Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p.

Size: px
Start display at page:

Download "Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p."

Transcription

1 Preface Introduction p. 1 History and Fundamentals p. 1 Devices for Mixers p. 6 Balanced and Single-Device Mixers p. 7 Mixer Design p. 9 Monolithic Circuits p. 10 Schottky-Barrier Diodes p. 11 Schottky-Diode Operation p. 11 Ideal Junction Characteristics p. 11 Ideal I/V Characteristic and Junction Capacitance p. 15 Deviations From Ideality p. 19 Diode Circuit Model p. 23 Equivalent Circuit p. 23 Diode Measurements p. 25 Microwave-Frequency Diode Measurements p. 29 Effect of Temperature on Diode Characteristics p. 35 Mott Diodes p. 37 Practical Diode Structures p. 41 Dot-Matrix Diode p. 41 Dot-Matrix Diode Variants p. 45 Point-Contact Diodes p. 46 Beam-Lead Diodes p. 47 Low-Parasitic Diodes for Millimeter-Wave Applications p. 49 Diodes for Monolithic Circuits p. 51 Considerations in Using Dot-Matrix Diodes p. 53 Mount Mechanical Design p. 53 Diode Whiskering p. 55 Packaged Diodes p. 57 References p. 58 MESFETs and HEMTs p. 61 MESHET Structure and Operation p. 61 Structure p. 61 Operation of GaAs MESFETs p. 64 HEMT Structure ad Operation p. 69 Circuit Models for GaAs MESFETs p. 71 Lumped Large-Signal Models p. 71 Curtice Quadratic Model p. 77 Curtice Cubic Model p. 78 Materka end Kacprzak Model p. 79 Statz et al. Model p. 79

2 Maas-Neilson Model p. 80 Modeling FET Resistive Mixers p. 81 Modeling HEMT Devices p. 82 Comparison of Models p. 83 Determining Equivalent-Circuit Parameters p. 84 Dual-Gate FETs p. 88 Description p. 88 Modeling Dual-Gate Devices p. 88 I/V Characteristics p. 89 Parameter Extraction for Dual-Gate Devices p. 90 References p. 92 Diode Mixer Theory p. 95 Currents end Voltages in the Pumped Diode p. 96 Large-Signal Analysis p. 97 The Diode Model p. 97 The Harmonic-Balance Equations p. 99 Solution Algorithms p. 105 Convergence and Accuracy p. 113 Improving Speed and Convergence p. 116 LO Power and Matching p. 117 Multiple-Diode Mixers p. 118 Small-Signal Analysis p. 120 Diode Conductance and Capacitance Waveforms p. 120 Conversion Matrices p. 121 Small-Signal Analysis p. 127 Noise Analysis p. 135 Noise Sources p. 135 Mixer Noise Theory p. 136 Mixer Analysis by General-Purpose Harmonic-Balance Simulators p. 142 Performance Optimization p. 144 Image Terminating Impedance and Image Enhancement p. 146 LO Power p. 146 Minimizing Intermodulation p. 148 DC Bias Voltage p. 148 References p. 150 System Considerations p. 153 Internally-Generated Mixer Noise p. 153 Noise Temperature and Noise Figure p. 153 Noise Temperature and Noise Figure of an Attenuator p. 157 Noise Temperature of a Cascade of Stages p. 158 Mixer Noise Temperature p. 159

3 Noise Temperature of a Mixer Receiver p. 163 Mixer Noise Figure p. 167 LO-Induced Noise, Intermodulation, and Spurious Signals p. 171 AM Noise in the LO p. 172 Phase Noise p. 173 Internally-Generated Spurious Signals p. 175 Two-Tone Intermodulation and Saturation p. 176 Spurious Responses p. 180 Miscellaneous Considerations p. 183 Sensitivity of Noise Temperature and Conversion Loss to LO Level and DC Bias p. 183 Port-to-Port Isolation p. 185 IF-Port VSWR and Reflected Noise p. 186 Reactive Terminations in Balanced Mixers p. 188 Image Noise From an RF Preamplifier p. 189 LO Power and Bias Leveling p. 190 Cryogenic Operation of Mixers p. 190 Methods of Refrigeration p. 191 Insulation p. 192 Mechanical Design of Cooled Mixers p. 193 Diodes and Electrical Considerations p. 194 Noise Measurements p. 195 Basic Technique p. 195 Simultaneous Noise and Gain Measurement p. 197 Noise Sources p. 200 Noise Measurement Errors p. 202 References p. 203 Single-Diode Mixers p. 205 Basic Approach p. 206 Design Rationale p. 206 Diode Selection p. 209 Design Methodology p. 211 Special Considerations for Very-High-Frequency Mixers p. 212 Single-Diode Mixer Designs p. 215 Untuned Mixer p. 215 Waveguide Mixer p. 216 Accurate Determination of the Embedding Impedances p. 226 Single-Diode Millimeter-Wave Mixers Using Beam-Lead Diodes p. 227 Single-Diode Mixers Above 100 GHz p. 229 References p. 235 Balanced Mixers p. 237 Microwave Hybrids p. 238

