SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

Size: px
Start display at page:

Download "SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)"

Transcription

1 SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and extrinsic semiconductors? 2. List the properties of semiconductors. 3. Draw the energy band diagram of germanium and a metal. 4. What do you mean by Valance electron? 5. How drift current is produced? 6. Define electron volt. 7. The relationship between field intensity and potential is given by. 8. Draw the path of an electron in perpendicular electric and magnetic fields when the initial velocity is zero. 9. Write the equation for the period and angular velocity of a particle in a magnetic field. 10. What is the value of Eg for Ge and Si at room temperature (300k)? 11. Draw the energy band diagram of a semiconductor and conductor. 12. Draw the motion of a charged particle in a magnetic field. 13. What is drift current? Upon what factors it depends? 14. Why do we go for Extrinsic semiconductor? 15. How is extrinsic semiconductor formed? 16. List the pentavalent and trivalent impurities. 17. Draw the motion of a charged particle in a uniform electric field. 18. What is diffusion current? 19. Distinguish between Drift and Diffusion current. 20. The e/m value of electron is. 21. Differentiate insulators, semiconductors and metals. 22. Explain what is hole. How do they move in intrinsic semiconductor? 23. What does doping in semiconductor mean? 24. Explain majority and minority carrier in semiconductor? 25. What is fermi level? How is it useful in the analysis of semiconductors? 26. Define the term s conductivity and mobility in semiconductor. 27. State Einstein relationship. 28. Define carrier lifetime. 29. State mass action law. 30. Write down the expressions, which are used for finding the electron and hole concentration.

2 1. Explain motion of an electron in electric field. 2. Explain motion of an electron in magnetic field. 3. Discuss motion of an electron in both magnetic and electric field. 4. Derive the continuity equation from the first principle. 5. Derive the Fermi level equation for an intrinsic semiconductor with the Energy band diagram. 6. Explain drift and diffusion current and write the expressions for total Current density due to holes and electrons 7. Explain mass action law. 8. Derive the equation for the concentration for holes and electrons. 9. Explain in detail the classification of solids with energy band diagram. 10.Explain about: a) Donor atoms b) Acceptor atoms c) Intrinsic semiconductors d) N-type Extrinsic Semiconductor e) P-type semiconductor 11. Explain about: a) Valence shell b) Valence electron c) Free electrons d) Holes e) Covalent bond with suitable diagram UNIT-II PART-A 1. What is meant by photoconductivity? 2. Explain cutin voltage of a diode. 3. What is Zener breakdown? 4. Give some applications of varactor diode and its symbol. 5. Sketch the VI characteristics of a tunnel diode. 6. State the relative merits of pin photodiodes and avalanche photodiodes. 7. The leakage current of a PN diode is caused by. 8. Define DC (or) Static resistance (RF). 9. Define AC (or) Dynamic resistance (rf). 10. How is depletion region formed? 11. Give the advantages of using LCD over LED. 12. Draw the circuit model for Zener diode. 13. Avalanche breakdown is primarily dependent on the process of. 14. What happens when a p-type material is joined with n-type material? 15. Draw the VI characteristics of LED.

