Metal-Semiconductor Schottky Barrier Junctions and Their Applications

Size: px
Start display at page:

Download "Metal-Semiconductor Schottky Barrier Junctions and Their Applications"

Transcription

1 Metal-Semiconductor Schottky Barrier Junctions and Their Applications

2 Metal-Setniconductor Schottlcy Barrier Junctions and Their Applications Edited by B. L.Sharma Solid State Physics Laboratory Delhi, India Plenum Press.. New York and London

3 Main entry under title: Library of Congress Cataloging in Publication Data Metal-semiconductor Schottky barrier junctions and their applications. Bibliography: p. Includes index. 1. Diodes, Schottky-barrier-Addresses, essays, lectures. I. Sharma, B. L. TK S35M ' ISBN-13: e-isbn-13: : \0.\007/ Plenum Press. New York Softcover reprint of the hardcover 1 st edition 1984 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

4 Contributors Y. Anand MIA-COM Gallium Arsenide Products, Inc., Burlington, Massachusetts R. Z. Bachrach Xerox Palo Alto Research Center, Palo Alto, California Stephen J. Fonash Engineering Science Program, The Pennsylvania State University, University Park, Pennsylvania S. C. Gupta Solid State Physics Laboratory, Delhi, India R.J. Nemanich Xerox Palo Alto Research Center, Palo Alto, California H. Preier Fraunhofer-Institut fur Physikalische Messtechnik, Freiburg, Federal Republic of Germany Dieter K. Schroder Department of Electrical and Computer Engineering, Arizona State University, Tempe, Arizona B.L. Sharma Solid State Physics Laboratory, Delhi, India M.J. Thompson Xerox Palo Alto Research Center, Palo Alto, California James A. Turner Plessey Research (Caswell) Ltd., Allen Clark Research Centre, Caswell, Towcester, Northants, England M.S. Tyagi Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India v

5 Preface The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metalsemiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the larger interest, it was also considered necessary to have the different topics of Schottky barrier junctions written by experts. This monograph is divided into eight chapters. The first chapterreviews the physics of Schottky barrier junctions, while the second deals with the interface chemistry and structure of Schottky barrier formation. Chapter 3 emphasizes the design considerations, fabrication processes, and characterization aspects of metal-silicon and metal-gallium arsenide junctions in a general way. Chapters 4-8 are concerned with specific applications. Amongst these, Chapter 4 encompasses a number of optoelectronic structures which employ not only Schottky barrier junctions but also Schottky barrier-type junctions. Chapters 5, 6, 7, and 8 deal with various theoretical and practical aspects of Schottky photodiodes, microwave Schottky diodes, MESFETs, and Schottky barrier gate CCDs, respectively. Considering the timely importance of metalamorphous silicon junctions, a chapter on such junctions and their applications is also included at the end. In a monograph of this type it is difficult to maintain the interwoven nature of the text and ensure a uniformity of presentation and notations, especially when the contributors are from different parts of the world. For this, I regret any inconvenience to those readers who prefer a textbook-type approach. vii

6 viii PREFACE Finally, I am indebted to the contributors for their self-contained contributions and to Mr. Ellis H. Rosenberg and his staff, without whose cooperation it would have been difficult to bring out this monograph in the stipulated time. B.L. SHARMA

7 Contents 1. PHYSICS OF SCHOTTKY BARRIER JUNCTIONS M.S. Tyagi 1. Introduction Origins of Barrier Height Schottky-Mott Theory of Ideal Metal-Semiconductor Contact Modifications to Schottky Theory Classifications of Metal-Semiconductor Interfaces Contacts on Reactive Interfaces Contacts with Surface States and an Insulating Interfacial Layer Contacts on Vacuum Cleaved Surfaces Measurement of Barrier Height Capacitance-Voltage Measurement Current-Voltage Measurement Photoelectric Measurement Results of Barrier Height Measurements Chemically Prepared Surfaces Vacuum Cleaved Surfaces Concluding Remarks Capacitance-Voltage Characteristics Electric Field and Potential Distribution in the Depletion Region Depletion Region Capacitance Ideal Schottky Barrier Effect of Minority Carriers Effect of Interfacial Layer Effect of Deep Traps Current-Voltage Characteristics Transport Mechanisms Diffusion and Thermionic Emission over the Barrier Tunneling through the Barrier Carrier Generation and Recombination in the Junction Depletion Region Minority Carrier Injection Forward Characteristics Reverse Characteristics Transient Behavior 53 ix

