Electronics The basics of semiconductor physics

Size: px
Start display at page:

Download "Electronics The basics of semiconductor physics"

Transcription

1 Electronics The basics of semiconductor physics Prof. Márta Rencz, Gábor Takács BME DED 17/09/ / 37

2 The basic properties of semiconductors Range of conductivity [Source: Semiconductors conductance is between that of conductors and insulators 2 / 37

3 The basic properties of semiconductors They conduct current and have a negative thermal coefficient (NTC), which means that their conductivity increases when temperature rises. This is exactly the opposite behaviour of metals. At the moment semiconductors are the basic materials of electronic devices. 3 / 37

4 The most important semiconductors The most important semiconductors: Monocristalline or single-crystal materials: Semiconductor elements: Si (silicon), Ge (germanium) They are used in integrated circuits and semiconducting devices. Compound semiconductors: GaAs (gallium arsenide), GaAsP (gallium arsenide phosphide) They are used to create LEDs. Amorphous semiconductors: amorphous Si mainly TFTs, solar cells are made of them. Organic semiconductors: OLEDs (Organic LEDs) 4 / 37

5 The band structure I. The electron s energy is a quantized quantity there are certain energy levels that are allowed for electrons, the rest of the levels are forbidden. When electrons take part in a system (atom or a crystalline consisting of many atoms), every electron has to be at a different level. The electrons take energy levels very close to the allowed levels thus in large systems the electrons take place in energy bands that are separated by band gaps. The energy bands of electrons in a large insulator/semiconductor structure. The bands are shown in grey, the band gaps are white. 5 / 37

6 The band structure II. Conductance band: electrons that can move freely. Valence band: electrons that take part in bonds and thus are bound to atoms. From the viewpoint of conductance the important bands: The highest band that contains electrons (valence band). The band above the valence band, which is almost empty (conductance band). The band gap between them. 6 / 37

7 Insulators and conductors Conductors: the valence band and the conductance bands overlap. Insulators and semiconductors: there are bandgaps the width of the bandgap (W g ) decides whether a material is an insulator or a semiconductor. Si (semiconductor): W g = 1.12 ev SiO 2 (insulator): W g = 4.3 ev 1 ev = 0.16 aj = J 7 / 37

8 The charge carriers I. Electrons: at the bottom of the conductance band, Holes: at the top of the valence band a hole is an absence of electron. Both electrons and holes take part in conduction! Generation: happens when an electron gets to the conductance band from the valence band. This means that two charge carriers are created: an electron in the conductance band and a hole in the valence band. Recombination: the opposite of generation when an electron falls back to the valence band. 8 / 37

9 The charge carriers II. Charge and mass of charge carriers Electrons: have a negative charge and a positive mass. Holes: have a positive charge and a positive mass (!). This can be explained in solid state physics we re not going into such depth. 9 / 37

10 The crystal structure of silicon 3D crystal structure (diamond lattice) Simplified, 2D crystal structure Silicon has four electrons that take part in the bond between its atoms. Density: ϱ = 2.33 g cm 3 Lattice constant: a = nm 10 / 37

11 The intrinsic silicon If the temperature is above 0 K, some electrons become thermally activated and get into the conductance band. Intrinsic charge carrier concentration n i = p i = /cm 3 n i : electron concentration (1/cm 3 ) p i : hole concentration (1/cm 3 ) The charge carrier density is very low: a cube with edges of 10 µm contains 10 electrons. The crystalline is doped in order to increase the charge carrier density. 11 / 37

12 Doping A small number of atoms of a different kind is injected into the crystal structure. This is done in a way that the dopants are placed on positions where normally Si atoms are located. Typical doping density: / cm 3 this is indeed doping and not alloying (the density is very low). The atom density of silicon is /cm 3, so a typical doping of /cm 3 means that two atom is changed to a dopant out of every one million, which leaves us with a purity of %. 12 / 37

13 The n-type semiconductors Donor dopants: dopants that inject atoms that have one extra electrons at their valence band (P (phosporus), As (arsenic), Sb (antimony)). The extra electron is easier to raise into the conductance band, because it cannot take part in a strong bond. Thus its energy level is in the band gap, close to the conductance band. Electrons are the majority charge carriers Holes are the minority charge carriers donor concentration: N d electron concentration: n n hole concentration: p n Concentrations in n-type Si n n N n n n > p n 13 / 37

