Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5

Size: px
Start display at page:

Download "Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5"

Transcription

1 Microwave tunnel diode Some anomalous phenomena were observed in diode which do not follows the classical diode equation. This anomalous phenomena was explained by quantum tunnelling theory. The tunnelling time of carrier through the potential energy barrier is not governed by the classic transit time concept (i.e., the transit time equal to barrier width divided by the carrier velocity) rather by the quantum transition probability per unit time. Application-microwave amplification, oscillation. Low cost, high weight, high speed, low power operation, low noise Principle of operation- Doping of p and n junction in very high i.e to atoms/cm 3 Depletion layer is very thin, of the order of Angstrom. Classically only those charge particles can pass through the depletion layer whose energy is equal to greater than the potential barrier. Quantum mechanically, if the barrier is of the order of Angstrom, then charge carrier not having enough kinetic energy can pass over the same barrier. In addition to barrier thickness, there must also be filled energy state on the side from which particle will tunnel and allowed empty state on the other side into which particle penetrate through the same energy level. The voltage at which we obtain minimum tunnelling current (valley current) is known as valley voltage. Under open circuit condition or at zero biased equilibrium, the Fermi level of p-type and n- type are at same energy level. At this equilibrium, there is no filled energy state at one side of the junction i.e. at same energy state as empty allowed state on the other side. Therefore, there is no flow of charge across the junction and current is zero. In ordinary diode the Fermi level exist in the forbidden band. Tunnel diode is heavily doped, the Fermi level exist in the valance band in p type and conduction band in n type. As the forward bias is applied and voltage is just above the zero, the potential barrier is decreased by the amount of applied forward bias voltage. Due to this a difference in Fermi level in both sides is created. Now, there are filled states in the conduction band of n type at the same energy level as allowed empty states in the valence band of p type, the electron tunnel through the barrier from the n type to the p type, giving rise to forward tunnelling current from the p type to the n type. As the forward bias is increased to V p, a maximum numbers of electrons can tunnel through the barrier from the filled state in the n type to empty state in p type giving rise to the peak current I p. If the bias voltage is further increased, the tunnelling current decreases and finally becomes zero as there are no allowed empty state in the p type at the same energy level as filled state in the n type therefore, no electrons can tunnel through the barrier. When the forward bias voltage V is increased above the valley voltage V v the ordinary injected carrier I at the p-n junction start to flow. The maximum value of peak current to valley current ratio (i p/ i v ) can be 50 to 100; however the typical value is 15 for GaAs. Page 1 of 5

2 MESFET (Metal semiconductor field effect transistor) MESFET uses metal gate: gate source junction is schottky contact, also called as schottky barrier FET Semiconductor may be Si or GaAs: preference is GaAs, due to higher drift velocity and electron mobility MESFET are also known as GaAs FET GaAs allows to use MEFET at higher temperature and high power compare to Si based MOSFET N-type GaAs material is used due to high mobility of electron than hole if we use p type GaAs. Therefore n-type GaAs MESFET will be low noise and high speed device. MESFET is used as low noise and power amplifier. For high frequency operation, gate length should be very small. For 1 micrometer gate length GaAs FET can operate upto 32 GHz. GaAs MESFET is a very common device in MIC (microwave integrated circuit) and MMIC (Monolithic MIC) Technology as low noise amplifier. Noise figure of 2dB and below at 10 GHz. Principle of operation: SUBSTRATE: Semi insulting GaAs (100 micrometer thickness) Doped with chromium (cr) Resistivity 10 7 to10 8 ohm/cm N-type GaAs: doped with sulphur or tin 0.15 to 0.30 micrometer Schottky gate: Aluminium (Al) Maximum frequency of oscillation: vs=saturation drift velocity=2*10 7 cm/s If l=1µm Page 2 of 5