8 x 8. Low-Resistance Schottky Barrier Contacts References CONTENTS INTERFACE CHEMISTRY AND STRUCTURE OF SCHOTTKY BARRIER FORMATION R.z. Bachrach 1. Introduction.. 2. Perspectives on Schottky Barrier Formation Introduction Brief Review of Phenomenological Schottky Barrier Data 3. The Chemistry and Structure of the Interfacial Layer Synopsis of the Layer-by-Layer Evolution Some Techniques for Studying the Stages of Interface Formation. 4. Evolution of the Interfacial Layer Stage 0: The Clean Semiconductor Surface Silicon (100) and (111) Surfaces GaAs (110) and GaAs (100) Surfaces Stage 1: The Dilute Limit «1/2 Monolayer) Stage 2: Monolayer Formation-Metal Film Nucleation Stage 3: Additional Monolayers and Interdiffusion Some Specific Characteristics of the Interfacial Layers.. 5. Formation of Interface States Intrinsic Interface States Derived from the Metal and Semiconductor 5.2. Localized Defect and Impurity Related States Interface States and the Stages of Interface Formation Case Studies of the Chemistry and Structure of Schottky Barrier Formation Case Studies of Silicon Schottky Barriers AI, Ag, Cu, and Au Schottky Barriers Silicide-Silicon Interfaces Case Studies of III-V and II-VI Compound Semiconductor Schottky Barriers The Ga-AI-As System The GaAIAs Ternary System with Au Schottky Barriers InP Some II-VI Examples. 7. Summary References FABRICATION AND CHARACTERIZATION OF METAL SEMICONDUCTOR SCHOTTKY BARRIER JUNCTIONS B.L.Sharma 1. Introduction Selection of Semiconductor Materials

9 CONTENTS xi 3. Metal-Semiconductor Systems Metal-Silicon Systems Metal-GaAs Systems Multilayer Metallization Systems 4. Design Considerations 5. Fabrication Technology Surface Processing Dielectric Film Deposition 5.3. Ohmic Contact Formation 5.4. Metal Deposition Other Steps. 6. Characterization. References SCHOTTKY-BARRIER-TYPE OPTOELECTRONIC STRUCTURES Stephen J. Fonash 1. Introduction Barrier Formation in Schottky-Barrier-Type Junctions 3. Transport in Schottky-Barrier-Type Structures 3.1. MS and MIS Structures SIS Structures Schottky-Barrier-Type Optoelectronic Structures 4.1. Schottky-Barrier-Type Light-Emitting Structures Schottky-Barrier-Type Photodiodes Schottky-Barrier-Type Photovoltaic Devices MS and MIS Photovoltaic Devices SIS Photo voltaic Devices 3. Summary R~ferences SCHOTTKY BARRIER PHOTODIODES s.c. Gupta and H. Preier 1. Introduction General Parameters of Photodiodes Signal-to-Noise Ratio (SIN) Noise Equivalent Power (NEP) Detectivity (D) Normalized Detectivity (D*) Detectivity Normalized Also with Respect to the Field of View (D**) Resistance Area Product 2.7. Response Time.. 3. Selection of Materials

10 xii 3.1. Metal Systems Semiconducting Materials 4. Fabrication Technology Techniques for Evaluating Device Parameters 5.1. Current-Voltage Characteristics 5.2. Capacitance-Voltage Characteristics Photoelectric Measurements Electron Beam Induced Current Technique. 6. Applications 7. Conclusions References.. CONTENTS MICROWAVE SCHOTTKY BARRIER DIODES Y. Anand 1. Introduction Diode Design Considerations 2.1. Equivalent Circuit Frequency Conversion Basic Mixer Diode RF Parameters Conversion Loss Theory Noise-Temperature Ratio Overall Receiver Noise Figure Mixer Noise Temperature RF Impedance IF Impedance Receiver Sensitivity Doppler Shift Typical Doppler Radar System Basic Detector RF Parameters Video Resistance (Rv) Voltage Sensitivity Current Sensitivity fj Minimum Detectable Signal (MDS) Tangential Signal Sensitivity (TSS) Nominal Detectable Signal (NDS) Noise Equivalent Power (NEP) Video Bandwidth Superheterodyne vs. Single Detection Mixer Configurations Single-Ended Mixer Single-Balanced Mixer Double-Balanced Mixer Image Rejection Mixer