3 16. The cutin voltages of a Germanium and silicon diodes are. 17. The transition capacitance is also called as. 18. Varactor diode is realized with bias given to a junction diode. 19. Define barrier potential. 20. What is tunneling? 21. What are the uses of photodiode? 22. State photovoltaic effect. 23. What are the advantages in using cadmium sulphide as semiconductor material in LDR? 24. Draw the symbol for thermistor. 25. The reverse saturation current of silicon PN junction diode is 10?A. Calculate the diode current for the forward bias voltage of 0.6V at 25degree C. 26. What is a PN junction? How it is formed? 27. Explain how a barrier potential is developed at the PN junction. 28. Explain avalanche break down & zener breakdown. 29. Define leakage current. What is the advantage of silicon over germanium? 30. Explain VARACTOR diode and application. 31. Define PHOTODIODE. 32. Advantages and disadvantages of TUNNEL DIODE. 33. What is a PIN diode? 34. Write the Diode Equation how can this be approximated? 35. How is Photodiode different from PhotoVoltaic Cell? 1. Draw the energy band diagram of a PN junction and explain the working of diode. 2. Give the diode current equation of PN junction diode. 3. Explain V-I characteristics of PN junction diode. 4. Explain Zener diode with V-I characteristics. 5. Explain TUNNEL diode with neat sketch and VI characteristics. 6. How is a PIN diode different from Semiconductor PN junction diode? Explain its operation with the help of VI characteristics? 7. Compare LED and LCD with sketch. 8. Derive the expression for Minority Carrier Concentration in a PN junction diode. 9. Explain about Varactor Diode. 10. Explain about Avalanche Breakdown and Zener Breakdown. 11. Write short notes on; a) Photo Voltaic cell b) Thermistor c) LDR 12. Explain LED with a neat diagram.

4 UNIT III PART A 1. What is the need for heat sinks? 2. How should the transistor be biased if it has to be operated in the cut off and saturation region? 3. CE configuration has got current amplification and voltage amplification. 4. What are h parameters of CB configuration? 5. Define storage time. 6. Draw the transistor as a switch. 7. Sketch typical common base characteristics of a pnp transistor. 8. Will a transistor result if two diodes are connected back to back? 9. State Early effect. 10. A Common base configuration transistor has a = 0.96 and IE = 2 ma. Find its IC and IB 11. Give the relation between a and ß. 12. Give the h parameters for a transistor circuit. 13. Explain the emitter and base regions of a transistor. 14. Give the relation between emitter, collector and base currents. 15. A common Emitter configuration transistor has ß = 100 and IB = 50µA. Calculate the values of a, IC and IE. 16. A transistor will be in active region when. 17. For power amplification which configuration is generally used. 18. Define rise time. 19. Define delay time. 20. How the transistor is affected by high frequency? 21. Among the 3 configurations (CB, CE, CC) which is having high current gain. 22. The hybrid pi model is also called. 23. The transistor transconductance gm is proportional to current and proportional to temperature. 24. Mention some applications of photoconductive cell. 25. A transistor will be in cutoff region when. 26. What are the applications of common collector and common base configurations? 27. Configuration has high voltage gain, among CE,CC and CB transistors. 28. Why it is called as bipolar junction transistor? 29. What is the difference between PNP and NPN transistor? 30. What are the different configurations of BJT? 31. Explain different type of current gain (?,?,?)?Show how they are related with each other? 32. Why are power transistor provided with heatsinks? 33. Define early effect or basewidth modulation of transistor. 34. What is known as Heatsink? 35. Mention the three regions of transistor amplifier using the CB output characteristics. 36. Express any two hybrid Pi parameters in terms of small signal low frequency hybrid parameters. 37. Why is CE amplifiers preferred to others?