4 Fundamentals of Hybrid Couplers p. 238 Hybrid Couplers p. 240 Baluns p. 255 Singly Balanced Mixers p. 260 General Concepts p Degree Hybrid Mixers p. 267 Doubly Balanced Mixers p. 269 Ring Mixers p. 269 Star Mixer p. 273 High-Level Doubly Balanced Mixers p. 275 Subharmonically Pumped Mixers p. 277 Image-Rejection Mixers p. 280 SSB Modulators p. 283 Conclusions p. 284 References p. 288 Balanced Mixer Circuits p. 289 Waveguide Mixers p. 289 "Magic Tee" Hybrid Mixer p. 289 Crossbar Mixer p. 291 Fin-Line Mixers p. 293 Stripline and Microstrip Mixers p. 296 Hybrid Ring (Rat-Race) Mixer p. 296 Slotline Rat-Race Mixer p. 298 Quadrature Hybrid Mixers p. 299 Doubly Balanced Mixer Circuits p. 300 Low-Frequency Ring Mixers p. 300 Microwave Doubly Balanced Ring Mixers p. 301 Microwave Star Mixer p. 303 Biasable Balanced Mixer p. 308 Subharmonically Pumped Mixers p. 309 High-Frequency SHP Mixers Using Beam-Lead Diodes p. 309 Microstrip SHP Mixer p. 311 References p. 312 FET Mixers p. 313 Design of Single-Gate FET Mixers p. 314 Design Philosophy p. 314 Approximate Design of Single-Gate Mixers p. 318 Design Example p. 320 Numerical Analysis of FET Mixers p. 322 Dual-Gate Mixers p. 328 Operation of Dual-Gate Mixers p. 328

5 Approximate Small-Signal Analysis of Dual-Gate FET Mixers p. 331 Balanced FET Mixers p. 333 Single-Gate Balanced FET Mixers p. 334 Doubly Balanced FET Mixers p. 336 FET Resistive Mixers p. 338 Fundamental Concept p. 338 Single-Device FET Resistive Mixer p. 339 Balanced FET Resistive Mixers p. 340 Distributed Mixers p. 344 References p. 348 Monolithic Mixers p. 349 Applications p. 349 Communication Receivers p. 350 Television p. 350 Radar p. 350 Characteristics of the Monolithic Medium p. 351 General Characteristics p. 351 Materials p. 351 Circuit Elements p. 352 Models p. 353 Testing p. 354 Circuits p. 354 Devices p. 354 FET Circuits p. 355 Baluns and Hybrids p. 361 Diode Circuits p. 364 References p. 367 Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.

EEC132B Winter Final Project: To Be Handed in by End of Instruction: Monday March 19

EEC132B Winter Final Project: To Be Handed in by End of Instruction: Monday March 19 EEC132B Winter 2012 Final Project: To Be Handed in by End of Instruction: Monday March 19 Objective: Design of the passive circuitry associated with a balanced Schottky diode microstrip mixer. References:

More information

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

The Schottky Diode Mixer. Application Note 995

The Schottky Diode Mixer. Application Note 995 The Schottky Diode Mixer Application Note 995 Introduction A major application of the Schottky diode is the production of the difference frequency when two frequencies are combined or mixed in the diode.