11 CONTENTS xiii Image Enhanced or Image Recovery Mixer Properties of Schottky Barrier Diodes Diode Theory DC Parameters Junction Capacitance Overlay Capacitance Series Resistance Figure of Merit Semiconductor Materials Epitaxial GaAs Barrier Height Lowering Fabrication Microwave Performance Mixer Diodes Detector Diodes RF Pulse and CW Burnout Introduction Factors Affecting RF Burnout Experimental Results Physical Analysis of RF Pulsed Silicon Schottky Barrier Failed Diodes Physical Analysis of RF Pulsed Millimeter GaAs Schottky Barrier Failed Diodes Electrostatic Failure of Silicon Schottky Barrier Diodes Conclusions 266 References METAL-SEMICONDUCTOR FIELD EFFECT TRANSISTORS James A. Turner 1. Introduction Small-Signal FET Theory Design Parameters of a Low-Noise Device 4. Practical Small-Signal FET Fabrication Techniques 4.1. Material Growth Techniques FET Fabrication Technology 5. GaAs Power Field Effect Transistors Principle of Power FET Operation 5.2. Thermal Impedance Power FET Technology 6. Conclusions References

12 xiv CONTENTS 8. SCHOTTKY BARRIER GATE CHARGE-COUPLED DEVICES Dieter K. Schroder 1. Introduction Schottky Gate CCDs Potential-Charge Relationships 3.1. Surface Channel CCD 3.2. Bulk Channel CCD Schottky Gate CCD. 4. Charge Storage Capacity Surface Channel CCD 4.2. Bulk Channel CCD Schottky Gate CCD. 5. Charge Transfer Charge Transfer Efficiency 5.2. Charge Transfer Mechanisms Surface Channel CCD Bulk Channel CCD Schottky Gate CCD 6. Input-Output Circuits 7. Schottky Gate Heterojunction CCDs 8. Experimental Results High-Frequency Devices 8.2. Heterojunction Devices 9. Applications Bibliography References SCHOTTKY BARRIERS ON AMORPHOUS Si AND THEIR APPLICA TIONS R.J. Nemanich and M.J. Thompson 1. Introduction 2. Properties of Amorphous Si Deposition Methods Structural Properties 2.3. Electronic Properties 2.4. Surfaces 3. The Schottky Barrier on a-si:h 3.1. Current-Voltage Measurements Capacitance Measurements 3.3 Internal Photoemission. 4. Interface Kinetics and Its Effect on the Schottky Barrier 5. Applications 5.1. Drift Mobility

13 CONTENTS 5.2. Deep Level Transient Spectroscopy 5.3. Solar Cells Thin Film Transistors 6. Concluding Remarks References Index.. xv

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

Physics of Semiconductor Devices

Physics of Semiconductor Devices Physics of Semiconductor Devices S. M. SZE Member of the Technical Staff Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey WILEY-INTERSCIENCE A Division of John Wiley & Sons New York London

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Semiconductor Device Physics and Simulation

Semiconductor Device Physics and Simulation Semiconductor Device Physics and Simulation MICRODEVICES Physics and Fabrication Technologies Series Editors: Ivor Brodie and Arden Sher SRI International Menlo Park, California Recent volumes in the series:

More information

ADVANCED POWER RECTIFIER CONCEPTS

ADVANCED POWER RECTIFIER CONCEPTS ADVANCED POWER RECTIFIER CONCEPTS B. Jayant Baliga ADVANCED POWER RECTIFIER CONCEPTS B. Jayant Baliga Power Semiconductor Research Center North Carolina State University Raleigh, NC 27695-7924, USA bjbaliga@unity.ncsu.edu