3 TRAPATT (Trapped Plasma Avalanch Triggerd Transit): n + p p + (or p + n n + ) structure. In TRAPATT, during part of a cycle of oscillation, plasma is created in diode depletion layer and is trapped by the low electric field. At point A, the E-field is uniform throughout the sample and its magnitude is large but less than the value required for avalanche breakdown. At the instant of time A, the diode current is turned on. Since the only charge carrier present are those caused by the thermal generation, the diode initially charges up like a linear capacitor driving the magnitude of the E-field above the value required for breakdown voltage. When a sufficient number of carriers are generated, the particle current exceeds the external current and E-field is depressed throughout the depletion region, causing the voltage to decrease. This portion of cycle shown from point B to C During this time interval the electric field is sufficiently large for the avalanche to continue and dense plasma of electron and hole is created. As some of the electrons and holes drift out of the ends of the depletion layer the field is further depressed and traps the remaining plasma. The voltage decreases to point D. A long time is required to remove the plasma because the total plasma charge is large compared to the charge per unit time in external circuit. At point E plasma is removed, but residual charges of electron remain in one side of depletion layer and a residual charge of hole in the other side. As the residual charge is removed, the voltage increases from point B to F. At point F, all the charges that were generated internally have been removed. This charge must be greater than or equal to that supplied by the external current otherwise the voltage will exceed that at point A. This places a limit on the allowable magnitude of the diode current to prevent a second avalanche within the same period. From point F to Point G, the diode charges up again like a fixed capacitor. A point G the diode current goes to zero for half a period, and voltage remain constant V A until the current comes back and cycle repeats. Page 3 of 5

4 Avalanche Transit Time Devices It is a semiconductor junction with highly doped p and n regions. Applied E-field is high enough to create avalanche of carrier through Impact ionization. Generated carrier passes through a drift space and collected by the anode. If the transit time through the drift space is such that it causes a delay due to which the current is out of phase with the applied voltage then a negative resistance appears across the terminal of the device. Three type of devices: 1) IMPATT: Impact Ionization Avalanche Transit Time Efficiency:- 3% CW :- 60% pulsed power frq n :- 500 MHz to 100 GHz Power output:- CW power 1-3 W at X-band W pulsed power at 94 GHz 2) TRAPATT: Trapped Plasma Avalanche Triggered Transmit Efficiency:-20-60% frq n :- 1-3 GHz power output:- several hundred watt 3) BARITT: Barrier Injected Transit Time Low noise figure (<< 15 db) Low power and smaller bandwidth Read Diode: W.T. Read proposed a reversed biased p + nin + diode structure. o p + and n + are highly doped region o p is moderately doped o i (intrinsic) slightly n-type Principal of operation: p + nin + diode is reverse biased. Diode can be divided in the zone (a) Avalanche zone (b) Drift zone. Diode is negatively biased with voltage V DC and to form an oscillator a resonant cavity is added to the circuit. The dimension of cavity decides the resonant frequency. Therefore, the total voltage applied across the device is D.C. bias voltage superimposed by an AC voltage V AC (due to RF signal in the cavity) In positive half cycle (V DC + V AC ) the diode will be in breakdown condition whereas in negative half cycle (V DC - V AC ) it will not be in breakdown condition. In positive half cycle the avalanche ionization process will take place in p + n junction due to very high electric field (order of KV/cm). The avalanche phenomenon is exponential in nature therefore the avalanche current I AV reached its maximum when the RF voltage at ωt=π. Hence, it may be observed that avalanche current I AV lags in phase with respect to RF voltage by 90. During the negative half cycle the avalanche process decays. The generated avalanche current now injected into drift region of the diode. In this way, the avalanche region acts as an injector of carrier producing a pulse of current at each RF cycle, which lags the applied RF voltage By 90. Page 4 of 5

5 The holes are immediately swept into the n + region and do not contribute any further phase lag to the current. Electrons drifting across the intrinsic region (also known as drift region) with saturated drift velocity V d will cause an additional phase lag of the current (I ext ) in the external circuit depending on the length L of the drift space. If L is chosen in such a way that it provides an additional phase lag of 90, then the total phase lag of current in the external circuit will be 180 with respect to RF voltage. Thus IMPATT diode exhibits a negative resistance. The effective transit Time of the carrier must be equal to half the time period of the oscillator voltage t d = T/2 = 1/2f T=time period L/v d = 1/2f f = v d /2L where v d is drift velocity and L is length of intrinsic region Determine the width of the intrinsic region (i-region) of an Si Read diode for an operation at 10 GHz. f = v d /2L L = v d /2f v d =10 7 cm/s Therefore, L = 5 μm V DC V AC p + n i n + (a) Figure (a) Reversed biased IMPATT (Read) diode with AC voltage across it (b) avalanche and drift zone of Read diode (c) RF voltage giving AC signal across the diode (d) Avalanche current and induced current in the external circuit Page 5 of 5

