sin sin cos ) ( cos sin sin cos ) ( R R R p Y p

39 World reference sste R,T j w X k w O w X i w In 4D hoogeneous coordinates: X R T 4 4 X w I X X K Internal paraeters R T ' K I X w 44 K Eternal paraeters R T X w M

40 Projective caeras R,T j w X k w O w X i w 3 w 4 X 3 M 34 X w K 3 R T 34 X K s c c How an degrees of freedo? =!

41 Caera calibration More details in CS23A Estiate intrinsic and etrinsic paraeters fro or ultiple iages 3 w 4 X 3 M 34 X w K 3 R T 34 X K s c c How an degrees of freedo? =!

42 Projective caeras O w i w k w j w R,T w 3 X X M w X T R K 3 2 M W W W W X X X X ), ( w w w w X X X X E X X

43 Properties of Projection Points project to points Lines project to lines Distant objects look saller

44 Properties of Projection Angles are not preserved Parallel lines eet! Parallel lines in the world intersect in the iage at a vanishing point

45 Horion line (vanishing line) l horion

46 Horion line (vanishing line)

47 One-point perspective Masaccio, Trinit, Santa Maria Novella, Florence, Credit slide S. Laebnik

48 Lecture 2 Caera Models Pinhole caeras Caeras & lenses The geoetr of pinhole caeras Intrinsic Etrinsic Other caera odels Silvio Savarese Lecture 8-5-Oct-4

49 Projective caera p q r f O Q R P

50 Weak perspective projection When the relative scene depth is sall copared to its distance fro the caera p f q r Q Q O o R R P P

51 Weak perspective projection When the relative scene depth is sall copared to its distance fro the caera f p R q r Q Q O o R P P ' ' f f ' ' ' ' f ' f ' Magnification

52 Weak perspective projection f o p R q r Q Q O R P M P w P P M A b M K Instead of R T A v b

53 2 3 2 P P P W 2 W W 3 2 ) P, P ( 2 w w E P M P w b A M agnification 3 2 P M P w v b A M W 3 W 2 W W 3 2 P P P P ) P P, P P ( w w w w E Perspective Weak perspective

54 Orthographic (affine) projection Distance fro center of projection to iage plane is infinite f f ' ' ' ' ' '

55 Pros and Cons of These Models Weak perspective uch sipler ath. Accurate when object is sall and distant. Most useful for recognition. Pinhole perspective uch ore accurate for scenes. Used in structure fro otion.

56 Weak perspective projection The Kangi Eperor's Southern Inspection Tour (69-698) B Wang Hui

57 Weak perspective projection The Kangi Eperor's Southern Inspection Tour (69-698) B Wang Hui

58 Things to reeber

59

Lecture 2 Camera Models

Lecture 2 Camera Models Lecture 2 Camera Models Professor Silvio Savarese Computational Vision and Geometr Lab Silvio Savarese Lecture 2 - -Jan-8 Lecture 2 Camera Models Pinhole cameras Cameras lenses The geometr of pinhole cameras

More information

Lecture 2 Camera Models

Lecture 2 Camera Models Lecture 2 Camera Models Professor Silvio Savarese Computational Vision and Geometr Lab Silvio Savarese Lecture 2-4-Jan-4 Announcements Prerequisites: an questions? This course requires knowledge of linear

More information

Lecture 7: Camera Models

Lecture 7: Camera Models Lecture 7: Camera Models Professor Stanford Vision Lab 1 What we will learn toda? Pinhole cameras Cameras & lenses The geometr of pinhole cameras Reading: [FP]Chapters 1 3 [HZ] Chapter 6 2 What we will

More information

Lecture 7: Camera Models

Lecture 7: Camera Models Lecture 7: Camera Models Professor Fei- Fei Li Stanford Vision Lab Lecture 7 -! 1 What we will learn toda? Pinhole cameras Cameras & lenses The geometr of pinhole cameras Reading: [FP] Chapters 1 3 [HZ]

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

Building a Real Camera

Building a Real Camera Building a Real Camera Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction

More information

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 35) Hours Lecture: Tuesda 5:3-8:pm, TTLMAN 43B Office hour: Tuesda 3: - 5:pm, or b appointment Textbook Computer Vision: Models, Learning,

More information

Computer Vision. The Pinhole Camera Model

Computer Vision. The Pinhole Camera Model Computer Vision The Pinhole Camera Model Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2017/2018 Imaging device

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Cameras and Projection Szeliski 2.1.3-2.1.6 Reading Announcements Project 1 assigned, see projects page: http://www.cs.cornell.edu/courses/cs6670/2011sp/projects/projects.html

More information

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1 Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Projection Readings Nalwa 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

More information

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Guido Gerig CS-GY 6643, Spring 2017 (slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich, With content from Prof. Trevor

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13 Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 4a: Cameras Source: S. Lazebnik Reading Szeliski chapter 2.2.3, 2.3 Image formation Let s design a camera Idea 1: put a piece of film in front of an object

More information

Lecture 02 Image Formation 1

Lecture 02 Image Formation 1 Institute of Informatics Institute of Neuroinformatics Lecture 02 Image Formation 1 Davide Scaramuzza http://rpg.ifi.uzh.ch 1 Lab Exercise 1 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 55 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 55 Menu January 7, 2016 Topics: Image

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 4 Image formation(part I) Schedule Last class linear algebra overview Today Image formation and camera properties

More information

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2. Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

More information

How do we see the world?

How do we see the world? The Camera 1 How do we see the world? Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Credit: Steve Seitz 2 Pinhole camera Idea 2: Add a barrier to

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Unit 1: Image Formation

Unit 1: Image Formation Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

More information

Two strategies for realistic rendering capture real world data synthesize from bottom up

Two strategies for realistic rendering capture real world data synthesize from bottom up Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are successful. Attempts to take the best of both world

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Dr F. Cuzzolin 1. September 29, 2015

Dr F. Cuzzolin 1. September 29, 2015 P00407 Principles of Computer Vision 1 1 Department of Computing and Communication Technologies Oxford Brookes University, UK September 29, 2015 September 29, 2015 1 / 73 Outline of the Lecture 1 2 Basics

More information

Image Formation: Camera Model

Image Formation: Camera Model Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684-IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2015 Version 3 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

Announcements. Image Formation: Outline. The course. How Cameras Produce Images. Earliest Surviving Photograph. Image Formation and Cameras

Announcements. Image Formation: Outline. The course. How Cameras Produce Images. Earliest Surviving Photograph. Image Formation and Cameras Announcements Image ormation and Cameras CSE 252A Lecture 3 Assignment 0: Getting Started with Matlab is posted to web page, due Tuesday, ctober 4. Reading: Szeliski, Chapter 2 ptional Chapters 1 & 2 of

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Cameras, lenses and sensors

Cameras, lenses and sensors Cameras, lenses and sensors Marc Pollefeys COMP 256 Cameras, lenses and sensors Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Sensing The Human Eye Reading: Chapter.

More information

CS 443: Imaging and Multimedia Cameras and Lenses

CS 443: Imaging and Multimedia Cameras and Lenses CS 443: Imaging and Multimedia Cameras and Lenses Spring 2008 Ahmed Elgammal Dept of Computer Science Rutgers University Outlines Cameras and lenses! 1 They are formed by the projection of 3D objects.

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture 5: Projection Prof. James O Brien Universit of California, Berkele V25-5-.3 Toda Windowing and Viewing Transformations Windows and viewports Orthographic projection Perspective

More information

Reading. 8. Projections. 3D Geometry Pipeline. 3D Geometry Pipeline (cont d) Required: w Watt, Section

Reading. 8. Projections. 3D Geometry Pipeline. 3D Geometry Pipeline (cont d) Required: w Watt, Section Reading Required: Watt, Section 5.2.2 5.2.4. Further reading: 8. Projections Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 2 - Class 2: Vision, Physics, Cameras September 7th, 2017 Today Physics Human Vision Eye Brain Perspective Projection Camera Models Image Formation Digital

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Cameras, lenses, and sensors