5 38. Draw the hybrid Pi equivalent of BJT. 39. Draw all the possible configurations of NPN transistor? 40. Draw all the possible configurations of PNP transistor? 1. Explain CE configuration of BJT with i/p and o/p characteristics. 2. Explain CB configuration of BJT with i/p and o/p characteristics. 3. Explain CC configuration of BJT with i/p and o/p characteristics. 4. Explain Eber s moll model of PNP transistor. How is this useful in getting output characteristics. 5. Briefly explain the commonly available heatsinks. 6. Derive the hybrid-parameters for CB configuration. 7. Derive the hybrid-parameters for CE configuration. 8. Derive the hybrid-parameters for CC configuration. 9. Explain high frequency? model for BJT? 10. Compare the CB, CC, CE configuration with application. 11. Explain transistor as a switch (delay time, storage time, rise time, fall time). 12. Derive the current components of BJT. UNIT IV PART-A 1. FET is a operated device. 2. Define pinch off voltage. 3. Why is FET called a unipolar device? 4. How can a FET be used as a voltage controlled resistor? 5. Why are FETs are more advantageous than BJT? 6. Give the basic principle of VVR. 7. Give the relation between transconductance gm, drain resistance rd and amplification factor µ of a FET. 8. Differentiate between depletion mode and enhancement mode. 9. Input impedance of FET is than that of junction transistor. 10. Draw the cross section of an n-channel VMOS. 11. Difference between MOSFET & VMOS. 12. Draw the symbol for n-channel and p-channel VMOS. 13. VMOS can be described as MOSFETS. 14. Write the applications for power MOSFET or VMOS. 15. What are the advantages of VMOS? 16. What are the two types of charge transfer devices? 17. What is BBD? 18. What is CCD? 19. What are the applications of BBD? 20. What are the applications of CCD? 21. Draw the construction for BBD & CCD and give the difference. 22. What do you mean by storage and transfer condition in CCD?

6 23. Draw the symbol of both n-channel & p-channel, depletion and enhancement MOSFET. 24. Why a Field effect Transistor is called so? 25. What are the relative merits of a N-channel and P-channel FET? 26. Explain why BJT is called bipolar device &FET is called unipolar device? 27. Give some application of FET. 28. What is a MOSFET? How many types of MOSFET are there? 29. How the constructional features of MOSFET differs from JFET? 30. Explain some application of MOSFET&JFET. 31. Explain the difference between UJT and BJT. 32. Explain terms peak point voltage, valley point voltage of a UJT. 33. Mention an application of UJT and draw the circuit symbol and mark the terminals. 34. The main operational difference between UJT and FET is. 35. Explain negative resistance from the characteristics of UJT. 36. Useful behaviour of UJT occurs when the emitter is biased. 37. Draw the drain characteristics of Enhancement and Depletion mode of N-channel MOSFET. 38. How does the gate capacitance of MOSFET affect the performance? 39. What region of drain characteristics is used for VVR operation? Why? 1. Explain the construction of N channel JFET with VI characteristics. 2. Define and explain the parameters transconductance gm,drain resistance rd and amplification factor? of a JFET. Establish the relation between them and also explain the transconductance varying with drain current and gate voltage. 3. Compare JFET with BJT with the necessary diagrams. 4. Explain how FET is used as voltage variable resistor. 5. Explain the construction and operation of three phase charge coupled device with the necessary diagrams. 6. With the suitable diagram and VI characteristics explain working of MOSFETs. 7. Explain the working and VI characteristics of Depletion MOSFET. What are the merits and demerits of this over enhancement MOSFET? 8. Explain the working and VI characteristics of Enhancement MOSFET. 9. Explain the working and VI characteristics of UJT. 10. Explain with the help a circuit diagram the working of a UJT relaxation oscillator. 11. Explain the operation of BBD with suitable diagrams. 12. Explain the working and VI characteristics of power MOSFET or VMOS. 13. How can a MOS transistor be used as a charge transferring device? Explain with the help of neat diagrams. UNIT V PART A 1. Draw the layer model of TRIAC and its symbol. 2. Sketch the VI characteristics of a DIAC. 3. Draw the structure and symbol of DIAC.