14 The p-type semiconductors Acceptor dopants: dopants that inject atoms that have one less electrons at their valence band (B (boron), Al (aluminium), In (indium)). Less electrons result in extra holes, that are easier to bring down to the valence band, because they cannot take part in a strong bond. Thus their energy level is in the band gap, close to the valence band. Electrons are the minority charge carriers Holes are the majority charge carriers acceptor concentration: N a electron concentration: n p hole concentration: p p Concentrations in p-type Si p p N p p p > n p 14 / 37

15 Drift current I. When a semiconductor is placed into an electric field, the electrons start to drift in the opposite direction of the field. No external field External field is present 15 / 37

16 Drift current II. Drift current is the movement of charge carriers due to an external electric field. Drift velocity is the speed of the charge carriers in the drift current: Drift velocity v d = µ n E v d = µ p E where v d : is the drift velocity µ n : is the mobility of electrons (Si: µ n = 1500 cm2 V s ) µ p : is the mobility of holes (Si: µ p = 475 cm2 V s ) 16 / 37

17 Diffusion current Diffusion current: is the movement of charge carriers due to an inhomogeneity in their density. The movement is due to thermally induced movement of the electrons that is always present at temperatures above 0 K. 17 / 37

18 The pn-junction: a semiconductor diode I. A pn-junction is a monocrystalline transitional area where a p-type and an n-type semiconductor is next to each other. The diode is a device that consists of one single pn-junction. The figure is distorted: the n-type layer is much shallower in reality. 18 / 37

19 The pn-junction: a semiconductor diode II. We will be concerned with the area at the center of the structure (physical distortions at the borders result in special effects that we re not dealing with). 19 / 37

20 Most important properties of the diode When a forward voltage is applied to it, its current is an exponential ( ) function of the voltage. I exp V VT Forward direction: the p side is at a higher potential. In the reverse direction its current is very low and is independent of the voltage: I A/mm 2 The current-voltage characteristic of the diode: 20 / 37

21 The electrostatic conditions in the pn-junction The majority carriers at the proximity of the junction diffuse across the junction to the other side. This is because there are a lot of electrons on the n side, and a lot of holes on the p, while each side has a very low density of the minority charge carriers. There is a huge gradient in the densisty of charge carriers. This results in a depleted area / space charge region an area at the junction which is empty of majority charge carriers. The dopants left by their extra electrons/holes become charged ions that create an electric field, which prevents further diffusion by generating a drift current of minority carriers in the opposite direction. 21 / 37

22 The operation of the diode Equilibrium: the diffusion of the majority carriers is in equilibrium with the drift current of the minority carriers (I = 0). Forward direction: the forward voltage lowers the electric field of the dopant ions thus increasing the drift current of the majority carriers (big I F ). Reverse direction: the reverse voltage enlarges the electric field of the dopant ions thus lowering the diffusion current of the majority carriers and increasing that of the minority carriers moved by the drift current (small I R ). 22 / 37

23 The characteristic equation of the ideal diode The characteristic equation of the ideal diode ( ) I = I 0 e V V T 1 where I 0 is the reverse current (saturation current) of the diode (I A) V T is the thermal voltage: V T = kt q 26 mv T =293 K This is clearly a non-linear device its characteristic equation is exponential. In the forward direction the current is an exponential function of the voltage. The current is multiplied by ten at every increase of the voltage by 60 mv. 23 / 37

24 The characteristic equation of a real diode Due to secondary effects the equation in the forward direction: ( ) I = I 0 e V m V T 1 where m is the ideality factor (a.k.a. quality factor or emission coefficient) it represents several secondary effects and ranges from 1 to 2. In the reverse direction: the reverse current of the diode starts to increase steeply with the voltage at the breakdown voltage (V BR ). If the diode s current is limited by external means, the breakdown state does not harm the structure. 24 / 37

25 The application of the breakdown voltage As a very small change in the reverse voltage results in a big change in the reverse current at the breakdown state, it can be used to stabilize voltage. The diode is placed in a negative feedback configuration. Zener diode: special diode created to serve as a voltage stabiliser in the breakdown state. 25 / 37