15 Transit Time and Tunnel NDR Devices

15 Transit Time and Tunnel NDR Devices 15 Transit Time and Tunnel NDR Devices Schematics of Transit-time NDR diode. A packet of carriers (e.g., electrons) is generated in a confined and narrow zone (generation region) and injected into the

More information

UNIT-4. Microwave Engineering

UNIT-4. Microwave Engineering UNIT-4 Microwave Engineering Microwave Solid State Devices Two problems with conventional transistors at higher frequencies are: 1. Stray capacitance and inductance. - remedy is interdigital design. 2.Transit

More information

Lecture - 19 Microwave Solid State Diode Oscillator and Amplifier

Lecture - 19 Microwave Solid State Diode Oscillator and Amplifier Basic Building Blocks of Microwave Engineering Prof. Amitabha Bhattacharya Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 19 Microwave Solid

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Class Notes by. K.Elampari, Associate Professor of Physics, S.T.Hindu college, Nagercoil 1

Class Notes by. K.Elampari, Associate Professor of Physics, S.T.Hindu college, Nagercoil 1 Class Notes by. K.Elampari, Associate Professor of Physics, S.T.Hindu college, Nagercoil 1 CHAPTER V- Micro Wave Devices Microwaves are a form of electromagnetic radiation with ranging from 1m to 1mm (or)

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams. UNIT III-SPECIAL PURPOSE ELECTRONIC DEICES 1. Explain tunnel Diode operation with the help of energy band diagrams. TUNNEL DIODE: A tunnel diode or Esaki diode is a type of semiconductor diode which is

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EE1152 SEM / YEAR : II / I SUBJECT NAME : ELECTRIC CIRCUITS AND ELECTRON DEVICES

More information

Electronics I. Midterm #1

Electronics I. Midterm #1 EECS:3400 Electronics I s5ms_elct7.fm - Section Electronics I Midterm # Problems Points. 4 2. 5 3. 6 Total 5 Was the exam fair? yes no EECS:3400 Electronics I s5ms_elct7.fm - 2 Problem 4 points For full

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Simulation of GaAs MESFET and HEMT Devices for RF Applications olume, Issue, January February 03 ISSN 78-6856 Simulation of GaAs MESFET and HEMT Devices for RF Applications Dr.E.N.GANESH Prof, ECE DEPT. Rajalakshmi Institute of Technology ABSTRACT: Field effect transistor

More information

SYED AMMAL ENGINEERING COLLEGE

SYED AMMAL ENGINEERING COLLEGE SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Microwave Semiconductor Devices

Microwave Semiconductor Devices INDEX Avalanche breakdown, see reverse breakdown, Avalanche condition, 61 generalized, 62 Ballistic transport, 322, 435, 450 Bandgap, III-V-compounds, 387 Bandgap narrowing, Si, 420 BARITT device, 111,

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

SCR- SILICON CONTROLLED RECTIFIER

SCR- SILICON CONTROLLED RECTIFIER SCR- SILICON CONTROLLED RECTIFIER Definition: When a pn junction is added to a junction transistor, the resulting three pn junction device is called a silicon controlled rectifier. SCR can change alternating

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS OBJECTIVE TYPE QUESTIONS Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called (A) avalanche breakdown. (B) zener breakdown. (C) breakdown by tunnelling.

More information

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient Prof. Jasprit Singh Fall 2001 EECS 320 Homework 7 This homework is due on November 8. Problem 1 An optical power density of 1W/cm 2 is incident on a GaAs sample. The photon energy is 2.0 ev and there is

More information

EC 1402 Microwave Engineering

EC 1402 Microwave Engineering SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC 1402 Microwave Engineering

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Section:A Very short answer question

Section:A Very short answer question Section:A Very short answer question 1.What is the order of energy gap in a conductor, semi conductor, and insulator?. Conductor - no energy gap Semi Conductor - It is of the order of 1 ev. Insulator -

More information

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET)

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET) FET Channel - simplified representation of three terminal device called a field effect transistor (FET) - overall horizontal shape - current levels off as voltage increases - two regions of operation 1.

More information

PN Junction in equilibrium

PN Junction in equilibrium PN Junction in equilibrium PN junctions are important for the following reasons: (i) PN junction is an important semiconductor device in itself and used in a wide variety of applications such as rectifiers,

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

Unless otherwise specified, assume room temperature (T = 300 K).