7 4. Sketch the VI characteristics of a TRIAC. 5. What is intrinsic stand off ratio? 6. SCR is a layered device. 7. Name the technology used for fabrication of transmitters or ICs. 8. List the basic process used in the silicon planar technology. 9. Explain the word Epitaxy. 10. What is the need for SiO2 layer? How thick is this layer? 11. What is ion implantation? Give its advantages. 12. Give the various isolation techniques used in ICs. 13. Give the steps in photolithography process. 14. List the advantages of IC over discrete component circuit. 15. Sketch the cross-section of a CMOS transistor. 16. Discuss the difference between thin films and thick films. 17. List the various methods used for depositing thin films. 18. Discuss cathode sputtering. 19. Describe thick film technology. 20. What is a GTO? 21. What is the thyristor? Mention some of them. 22. Mention some applications of SCR, TRIAC, UJT. 23. Give the difference between SCR>O. 24. Define latching current & holding current of a SCR 25. What are the advantages of TRIAC over SCR? 26. DIAC is bi-directional device explain. 27. Give the difference between thick film and thin film technology. 28. Mention two ways of turning off a SCR. 29. What are the different ways of Vapour deposition? 30. What is the meaning of twin tub process? 1. Explain DIAC with VI characteristics. 2. Explain SCR with VI characteristics. 3. Explain TRIAC with VI characteristics. What is the advantage of TRIAC over SCR? 4. Explain two transistor analogy of a SCR and explain its breakdown operation. 5. Explain the operation of a SCR as a rectifier. 6. Explain steps of fabrication of monolithic integrated circuits in detail. 7. Explain the steps of NMOS fabrication 8. Explain the various methods of fabrication used in CMOS. 9. Explain thin film technology with relevant sketches 10. Explain the thick film technology with relevant sketches. 11. Explain the various steps involved in planar process. Draw the relevant sketches. 12. Explain the steps of PMOS fabrication. 13. Explain twin tub fabrication in detail.

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

LESSON PLAN. Chap.no. Testing. & Page. Outcome No. 1. Introduction - T1 C5,95. Understand the devices. a).an ability to 2. Field intensity - potential

LESSON PLAN. Chap.no. Testing. & Page. Outcome No. 1. Introduction - T1 C5,95. Understand the devices. a).an ability to 2. Field intensity - potential EE0207 ELECTRONIC DEVICES LESSON PLAN SEMICONDUCTORS Semiconductors devices: Field intensity - potential energy - mobility - conductivity - electrons holes - charge density in semiconductors - electrical

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EE1152 SEM / YEAR : II / I SUBJECT NAME : ELECTRIC CIRCUITS AND ELECTRON DEVICES

More information

SYED AMMAL ENGINEERING COLLEGE

SYED AMMAL ENGINEERING COLLEGE SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR- 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT I PN JUNCTION DEVICES 1. Define Semiconductor.

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Prerequisites Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Title: Basics of Semiconductor Devices Code : 15EC21T Semester : 2 Group : Core Teaching

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET SEMICONDUCT ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Class XII : PHYSICS WKSHEET 1. How is a n-p-n transistor represented symbolically? (1) 2. How does conductivity of a semiconductor change

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) UNIT - 1 i SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) JUNCTION DIODE Different Types of PN Junction Formation Techniques, PN Junction Characteristics, Biasing, Band Diagrams and Current Flow, Diode Current

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

CHAPTER FORMULAS & NOTES

CHAPTER FORMULAS & NOTES Formulae For u SEMICONDUCTORS By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1 Intrinsic Semiconductor: The pure semiconductors in which the electrical

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

Energy band diagrams Metals: 9. ELECTRONIC DEVICES GIST ρ= 10-2 to 10-8 Ω m Insulators: ρ> 10 8 Ω m Semiconductors ρ= 1 to 10 5 Ω m 109 A. Intrinsic semiconductors At T=0k it acts as insulator At room

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name : ELECTRONIC DEVICES AND CIRCUITS Course Code : A30404

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code: Model Answer Page No: 1/

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code: Model Answer Page No: 1/ MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 13 EXAMINATION Subject Code: 12025 Model Answer Page No: 1/ Important Instructions to examiners: 1) The

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER III EXAMINATION SUMMER 2013 Subject Code: 131101 Date: 31-05-2013 Subject Name: Basic Electronics Time: 02.30 pm - 05.00 pm Total

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS THEORY B.Sc. Part - I Elec. 101 Paper I Circuit Elements and Networks Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3 50 Elec. 102 Paper