26 The operating point of a diode I. The characteristic equation of a diode gives all the voltage-current pairs that a diode can have. In operation the diode usually works at a certain operating point, i.e. at one of the voltage-current pairs of its equation. This point is determined by the elements surrounding the device. DC analysis: the calculations performed to find the DC operating point of a non-linear device. The quantities describing the DC operating point are usually denoted with capital letters (V, I). 26 / 37

27 The operating point of a diode II. The KVL for the circuit is: V dd = I R L + V D which gives the equation of a line: I = V dd V D R L The red line is called the load line it is the characteristic equation of the other element in the circuit (R L ) as a function of the diode s voltage. 27 / 37

28 The operating point of a diode III. The operating point is at the intersecion of the two functions. If the graphical representation of the equations is given, this is easy to find. 28 / 37

29 The approximation of the operating point I. current Vd voltage We take advantage of the fact that the exponential function is very steep. The diode is substituted: with a voltage source when it is switched on, with an open circuit when it is switched off. The value of the voltage source (V D ) can be looked up in the datasheet of the diode (V D 0.7 V). 29 / 37

30 The approximation of the operating point II. We assume that the diode is switched on. The terminals of the resistor: left-hand side: supply voltage (V s ), right-hand side: the voltage of the diode (V D ). According to Ohm s law: I = V s V D R l If V s = 5 V, V D = 0.7 V, R l = 1 kω then I = = 4.3 ma. 30 / 37

31 Small-signal analysis I. It is important to investigate what happens when there are small changes in the input voltage e.g. when the supply voltage changes slightly during operation. For small changes the exponential function can be approximated with a linear equation around the operating point. In terms of the electric model, this means that the diode is substituted with its differential resistance. The differential resistance r d = V I = m V T I 31 / 37

32 Small-signal analysis II. The differential resistance r d = V I = m V T I I in the equation of the differential resistance is the operating point current. Thus the value of the differential resistance has a very strong dependence on the operating point. 32 / 37

33 The small-signal operation of diodes I. Let s investigate what happens when small changes occur at the equilibrium state. Changes around the operating are usually denoted with lower case letters. V s = V s0 + v s sin (ωt) If the changes are small, the diode s voltage and current are sinusoidal functions around the operating point. 33 / 37

34 The small-signal operation of diodes II. The calculation is performed in three steps: 1 the DC operating point is determined, 2 the AC analysis is performed by substituting the non-linear device with its small-signal model and calculating the effects of the changes on this model, 3 the two results are added. DC analysis equilibrium AC analysis small changes It is important that only small changes can be calculated this way! 34 / 37

35 The small-signal operation of diodes III. The calculation of the small signal operation: The small-signal changes: i = v s R l + r d and v = r d i = r d v t R l + r d If R l = 1 kω, V t = 5 V and v t = 1 V: The differential resistance: r d = V T 26 mv = I 4.3 ma = 6 Ω The change (amplitude) of the diode s current: 1 i = k 1mA the change (amplitude) of the diode s voltage: v = 6 Ω 1mA = 6 mv 35 / 37

36 The Zener diodes I. Supply voltages can be stabilized using Zener diodes. Consider the circuit on the left. Let s find the voltage and current of the Zener diode. V in = 12 V, R = 150 Ω and V BR = 3.3 V. As the input voltage is larger than the breakdown voltage: the diode is in the breakdown state. I V in V BR R = = 60 ma 36 / 37

37 The Zener diodes II. How much does the output voltage change if the input changes by 1 V? The differential resistance is: 3 Ω. v out = v in r d = 3 = 20 mv r d + R t 153 Thus the change at the input is reduced to 1/50 of its value! 37 / 37

Ch5 Diodes and Diodes Circuits

Ch5 Diodes and Diodes Circuits Circuits and Analog Electronics Ch5 Diodes and Diodes Circuits 5.1 The Physical Principles of Semiconductor 5.2 Diodes 5.3 Diode Circuits 5.4 Zener Diode References: Floyd-Ch2; Gao-Ch6; 5.1 The Physical

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

PN Junction Diode Table of Contents. What Are Diodes Made Out Of?