More information

Microwave Devices and Circuit Design

Microwave Devices and Circuit Design Microwave Devices and Circuit Design Ganesh Prasad Srivastava Vijay Laxmi Gupta MICROWAVE DEVICES and CIRCUIT DESIGN GANESH PRASAD SRIVASTAVA Professor (Retired) Department of Electronic Science University

More information

X-BAND MMIC ACTIVE MIXERS

X-BAND MMIC ACTIVE MIXERS Active and Passive Elec. Comp., 2002, Vol. 25, pp. 23 46 X-BAND MMIC ACTIVE MIXERS PETROS S. TSENES, GIORGOS E. STRATAKOS and NIKOLAOS K. UZUNOGLU Microwave and Fiber Optics Laboratory, Department of Electrical

More information

RF AND MICROWAVE TRANSMITTER DESIGN

RF AND MICROWAVE TRANSMITTER DESIGN RF AND MICROWAVE TRANSMITTER DESIGN WILEY SERIES IN MICROWAVE AND OPTICAL ENGINEERING KAI CHANG, Editor Texas A&M University A complete list of the titles in this series appears at the end of this volume.

More information

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p.

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. 3 Microwave Systems p. 5 The Microwave Spectrum p. 6 Why Microwave

More information

SMT Hybrid Couplers, RF Parameters and Applications

SMT Hybrid Couplers, RF Parameters and Applications SMT Hybrid Couplers, RF Parameters and Applications A 90 degree hybrid coupler is a four-port device used to equally split an input signal into two signals with a 90 degree phase shift between them. The

More information

LOW NOISE GHZ RECEIVERS USING SINGLE-DIODE HARMONIC MIXERS

LOW NOISE GHZ RECEIVERS USING SINGLE-DIODE HARMONIC MIXERS First International Symposium on Space Terahertz Technology Page 399 LOW NOISE 500-700 GHZ RECEIVERS USING SINGLE-DIODE HARMONIC MIXERS Neal R. Erickson Millitech Corp. P.O. Box 109 S. Deerfield, MA 01373

More information

Design of Crossbar Mixer at 94 GHz

Design of Crossbar Mixer at 94 GHz Wireless Sensor Network, 2015, 7, 21-26 Published Online March 2015 in SciRes. http://www.scirp.org/journal/wsn http://dx.doi.org/10.4236/wsn.2015.73003 Design of Crossbar Mixer at 94 GHz Sanjeev Kumar

More information

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent feedback path. Figure 12-2 (p. 579) General circuit for a transistor oscillator. The transistor

More information

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p.

Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. Foreword p. xi Preface p. xiii Introduction Introduction to radio frequencies p. 3 What are the 'radio frequencies'? p. 3 Why are radio frequencies different? p. 3 What this book covers p. 3 Signals and

More information

Microwave Engineering Third Edition

Microwave Engineering Third Edition Microwave Engineering Third Edition David M. Pozar University of Massachusetts at Amherst WILEY John Wiley & Sons, Inc. ELECTROMAGNETIC THEORY 1 1.1 Introduction to Microwave Engineering 1 Applications

More information

DOUBLE-SIDEBAND MIXER CIRCUITS

DOUBLE-SIDEBAND MIXER CIRCUITS DOUBLE-SIDEBAND MIXER CIRCUITS SBW SERIES Waveguide, SMA / SBB SERIES DC Biasable, Low Power DB, DM SERIES General Purpose SBE SERIES Even Harmonic (1/2 ) TB, TBR SERIES Best Spurs, Overlap / W Y W Y Z

More information

Low Cost Mixer for the 10.7 to 12.8 GHz Direct Broadcast Satellite Market

Low Cost Mixer for the 10.7 to 12.8 GHz Direct Broadcast Satellite Market Low Cost Mixer for the.7 to 12.8 GHz Direct Broadcast Satellite Market Application Note 1136 Introduction The wide bandwidth requirement in DBS satellite applications places a big performance demand on

More information

. From the above data, determine the network is symmetric or not.