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

Lesson Plan. Electronics 1-Total 51 Hours

Lesson Plan. Electronics 1-Total 51 Hours Lesson Plan. Electronics 1-Total 5s Unit I: Electrical Engineering materials:(10) Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics,

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Section:A Very short answer question

Section:A Very short answer question Section:A Very short answer question 1.What is the order of energy gap in a conductor, semi conductor, and insulator?. Conductor - no energy gap Semi Conductor - It is of the order of 1 ev. Insulator -

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

SETH JAI PARKASH POLYTECHNIC, DAMLA

SETH JAI PARKASH POLYTECHNIC, DAMLA SETH JAI PARKASH POLYTECHNIC, DAMLA NAME OF FACULTY----------SANDEEP SHARMA DISCIPLINE---------------------- E.C.E (S.F) SEMESTER-------------------------2 ND SUBJECT----------------------------BASIC ELECTRONICS

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

S.No. Name of the Subject/Lab Semester Page No. 1 Electronic devices II 2 2 Circuit theory II 6

S.No. Name of the Subject/Lab Semester Page No. 1 Electronic devices II 2 2 Circuit theory II 6 V.S.B. ENGINEERING COLLEGE, KARUR Academic Year: 2016-2017 (EVEN Semester) Department of Electronics and Communication Engineering Course Materials (2013 Regulations) Question Bank S.No. Name of the Subject/Lab

More information

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING Unit 1 Objectives Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called. (A) avalanche breakdown. (B) zener breakdown. (C) breakdown

More information

EC8351-ELECTRON DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES

EC8351-ELECTRON DEVICES AND CIRCUITS TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES TWO MARK QUESTIONS AND ANSWERS UNIT-I PN JUNCTION DEVICES 1) Define semiconductor. Semiconductor is a substance, which has resistivity in between Conductors and insulators. Eg. Germanium, Silicon. 2) Define

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Electronic Devices By K.Vijayalakshmi Assistant Professor Electronics and Communication Engineering Department Electronics and Communication

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

Unit - 19 Semiconductor Electronics

Unit - 19 Semiconductor Electronics Unit - 19 Semiconductor Electronics 321 Conductor :- Presence of free electrons Electrical resistivity is quite less Insulator :- No free electrons Very large electrical resistivity Semi-conductor :- Hole

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

THE METAL-SEMICONDUCTOR CONTACT

THE METAL-SEMICONDUCTOR CONTACT THE METAL-SEMICONDUCTOR CONTACT PROBLEM 1 To calculate the theoretical barrier height, built-in potential barrier, and maximum electric field in a metal-semiconductor diode for zero applied bias. Consider

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems lass X - Physics Semiconductor Electronics Materials, Device and Simple ircuit hapter-wise Problems Multiple hoice Question :- 14.1 The conductivity of a semiconductor increases with increase in temperature

More information

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-9: JFET and Construction of JFET 2008 EDC Lesson 9- ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9- ", Raj Kamal, 2 Transistor Definition The transferred-resistance

More information

5.1 BJT Device Structure and Physical Operation

5.1 BJT Device Structure and Physical Operation 11/28/2004 section 5_1 BJT Device Structure and Physical Operation blank 1/2 5.1 BJT Device Structure and Physical Operation Reading Assignment: pp. 377-392 Another kind of transistor is the Bipolar Junction

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

ECE 3040 Dr. Alan Doolittle.