PN Junction Diode Table of Contents. What Are Diodes Made Out Of? PN Junction iode Table of Contents What are diodes made out of?slide 3 N-type materialslide 4 P-type materialslide 5 The pn junctionslides 6-7 The biased pn junctionslides 8-9 Properties of diodesslides

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

EXPERIMENTS USING SEMICONDUCTOR DIODES

EXPERIMENTS USING SEMICONDUCTOR DIODES EXPERIMENT 9 EXPERIMENTS USING SEMICONDUCTOR DIODES Semiconductor Diodes Structure 91 Introduction Objectives 92 Basics of Semiconductors Revisited 93 A p-n Junction Operation of a p-n Junction A Forward

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage:

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage: Chapter four The Equilibrium pn Junction The Electric field will create a force that will stop the diffusion of carriers reaches thermal equilibrium condition Potential difference across the depletion

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Semiconductor Materials and Diodes

Semiconductor Materials and Diodes C C H H A A P P T T E E R R 1 Semiconductor Materials and Diodes 1.0 1.0 PREVIEW PREVIEW This text deals with the analysis and design of circuits containing electronic devices, such as diodes and transistors.

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

PROLOGUE TO ELECTRONICS

PROLOGUE TO ELECTRONICS PROLOGUE TO ELECTRONICS When most of us hear the word electronics, we think of televisions, laptop computers, cell phones, or ipods. Actually, these items are electronic systems composed of subsystems

More information

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Class XII Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Physics Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo s6ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo s6ms_elct7.fm - 2 Problem 4 points For full credit,

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

BASIC ELECTRONICS ENGINEERING

BASIC ELECTRONICS ENGINEERING BASIC ELECTRONICS ENGINEERING Objective Questions UNIT 1: DIODES AND CIRCUITS 1 2 3 4 5 6 7 8 9 10 11 12 The process by which impurities are added to a pure semiconductor is A. Diffusing B. Drift C. Doping

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152 EE/COE 152: Basic Electronics Lecture 3 A.S Agbemenu https://sites.google.com/site/agbemenu/courses/ee-coe-152 Books: Microelcetronic Circuit Design (Jaeger/Blalock) Microelectronic Circuits (Sedra/Smith)

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES Most of the content is from the textbook: Electronic devices and circuit theory, Robert L.

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Basic Electronics Important questions

Basic Electronics Important questions Basic Electronics Important questions B.E-2/4 Mech- B Faculty: P.Lakshmi Prasanna Note: Read the questions in the following order i. Assignment questions ii. Class test iii. Expected questions iv. Tutorials

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Chapter Fourteen SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS 14.1 INTRODUCTION Devices in which a controlled flow of electrons can be obtained are the basic building blocks of all

More information

Lecture -1: p-n Junction Diode

Lecture -1: p-n Junction Diode Lecture -1: p-n Junction Diode Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor to

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. As compared to a full wave rectifier using 2 diodes, the four diode bridge rectifier has the dominant advantage of (a) Higher current carrying (b) lower peak inverse

More information

13. SEMICONDUCTOR DEVICES

13. SEMICONDUCTOR DEVICES Synopsis: 13. SEMICONDUCTOR DEVICES 1. Solids are classified into two categories. a) Crystalline solids b) Amorphous solids 2. Crystalline solids : Crystalline solids have orderly arrangement of atoms

More information

15 - SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1

15 - SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1 15.1 Introduction MATERIALS, DEVICES AND SIMPLE CIRCUITS Page 1 The word electronics is coined from the words electron mechanics. The subject of electronics deals with the study of devices in which specific

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 EECS:3400 Electronics I s5ms_elct7.fm - Section Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no EECS:3400 Electronics I s5ms_elct7.fm - 2 Problem 4 points For full

More information

Energy band diagrams Metals: 9. ELECTRONIC DEVICES GIST ρ= 10-2 to 10-8 Ω m Insulators: ρ> 10 8 Ω m Semiconductors ρ= 1 to 10 5 Ω m 109 A. Intrinsic semiconductors At T=0k it acts as insulator At room

More information

ELECTRONIC DEVICES MARKS WEIGHTAGE 7 marks

ELECTRONIC DEVICES MARKS WEIGHTAGE 7 marks ELECTRONIC DEVICES MARKS WEIGHTAGE 7 marks QUICK REVISION (Important Concepts & Formulas) Electronics It is the branch of science, which deals with the study of flow and control of electrons through a

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya.