Unless otherwise specified, assume room temperature (T = 300 K). ECE 3040 Dr. Doolittle Homework 4 Unless otherwise specified, assume room temperature (T = 300 K). 1) Purpose: Understanding p-n junction band diagrams. Consider a p-n junction with N A = 5x10 14 cm -3

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

97.398*, Physical Electronics, Lecture 21. MOSFET Operation

97.398*, Physical Electronics, Lecture 21. MOSFET Operation 97.398*, Physical Electronics, Lecture 21 MOSFET Operation Lecture Outline Last lecture examined the MOSFET structure and required processing steps Now move on to basic MOSFET operation, some of which

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-5: Bipolar Junction Transistor (BJT) Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Bipolar

More information

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

Diode Limiters or Clipper Circuits

Diode Limiters or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers Positive Clipper Negative

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

More information

1- Light Emitting Diode (LED)

1- Light Emitting Diode (LED) Content: - Special Purpose two terminal Devices: Light-Emitting Diodes, Varactor (Varicap)Diodes, Tunnel Diodes, Liquid-Crystal Displays. 1- Light Emitting Diode (LED) Light Emitting Diode is a photo electronic

More information

HOW DIODES WORK CONTENTS. Solder plated Part No. Lot No Cathode mark. Solder plated 0.

HOW DIODES WORK CONTENTS.  Solder plated Part No. Lot No Cathode mark. Solder plated 0. www.joeknowselectronics.com Joe Knows, Inc. 1930 Village Center Circle #3-8830 Las Vegas, NV 89134 How Diodes Work Copyright 2013 Joe Knows Electronics HOW DIODES WORK Solder plated 0.4 1.6 There are several

More information

Physics of Semiconductor Devices

Physics of Semiconductor Devices Physics of Semiconductor Devices S. M. SZE Member of the Technical Staff Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey WILEY-INTERSCIENCE A Division of John Wiley & Sons New York London

More information

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya.

Lesson 08. Name and affiliation of the author: Professor L B D R P Wijesundera Department of Physics, University of Kelaniya. Lesson 08 Title of the Experiment: Identification of active components in electronic circuits and characteristics of a Diode, Zener diode and LED (Activity number of the GCE Advanced Level practical Guide

More information

Oscillators. Hartley, Colpitts, UJT relaxation. ECE/MEA Engg College S.R.K. 9/13/2007 Authored by: Ramesh.K

Oscillators. Hartley, Colpitts, UJT relaxation. ECE/MEA Engg College S.R.K. 9/13/2007 Authored by: Ramesh.K Oscillators Hartley, Colpitts, UJT relaxation. S.R.K 9//007 Authored by: Ramesh.K This documents contains a brief note about the principle of sinusoidal oscillator and some general oscillator circuits

More information

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-9: JFET and Construction of JFET 2008 EDC Lesson 9- ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9- ", Raj Kamal, 2 Transistor Definition The transferred-resistance

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

The Physics of Single Event Burnout (SEB)

The Physics of Single Event Burnout (SEB) Engineered Excellence A Journal for Process and Device Engineers The Physics of Single Event Burnout (SEB) Introduction Single Event Burnout in a diode, requires a specific set of circumstances to occur,

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

ELECTRONICS ENGINEERING

ELECTRONICS ENGINEERING ELECTRONICS ENGINEERING 1. Just as a voltage amplifier signal voltage a power amplifier. 1.amplifier power 2.amplifier signal 3.converts the signal ac power into DC power 4.converts a dc power into useful

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

RF and Microwave Semiconductor Technologies

RF and Microwave Semiconductor Technologies RF and Microwave Semiconductor Technologies Muhammad Fahim Ul Haque, Department of Electrical Engineering, Linköping University muhha@isy.liu.se Note: 1. This presentation is for the course of State of

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Basic Electronics Important questions

Basic Electronics Important questions Basic Electronics Important questions B.E-2/4 Mech- B Faculty: P.Lakshmi Prasanna Note: Read the questions in the following order i. Assignment questions ii. Class test iii. Expected questions iv. Tutorials

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

. From the above data, determine the network is symmetric or not.

. From the above data, determine the network is symmetric or not. Velammal College of Engineering and Technology, Madurai Department of Electronics and Communication Engineering Question Bank Subject Name: EC2353 Antennas And Wave Propagation Faculty: Mrs G VShirley

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information