Cameras, lenses, and sensors Cameras, lenses, and sensors Reading: Chapter 1, Forsyth & Ponce Optional: Section 2.1, 2.3, Horn. 6.801/6.866 Profs. Bill Freeman and Trevor Darrell Sept. 10, 2002 Today s lecture How many people would

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2014 Version 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Announcement A total of 5 (five) late days are allowed for projects. Office hours

Announcement A total of 5 (five) late days are allowed for projects. Office hours Announcement A total of 5 (five) late days are allowed for projects. Office hours Me: 3:50-4:50pm Thursday (or by appointment) Jake: 12:30-1:30PM Monday and Wednesday Image Formation Digital Camera Film

More information

Computer Vision. Thursday, August 30

Computer Vision. Thursday, August 30 Computer Vision Thursday, August 30 1 Today Course overview Requirements, logistics Image formation 2 Introductions Instructor: Prof. Kristen Grauman grauman @ cs TAY 4.118, Thurs 2-4 pm TA: Sudheendra

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

VC 16/17 TP2 Image Formation

VC 16/17 TP2 Image Formation VC 16/17 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Computer Vision? The Human Visual

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

PREDICTING SOUND LEVELS BEHIND BUILDINGS - HOW MANY REFLECTIONS SHOULD I USE? Apex Acoustics Ltd, Gateshead, UK

PREDICTING SOUND LEVELS BEHIND BUILDINGS - HOW MANY REFLECTIONS SHOULD I USE? Apex Acoustics Ltd, Gateshead, UK PREDICTING SOUND LEVELS BEHIND BUILDINGS - HOW MANY REFLECTIONS SHOULD I USE? W Wei A Cooke J Havie-Clark Apex Acoustics Ltd, Gateshead, UK Apex Acoustics Ltd, Gateshead, UK Apex Acoustics Ltd, Gateshead,

More information

Single-view Metrology and Cameras

Single-view Metrology and Cameras Single-view Metrology and Cameras 10/10/17 Computational Photography Derek Hoiem, University of Illinois Project 2 Results Incomplete list of great project pages Haohang Huang: Best presented project;

More information

Geometrical Optics Optical systems

Geometrical Optics Optical systems Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

More information

Basic principles of photography. David Capel 346B IST

Basic principles of photography. David Capel 346B IST Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera Outline Cameras Pinhole camera Film camera Digital camera Video camera Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

More information

Graphics and Interaction Perspective Geometry

Graphics and Interaction Perspective Geometry 433-324 Graphics and Interaction Perspective Geometr Department of Computer Science and Software Engineering The Lecture outline Introduction to perspective geometr Perspective Geometr Centre of projection

More information

6.A44 Computational Photography

6.A44 Computational Photography Add date: Friday 6.A44 Computational Photography Depth of Field Frédo Durand We allow for some tolerance What happens when we close the aperture by two stop? Aperture diameter is divided by two is doubled

More information

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2!

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2! !! Cameras and Sensors Today Pinhole camera! Lenses! Exposure! Sensors! photo by Abelardo Morell BIL721: Computational Photography! Spring 2015, Lecture 2! Aykut Erdem! Hacettepe University! Computer Vision

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations Overview Pinhole camera Principles of operation Limitations 1 Terminology The pinhole camera The first camera - camera obscura - known to Aristotle. In 3D, we can visualize the blur induced by the pinhole

More information

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

More information

Reading. Angel. Chapter 5. Optional

Reading. Angel. Chapter 5. Optional Projections Reading Angel. Chapter 5 Optional David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3. The 3D synthetic camera

More information

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional

Reading. Projections. The 3D synthetic camera model. Imaging with the synthetic camera. Angel. Chapter 5. Optional Reading Angel. Chapter 5 Optional Projections David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3. The 3D snthetic camera

More information

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model Focus! Models Lecture #17 Tuesda, November 1 st, 2011 Announcements Programming Assignment #3 Is due a week rom Tuesda Midterm #2: two weeks rom Tuesda GTA survers: https://www.survemonke.com/r/shpj7j3