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

Digital Radiography. Selected Topics

Digital Radiography. Selected Topics Digital Radiography Selected Topics DIGITAL RADIOGRAPHY Selected Topics Editorial Advisory Board: PETER R. ALMOND, Ph.D. University of Louisville School of Medicine Louisville, Kentucky JOHN S. CLIFTON,

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5 Microwave tunnel diode Some anomalous phenomena were observed in diode which do not follows the classical diode equation. This anomalous phenomena was explained by quantum tunnelling theory. The tunnelling

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

Microwave Semiconductor Devices

Microwave Semiconductor Devices INDEX Avalanche breakdown, see reverse breakdown, Avalanche condition, 61 generalized, 62 Ballistic transport, 322, 435, 450 Bandgap, III-V-compounds, 387 Bandgap narrowing, Si, 420 BARITT device, 111,

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

Physics of Semiconductor Devices

Physics of Semiconductor Devices Physics of Semiconductor Devices Physics of Semiconductor Devices Third Edition S. M. Sze Department of Electronics Engineering National Chiao Tung University Hsinchu, Taiwan and Kwok K. Ng Central Laboratory

More information

EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS

EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS AIM: To plot forward and reverse characteristics of Schottky diode (Metal Semiconductor junction) APPARATUS: D.C. Supply (0 15 V), current limiting resistor

More information

Field-Effect Transistors in Integrated Circuits

Field-Effect Transistors in Integrated Circuits Field-Effect Transistors in Integrated Circuits Other titles in Electrical and Electronic Engineering ELECTRONIC EQUIPMENT RELIABILITY: j. C. Clu/ey AN INTRODUCTION TO ELECTRICAL INSTRUMENTATION: B. A.

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information

UNIT-4. Microwave Engineering

UNIT-4. Microwave Engineering UNIT-4 Microwave Engineering Microwave Solid State Devices Two problems with conventional transistors at higher frequencies are: 1. Stray capacitance and inductance. - remedy is interdigital design. 2.Transit

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient Prof. Jasprit Singh Fall 2001 EECS 320 Homework 7 This homework is due on November 8. Problem 1 An optical power density of 1W/cm 2 is incident on a GaAs sample. The photon energy is 2.0 ev and there is

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

acoustic imaging cameras, microscopes, phased arrays, and holographic systems

acoustic imaging cameras, microscopes, phased arrays, and holographic systems acoustic imaging cameras, microscopes, phased arrays, and holographic systems acoustic imaging cameras, microscopes, phased arrays, and holographic systems Edited by Glen Wade University of California

More information

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design by Donald 0. Pederson University of California

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p.

Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p. Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p. 9 Monolithic Circuits p. 10 Schottky-Barrier Diodes p. 11 Schottky-Diode

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types.

Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types. Whites, EE 320 Lecture 9 Page 1 of 8 Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types. We ll finish up our discussion of diodes in this lecture by consider a few more

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

Electrical Circuits and Systems

Electrical Circuits and Systems Electrical Circuits and Systems Macmillan Education Basis Books in Electronics Series editor Noel M. Morris Digital Electronic Circuits and Systems Linear Electronic Circuits and Systems Electronic Devices

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

Semiconductor Material And Device Characterization Solution Manual

Semiconductor Material And Device Characterization Solution Manual Semiconductor Material And Device Characterization Solution Manual We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Nonideal Effect The experimental characteristics of MOSFETs deviate to some degree from the ideal relations that have been theoretically derived. Semiconductor Physics and Devices Chapter 11. MOSFET: Additional

More information

DC-DC CONVERTER USING SILICON CARBIDE SCHOTTKY DIODE

DC-DC CONVERTER USING SILICON CARBIDE SCHOTTKY DIODE International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1 DC-DC CONVERTER USING SILICON CARBIDE SCHOTTKY DIODE Y.S. Ravikumar Research scholar, faculty of TE., SIT., Tumkur

More information

Turn-Off Characteristics of SiC JBS Diodes

Turn-Off Characteristics of SiC JBS Diodes Application Note USCi_AN0011 August 2016 Turn-Off Characteristics of SiC JBS Diodes Larry Li Abstract SiC junction barrier schottky (JBS) diodes, as majority carrier devices, have very different turn-off