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya. Lesson 08 Title of the Experiment: Identification of active components in electronic circuits and characteristics of a Diode, Zener diode and LED (Activity number of the GCE Advanced Level practical Guide

More information

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION ECE-342 Test 1: Sep 27, 2011 6:00-8:00, Closed Book Name : SOLUTION All solutions must provide units as appropriate. Use the physical constants and data as provided on the formula sheet the last page of

More information

Chapter 1: Semiconductor Diodes

Chapter 1: Semiconductor Diodes Chapter 1: Semiconductor Diodes Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 2 Diode Characteristics Conduction Region Non-Conduction Region The voltage across

More information

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS 1. List the PN diode parameters. 1. Bulk Resistance. 2. Static Resistance/Junction Resistance (or) DC Forward Resistance 3. Dynamic

More information

LED lecture. Wei Chih Wang University of Washington

LED lecture. Wei Chih Wang University of Washington LED lecture Wei Chih Wang University of Washington Linear and Nonlinear electronics current voltage Vaccum tube (i.e. type 2A3) voltage Thermistor (large negative temperature coefficient of resistivity)

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Microelectronic Circuits Fourth Edition Adel S. Sedra, Kenneth C. Smith, 1998 Oxford University Press

Microelectronic Circuits Fourth Edition Adel S. Sedra, Kenneth C. Smith, 1998 Oxford University Press Diodes ELZ 206 - Elektronik I Microelectronic Circuits Fourth Edition Adel S. Sedra, Kenneth C. Smith, 1998 Oxford University Press Department of Electrical and Electronics Engineering Dicle University

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

Sharjah Indian School, Sharjah ELECTRONIC DEVICES - Class XII (Boys Wing) Page 01

Sharjah Indian School, Sharjah ELECTRONIC DEVICES - Class XII (Boys Wing) Page 01 ELECTRONIC DEVICES - Class XII (Boys Wing) Page 01 Electronics is the fast developing branch of Physics. Before the discovery of transistors in 1948, vacuum tubes (thermionic valves) were used as the building

More information

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems lass X - Physics Semiconductor Electronics Materials, Device and Simple ircuit hapter-wise Problems Multiple hoice Question :- 14.1 The conductivity of a semiconductor increases with increase in temperature

More information

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING Unit 1 Objectives Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called. (A) avalanche breakdown. (B) zener breakdown. (C) breakdown

More information

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES 26.1 26.2 Learning Outcomes Spiral 26 Semiconductor Material MOS Theory I underst why a diode conducts current under forward bias but does not under reverse bias I underst the three modes of operation

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

Chapter 2 PN junction and diodes

Chapter 2 PN junction and diodes Chapter 2 PN junction and diodes ELEC-H402/CH2: PN junction and diodes 1 PN junction and diodes PN junction What happens in a PN junction Currents through the PN junction Properties of the depletion region

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo Section f6ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo f6ms_elct7.fm - 2 Problem 4 points For full

More information

Semiconductor Devices

Semiconductor Devices About the Tutorial The electronic components exploiting the electronic properties of semiconductor materials, are termed as semiconductor devices. This tutorial discusses the functional operation of semiconductor

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET SEMICONDUCT ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Class XII : PHYSICS WKSHEET 1. How is a n-p-n transistor represented symbolically? (1) 2. How does conductivity of a semiconductor change

More information

Part II. Devices Diode, BJT, MOSFETs

Part II. Devices Diode, BJT, MOSFETs Part II Devices Diode, BJT, MOSFETs 49 4 Semiconductor Semiconductor The number of charge carriers available to conduct current 1 is between that of conductors and that of insulators. Semiconductor is

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Wish you all Very Happy New Year

Wish you all Very Happy New Year Wish you all Very Happy New Year Course: Basic Electronics (EC21101) Course Instructors: Prof. Goutam Saha (Sec. 2), Prof. Shailendra K. Varshney (Sec. 1), Prof. Sudip Nag (Sec. 3 ), Prof. Debashish Sen

More information

3A.1. Lecture 3A Semiconductors. Semiconductor Structure

3A.1. Lecture 3A Semiconductors. Semiconductor Structure 3A.1 Lecture 3A Semiconductors Semiconductor structure. ptype semiconductor. ntype semiconductor. The pn junction. The pn junction characteristic (diode vi characteristic). Diode models. The Halleffect