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 2 Aug 23 rd, 2018 Slides from Dr. Shishir K Shah, Rajesh Rao and Frank (Qingzhong) Liu 1 Instructor Digital Image Processing COSC 6380/4393 Pranav Mantini

More information

PHY 1160C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 13, 15, 20, 25, 27

PHY 1160C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 13, 15, 20, 25, 27 PHY 60C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 3, 5, 20, 25, 27 26.2 A pin-hole camera is used to take a photograph of a student who is.8 m tall. The student stands 2.7 m in front

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 2 Aug 24 th, 2017 Slides from Dr. Shishir K Shah, Rajesh Rao and Frank (Qingzhong) Liu 1 Instructor TA Digital Image Processing COSC 6380/4393 Pranav Mantini

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

Prof. Feng Liu. Spring /05/2017

Prof. Feng Liu. Spring /05/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/05/2017 Last Time Course overview Admin. Info Computational Photography 2 Today Digital Camera History of Camera Controlling Camera

More information

The eye & corrective lenses

The eye & corrective lenses Phys 102 Lecture 20 The eye & corrective lenses 1 Today we will... Apply concepts from ray optics & lenses Simple optical instruments the camera & the eye Learn about the human eye Accommodation Myopia,

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

Camera Simulation. References. Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A.

Camera Simulation. References. Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Camera Simulation Effect Cause Field of view Film size, focal length Depth of field Aperture, focal length Exposure Film speed, aperture, shutter Motion blur Shutter References Photography, B. London and

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

TECHSPEC COMPACT FIXED FOCAL LENGTH LENS

TECHSPEC COMPACT FIXED FOCAL LENGTH LENS Designed for use in machine vision applications, our TECHSPEC Compact Fixed Focal Length Lenses are ideal for use in factory automation, inspection or qualification. These machine vision lenses have been

More information

Hand Gesture Recognition and Its Application in Robot Control

Hand Gesture Recognition and Its Application in Robot Control IJCSI International Journal of Coputer Science Issues, Volue 13, Issue 1, January 016 www.ijcsi.org 10 Hand Gesture Recognition and Its Application in Robot Control Pei-Guo Wu 1 and Qing-Hu Meng 1 Inforation

More information

On the field of view of a Galilean telescope

On the field of view of a Galilean telescope Transactions of the Optical Society On the field of view of a Galilean telescope To cite this article: H A Hughes and P F Everitt 1920 Trans. Opt. Soc. 22 15 View the article online for updates and enhanceents.

More information

Computer Vision Lecture 1

Computer Vision Lecture 1 Computer Vision Lecture 1 Introduction 19.10.2016 Bastian Leibe Visual Computing Institute RWTH Aachen University http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de Organization Lecturer Prof.

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Sensors and Image Formation Imaging sensors and models of image formation Coordinate systems Digital

More information

Chapter 25 Optical Instruments

Chapter 25 Optical Instruments Chapter 25 Optical Instruments Units of Chapter 25 Cameras, Film, and Digital The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of

More information

Fundamental Paraxial Equation for Thin Lenses

Fundamental Paraxial Equation for Thin Lenses THIN LENSES Fundamental Paraxial Equation for Thin Lenses A thin lens is one for which thickness is "negligibly" small and may be ignored. Thin lenses are the most important optical entity in ophthalmic

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens 3-1 Section 3 Imaging With A Thin Lens Object at Infinity An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the

More information

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance R. Abd-Rahman, M. M. Isa, H. H. Goh

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance R. Abd-Rahman, M. M. Isa, H. H. Goh Tokyo Japan May 2-2, 21, 1 () Part XXIII Design Optiisation of Copound Parabolic Concentrator (CPC) for Iproved Perforance R. Abd-Rahan, M. M. Isa, H. H. Goh Abstract A copound parabolic concentrator (CPC)

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

HISTORY OF PHOTOGRAPHY

HISTORY OF PHOTOGRAPHY HISTORY OF PHOTOGRAPHY http://www.tutorialspoint.com/dip/history_of_photography.htm Copyright tutorialspoint.com Origin of camera The history of camera and photography is not exactly the same. The concepts