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams. UNIT III-SPECIAL PURPOSE ELECTRONIC DEICES 1. Explain tunnel Diode operation with the help of energy band diagrams. TUNNEL DIODE: A tunnel diode or Esaki diode is a type of semiconductor diode which is

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

Lecture 19 Optical Characterization 1

Lecture 19 Optical Characterization 1 Lecture 19 Optical Characterization 1 1/60 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June). Homework 6/6: Will be online

More information

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING Unit 1 Objectives Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called. (A) avalanche breakdown. (B) zener breakdown. (C) breakdown

More information

SWITCHING IN SEMICONDUCTOR DIODES

SWITCHING IN SEMICONDUCTOR DIODES SWITCHING IN SEMICONDUCTOR DIODES MONOGRAPHS IN SEMICONDUCTOR PHYSICS Volume 1: Heavily Doped Semiconductors by Viktor I. Fistul' Volume 2: Liquid Semiconductors by V. M. Glazov, S. N. Chizhevskaya, and

More information

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya.

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya. Lesson 08 Title of the Experiment: Identification of active components in electronic circuits and characteristics of a Diode, Zener diode and LED (Activity number of the GCE Advanced Level practical Guide

More information

Introducing Technology Computer-Aided Design (TCAD)

Introducing Technology Computer-Aided Design (TCAD) Chinmay K. Maiti Introducing Technology Computer-Aided Design (TCAD) Fundamentals, Simulations, and Applications Introducing Technology Computer-Aided Design (TCAD) Introducing Technology Computer-Aided

More information

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS with Case Studies by Marc Pastre Ecole Polytechnique Fédérale

More information

Lecture 4. pn Junctions (Diodes) Wednesday 27/9/2017 pn junctions 1-1

Lecture 4. pn Junctions (Diodes) Wednesday 27/9/2017 pn junctions 1-1 Lecture 4 n Junctions (Diodes) Wednesday 27/9/2017 n junctions 1-1 Agenda Continue n junctions Equilibrium (zero bias) Deletion rejoins Built-in otential Reverse and forward bias I-V characteristics Bias

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

1- Light Emitting Diode (LED)

1- Light Emitting Diode (LED) Content: - Special Purpose two terminal Devices: Light-Emitting Diodes, Varactor (Varicap)Diodes, Tunnel Diodes, Liquid-Crystal Displays. 1- Light Emitting Diode (LED) Light Emitting Diode is a photo electronic

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode

AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2429-2433 ISSN: 2249-6645 AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode Y. S. Ravikumar Faculty of TE, SIT, Tumkur Abstract: Silicon carbide (SiC) is the

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

Rubber Processing and Production Organization

Rubber Processing and Production Organization Rubber Processing and Production Organization Rubber Processing and Production Organization Philip K. Freakley Institute of Polymer Technology Loughborough University of Technology Loughborough, United

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS THEORY B.Sc. Part - I Elec. 101 Paper I Circuit Elements and Networks Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3 50 Elec. 102 Paper

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

Lecture 16 - Metal-Semiconductor Junction (cont.) October 9, 2002

Lecture 16 - Metal-Semiconductor Junction (cont.) October 9, 2002 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 16-1 Lecture 16 - Metal-Semiconductor Junction (cont.) October 9, 2002 Contents: 1. Schottky diode 2. Ohmic contact Reading assignment:

More information

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London Advanced RF MEMS Edited by STEPAN LUCYSZYN Imperial College London n CAMBRIDGE UNIVERSITY PRESS Contents List of contributors Preface List of abbreviations page xiv xvii xx Introduction 1 1.1 Introduction

More information

3A.1. Lecture 3A Semiconductors. Semiconductor Structure

3A.1. Lecture 3A Semiconductors. Semiconductor Structure 3A.1 Lecture 3A Semiconductors Semiconductor structure. ptype semiconductor. ntype semiconductor. The pn junction. The pn junction characteristic (diode vi characteristic). Diode models. The Halleffect

More information

DEVELOPMENTS IN INJECTION MOULDING-3

DEVELOPMENTS IN INJECTION MOULDING-3 DEVELOPMENTS IN INJECTION MOULDING-3 CONTENTS OF VOLUMES 1 and 2 Volume 1 Edited by A. Whelan and J. L. Craft 1. Digital Hydraulics. H. BLUML 2. Clamping Systems. R. A. IRELAND 3. Mould Design and Manufacture.