More information

CHAPTER FORMULAS & NOTES

CHAPTER FORMULAS & NOTES Formulae For u SEMICONDUCTORS By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1 Intrinsic Semiconductor: The pure semiconductors in which the electrical

More information

Section:A Very short answer question

Section:A Very short answer question Section:A Very short answer question 1.What is the order of energy gap in a conductor, semi conductor, and insulator?. Conductor - no energy gap Semi Conductor - It is of the order of 1 ev. Insulator -

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 The University of Toledo Section s7ms_elct7.fm - Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no The University of Toledo s7ms_elct7.fm - 2 Problem 4 points For full

More information

Term Roadmap : Materials Types 1. INSULATORS

Term Roadmap : Materials Types 1. INSULATORS Term Roadmap : Introduction to Signal Processing Differentiating and Integrating Circuits (OpAmps) Clipping and Clamping Circuits(Diodes) Design of analog filters Sinusoidal Oscillators Multivibrators

More information

1 Semiconductor-Photon Interaction

1 Semiconductor-Photon Interaction 1 SEMICONDUCTOR-PHOTON INTERACTION 1 1 Semiconductor-Photon Interaction Absorption: photo-detectors, solar cells, radiation sensors. Radiative transitions: light emitting diodes, displays. Stimulated emission:

More information

EECE251 Circuit Analysis I Set 6: Diodes

EECE251 Circuit Analysis I Set 6: Diodes EECE251 Circuit Analysis I Set 6: Diodes Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca Thanks to Dr. Linares and Dr. Yan for sharing

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Mechatronics Chapter 3-1 Semiconductor devices Diode

Mechatronics Chapter 3-1 Semiconductor devices Diode MEMS1082 Mechatronics Chapter 3-1 Semiconductor devices Diode Semiconductor: Si Semiconductor N-type and P-type Semiconductors There are two types of impurities: N-type - In N-type doping, phosphorus or

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current.

EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS. 1. Define diffusion current. EC6202-ELECTRONIC DEVICES AND CIRCUITS YEAR/SEM: II/III UNIT 1 TWO MARKS 1. Define diffusion current. A movement of charge carriers due to the concentration gradient in a semiconductor is called process

More information

Diode and Bipolar Transistor Circuits

Diode and Bipolar Transistor Circuits Diode and Bipolar Transistor Circuits 2 2.1 A Brief Review of Semiconductors Semiconductors are crystalline structures in which each atom shares its valance electrons with the neighboring atoms. The simple

More information

EECE 481. MOS Basics Lecture 2

EECE 481. MOS Basics Lecture 2 EECE 481 MOS Basics Lecture 2 Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA) 1 PN Junction and

More information

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT SCHOOL OF ENGINEERING & TECHNOLOGYDEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING ELECTRONIC DEVICES Section: ECE SEM: II PART-A 1. a) In a N-type

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

THERMIONIC AND GASEOUS STATE DIODES

THERMIONIC AND GASEOUS STATE DIODES THERMIONIC AND GASEOUS STATE DIODES Thermionic and gaseous state (vacuum tube) diodes Thermionic diodes are thermionic-valve devices (also known as vacuum tubes, tubes, or valves), which are arrangements

More information

f14m1s_elct7.fm - 1 The University of Toledo EECS:3400 Electronocs I Electronics I Problems Points Total 15 Was the exam fair?

f14m1s_elct7.fm - 1 The University of Toledo EECS:3400 Electronocs I Electronics I Problems Points Total 15 Was the exam fair? f4ms_elct7.fm - Electronics I Midterm I Examination Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no f4ms_elct7.fm - 2 Problem 4 points For full credit, mark your answers yes, no, or not

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

Lecture 3: Diodes. Amplitude Modulation. Diode Detection.

Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Whites, EE 322 Lecture 3 Page 1 of 10 Lecture 3: Diodes. Amplitude Modulation. Diode Detection. Diodes are the fourth basic discrete component listed in Lecture 2. These and transistors are both nonlinear

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014 Q.2 a. Derive an expression for the current flowing at any instant during the discharge of a capacitor C across a resistor R. b. The coil of a moving coil instrument is wound with 50 turns of wire. The

More information