More information

Image Processing & Projective geometry

Image Processing & Projective geometry Image Processing & Projective geometry Arunkumar Byravan Partial slides borrowed from Jianbo Shi & Steve Seitz Color spaces RGB Red, Green, Blue HSV Hue, Saturation, Value Why HSV? HSV separates luma,

More information

Virtual and Digital Cameras

Virtual and Digital Cameras CS148: Introduction to Computer Graphics and Imaging Virtual and Digital Cameras Ansel Adams Topics Effect Cause Field of view Film size, focal length Perspective Lens, focal length Focus Dist. of lens

More information

Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video. Prof. Marc Pollefeys Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

More information

MEM: Intro to Robotics. Assignment 3I. Due: Wednesday 10/15 11:59 EST

MEM: Intro to Robotics. Assignment 3I. Due: Wednesday 10/15 11:59 EST MEM: Intro to Robotics Assignment 3I Due: Wednesday 10/15 11:59 EST 1. Basic Optics You are shopping for a new lens for your Canon D30 digital camera and there are lots of lens options at the store. Your

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

OPAC103 GEOMETRICAL OPTICS LABORATORY MANUAL. Focal Length and Magnification of a Concave Mirror

OPAC103 GEOMETRICAL OPTICS LABORATORY MANUAL. Focal Length and Magnification of a Concave Mirror OPAC103 GEOETRICAL OPTICS LABORATORY ANUAL Focal Length and agnification of a Concave irror Dr. Ahmet Bingül Gaziantep University Department of Optical & Acoustical Engineering Web page: http://www1.gantep.edu.tr/~bingul/opaclab

More information

Optical Magnetic Response in a Single Metal Nanobrick. Jianwei Tang, Sailing He, et al.

Optical Magnetic Response in a Single Metal Nanobrick. Jianwei Tang, Sailing He, et al. Optical Magnetic Response in a Single Metal Nanobrick Jianwei Tang, Sailing He, et al. Abstract: Anti-syetric localized surface plasons are deonstrated on a single silver nanostrip sandwiched by SiC layers.

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Reading. Projections. Projections. Perspective vs. parallel projections. Foley et al. Chapter 6. Optional. Perspective projections pros and cons:

Reading. Projections. Projections. Perspective vs. parallel projections. Foley et al. Chapter 6. Optional. Perspective projections pros and cons: Reading Fole et al. Chapter 6 Optional Projections David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGra-Hill, Ne York, 990, Chapter 3. Projections Projections

More information

3D Viewing I. Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. CMSC 435/634 August D Viewing I # /27

3D Viewing I. Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. CMSC 435/634 August D Viewing I # /27 3D Viewing I Acknowledgement: Some slides are from the Dr. Andries van Dam lecture. From 3D to 2D: Orthographic and Perspective Projection Part 1 Geometrical Constructions Types of Projection Projection

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

More information

Perspective. Does linear perspective occur in nature. Perspective or perspectives? E.g. we experience foreshortening.

Perspective. Does linear perspective occur in nature. Perspective or perspectives? E.g. we experience foreshortening. Perspective Does linear perspective occur in nature E.g. we experience foreshortening Perspective or perspectives? Perspective 6 Pictorial depth cues Occlusion Size Position relative to the horizon Convergence

More information

The Art and Science of Depiction. Linear Perspective. Fredo Durand MIT- Lab for Computer Science. Perspective 2

The Art and Science of Depiction. Linear Perspective. Fredo Durand MIT- Lab for Computer Science. Perspective 2 The Art and Science of Depiction Linear Perspective Fredo Durand MIT- Lab for Computer Science Perspective 2 1 Assignments for Monday 30. Solso Cognition and the Visual Arts Chapter 8 & 9 Final project

More information

Shaw Academy. Lesson 2 Course Notes. Diploma in Smartphone Photography

Shaw Academy. Lesson 2 Course Notes. Diploma in Smartphone Photography Shaw Academy Lesson 2 Course Notes Diploma in Smartphone Photography Angle of View Seeing the World through your Smartphone To understand how lenses differ from each other we first need to look at what's

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information