More information

Chapter 1 Semiconductors and the p-n Junction Diode 1

Chapter 1 Semiconductors and the p-n Junction Diode 1 Preface xiv Chapter 1 Semiconductors and the p-n Junction Diode 1 1-1 Semiconductors 2 1-2 Impure Semiconductors 5 1-3 Conduction Processes in Semiconductors 7 1-4 Thep-nJunction 9' 1-5 The Meta1-Semiconductor

More information

Microwave Circuit Analysis and Amplifier Design

Microwave Circuit Analysis and Amplifier Design Microwave Circuit Analysis and Amplifier Design SAMUEL Y. LIAO Professor of Electrical Engineering California State University, Fresno PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632 Contents PREFACE

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gábor Takács BME DED 17/09/2015 1 / 37 The basic properties of semiconductors Range of conductivity [Source: http://www.britannica.com]

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Department of Physics & Astronomy. Kelvin Building, University of Glasgow,

Department of Physics & Astronomy. Kelvin Building, University of Glasgow, Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 334 9029 GLAS{PPE/95{06

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells John Harper 1, Xin-dong Wang 2 1 AMETEK Advanced Measurement Technology, Southwood Business Park, Hampshire,GU14 NR,United

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

What is the highest efficiency Solar Cell?

What is the highest efficiency Solar Cell? What is the highest efficiency Solar Cell? GT CRC Roof-Mounted PV System Largest single PV structure at the time of it s construction for the 1996 Olympic games Produced more than 1 billion watt hrs. of

More information

Some Key Researches on SiC Device Technologies and their Predicted Advantages

Some Key Researches on SiC Device Technologies and their Predicted Advantages 18 POWER SEMICONDUCTORS www.mitsubishichips.com Some Key Researches on SiC Device Technologies and their Predicted Advantages SiC has proven to be a good candidate as a material for next generation power

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Chess Skill in Man and Machine

Chess Skill in Man and Machine Chess Skill in Man and Machine Chess Skill in Man and Machine Edited by Peter W. Frey With 104 Illustrations Springer-Verlag New York Berlin Heidelberg Tokyo Peter W. Frey Northwestern University CRESAP

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements Erik C. Garnett 1, Yu-Chih Tseng 4, Devesh Khanal 2,3, Junqiao Wu 2,3, Jeffrey

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS 9.1 INTRODUCTION The phthalocyanines are a class of organic materials which are generally thermally stable and may be deposited as thin films by vacuum evaporation

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc.

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc. Simulation of silicon based thin-film solar cells Copyright 1995-2008 Crosslight Software Inc. www.crosslight.com 1 Contents 2 Introduction Physical models & quantum tunneling Material properties Modeling

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION High performance semiconductor devices with better voltage and current handling capability are required in different fields like power electronics, computer and automation. Since

More information

Chapter 3 SPECIAL PURPOSE DIODE

Chapter 3 SPECIAL PURPOSE DIODE Chapter 3 SPECIAL PURPOSE DIODE 1 Inventor of Zener Diode Clarence Melvin Zener was a professor at Carnegie Mellon University in the department of Physics. He developed the Zener Diode in 1950 and employed

More information

Fundamentals of III-V Semiconductor MOSFETs

Fundamentals of III-V Semiconductor MOSFETs Serge Oktyabrsky Peide D. Ye Editors Fundamentals of III-V Semiconductor MOSFETs Springer Contents 1 Non-Silicon MOSFET Technology: A Long Time Coming 1 Jerry M. Woodall 1.1 Introduction 1 1.2 Brief and

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

GaAs Flip Chip Schottky Barrier Diodes MA4E1317, MA4E1318, MA4E1319-1, MA4E V1. Features. Description and Applications MA4E1317

GaAs Flip Chip Schottky Barrier Diodes MA4E1317, MA4E1318, MA4E1319-1, MA4E V1. Features. Description and Applications MA4E1317 Features Low Series Resistance Low Capacitance High Cutoff Frequency Silicon Nitride Passivation Polyimide Scratch Protection Designed for Easy Circuit Insertion Description and Applications M/A-COM's

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information