ECE 3040 Dr. Alan Doolittle. ECE 3040 Dr. Alan Doolittle I have thoroughly enjoyed meeting each of you and hope that I have had a positive influence on your carriers. Please feel free to consult with me in your future work. If I can

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. As compared to a full wave rectifier using 2 diodes, the four diode bridge rectifier has the dominant advantage of (a) Higher current carrying (b) lower peak inverse

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 3

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Summer 2015 Examination. 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

Summer 2015 Examination. 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. Summer 2015 Examination Subject Code: 17213 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Class XII Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Physics Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Basic Electronics Important questions

Basic Electronics Important questions Basic Electronics Important questions B.E-2/4 Mech- B Faculty: P.Lakshmi Prasanna Note: Read the questions in the following order i. Assignment questions ii. Class test iii. Expected questions iv. Tutorials

More information

SIR PADAMPAT SINGHANIA UNIVERSITY

SIR PADAMPAT SINGHANIA UNIVERSITY SIR PADAMPAT SINGHANIA UNIVERSITY SCHOOL OF ENGINEERING BHATEWAR-3360 ELECTRONIC DEVICES AND CIRCUITS LABORATORY MANUAL DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING [[ Objective: ) P-N JUNCTION

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

FIELD EFFECT TRANSISTORS MADE BY : GROUP (13)/PM

FIELD EFFECT TRANSISTORS MADE BY : GROUP (13)/PM FIELD EFFECT TRANSISTORS MADE BY : GROUP (13)/PM THE FIELD EFFECT TRANSISTOR (FET) In 1945, Shockley had an idea for making a solid state device out of semiconductors. He reasoned that a strong electrical

More information

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition.

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition. Program Name Program Code Semester Course Title Scheme I Sample Question Paper : Diploma in Electronics Program Group : DE/EJ/IE/IS/ET/EN/EX : Second : Basic Electronics : 70 22216 Time: 3 Hrs. Instructions:

More information

ELECTRONIC DEVICES S.NO CONTENTS PAGE NO UNIT I SEMICONDUCTOR DIODE. 1.1 Introduction about electron, electron devices and circuits 1

ELECTRONIC DEVICES S.NO CONTENTS PAGE NO UNIT I SEMICONDUCTOR DIODE. 1.1 Introduction about electron, electron devices and circuits 1 S.NO CONTENTS PAGE NO UNIT I SEMICONDUCTOR DIODE 1.1 Introduction about electron, electron devices and circuits 1 1.2 Review of intrinsic and extrinsic semiconductors 2 1.3 PN junction diode 4 1.4 Current

More information

Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f ) I ST and II nd Year

Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f ) I ST and II nd Year Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f 2016-2017) I ST and II nd Year UNIT - I B.Sc. ELECTRONICS SYLLABUS B.Sc. I YEAR Semester - I DSC- Paper I : Circuit Analysis Total number

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101) F:/Academic/22 Refer/WI/ACAD/10 SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT (Following Paper-ID and Roll No. to be filled by the student in the Answer Book) PAPER ID: 3301 Roll No. B.Tech. SEM

More information

AN 1651 Analysis and design Of Analog Integrated Circuits. Two Mark Questions & Answers. Prepared By M.P.Flower queen Lecturer,EEE Dept.

AN 1651 Analysis and design Of Analog Integrated Circuits. Two Mark Questions & Answers. Prepared By M.P.Flower queen Lecturer,EEE Dept. AN 1651 Analysis and design Of Analog Integrated Circuits Two Mark Questions & Answers Prepared By M.P.Flower queen Lecturer,EEE Dept. 1.write the poissons equation. UNIT I = charge density = electron

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

This tutorial will suit all beginners who want to learn the fundamental concepts of transistors and transistor amplifier circuits.

This tutorial will suit all beginners who want to learn the fundamental concepts of transistors and transistor amplifier circuits. About the Tutorial An electronic signal contains some information which cannot be utilized if doesn t have proper strength. The process of increasing the signal strength is called as Amplification. Almost

More information

15 - SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1

15 - SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1 15.1 Introduction MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1 The word electronics is coined from the words electron mechanics. The subject of electronics deals with the study of devices in which specific

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 60320 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Academic Year: 2018 2019 Odd Semester Subject: EC8353 - ELECTRON DEVICES

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

WINTER 17 EXAMINATION Subject Name: Basic Electronics Model Answer Sub Code:

WINTER 17 EXAMINATION Subject Name: Basic Electronics Model Answer Sub Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information