. From the above data, determine the network is symmetric or not. Velammal College of Engineering and Technology, Madurai Department of Electronics and Communication Engineering Question Bank Subject Name: EC2353 Antennas And Wave Propagation Faculty: Mrs G VShirley

More information

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE Progress In Electromagnetics Research Letters, Vol. 26, 87 96, 211 SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE M. Kazerooni * and M. Aghalari

More information

Silicon Beam Lead Schottky Barrier Mixer Diodes

Silicon Beam Lead Schottky Barrier Mixer Diodes ilicon chottky Barrier Mixer Diodes Features Ideal for MIC Low 1/f Noise Low Intermodulation Distortion Low Turn On Hermetically ealed Packages PC Controlled Wafer Fabrication Description Alpha beam lead

More information

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer 37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer F. Rasà, F. Celestino, M. Remonti, B. Gabbrielli, P. Quentin ALCATEL ITALIA, TSD-HCMW R&D, Str. Provinciale per Monza, 33, 20049 Concorezzo

More information

BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN 0.18 µm CMOS

BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN 0.18 µm CMOS Progress In Electromagnetics Research C, Vol. 23, 41 54, 211 BALANCED MIXERS USING WIDEBAND SYMMETRIC OFFSET STACK BALUN IN.18 µm CMOS H.-K. Chiou * and J.-Y. Lin Department of Electrical Engineering,

More information

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p.

Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A Baseline Monopulse Radar p. Preface p. xu Introduction p. 1 Review of Radar Principles p. 1 Tracking Radars and the Evolution of Monopulse p. 3 A "Baseline" Monopulse Radar p. 8 Advantages and Disadvantages of Monopulse p. 17 Non-Radar

More information

HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER

HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER Progress In Electromagnetics Research Letters, Vol. 18, 145 154, 2010 HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER P.-K. Singh, S. Basu, W.-C. Chien, and Y.-H. Wang

More information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION A 2-40 GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION M. Mehdi, C. Rumelhard, J. L. Polleux, B. Lefebvre* ESYCOM

More information

RF AND MICROWAVE CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS. Lawrence E. Larson editor. Artech House Boston London

RF AND MICROWAVE CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS. Lawrence E. Larson editor. Artech House Boston London RF AND MICROWAVE CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS Lawrence E. Larson editor Artech House Boston London CONTENTS Preface xi Chapter 1 An Overview 1 1.1 Introduction 1 1.2 Markets and Frequencies

More information

A GHz MONOLITHIC GILBERT CELL MIXER. Andrew Dearn and Liam Devlin* Introduction

A GHz MONOLITHIC GILBERT CELL MIXER. Andrew Dearn and Liam Devlin* Introduction A 40 45 GHz MONOLITHIC GILBERT CELL MIXER Andrew Dearn and Liam Devlin* Introduction Millimetre-wave mixers are commonly realised using hybrid fabrication techniques, with diodes as the nonlinear mixing

More information

This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its noise performance.

This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its noise performance. 1 of 8 12/29/2015 12:53 PM print close Microwaves and RF Mark Scott Logue Tue, 2015-12-29 12:19 This novel simulation method effectively analyzes a 2-GHz oscillator to better understand and optimize its

More information

Frequency conversion. 7.1 Mixers characteristics

Frequency conversion. 7.1 Mixers characteristics Chapter 7 Mixers Three-terminal non-linear or time-varying devices for frequency conversion. Implemented by diode and transistor in microwave range. Loss, noise and inter-modulation distortion are major

More information

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 SEM: VII BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION 1. What is RF? 2. What is an RF tuner? 3. Define

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

SERIES MXP BALANCED MIXERS FEATURES: APPLICATIONS: DESCRIPTION

SERIES MXP BALANCED MIXERS FEATURES: APPLICATIONS: DESCRIPTION BALANCED MIXERS FEATURES: Low conversion loss and noise figure 13 dbm LO drive power Matched IF amplifier and LO offered Small, rugged package APPLICATIONS: DESCRIPTION Millitech series MXP balanced mixers

More information

5.8 GHz Single-Balanced Hybrid Mixer

5.8 GHz Single-Balanced Hybrid Mixer Single-Balanced Hybrid Mixer James McKnight MMIC Design EE 525.787 JHU Fall 200 Professor John Penn Abstract This report details the design of a C-Band monolithic microwave integrated circuit (MMIC) single-balanced

More information

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya opovic, University of Colorado, Boulder LECTURE 3 MICROWAVE AMLIFIERS: INTRODUCTION L3.1. TRANSISTORS AS BILATERAL MULTIORTS Transistor

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION TECHNICAL INFORMATION TECHNOLOGY Y-Junction circulator PORT 1 PORT 2 PORT 3 FIG. 1 The Y-junction circulator uses spinel ferrites or garnet ferrites in the presence of a magnetic bias field, to provide

More information

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Haiyong Xu, Gerhard S. Schoenthal, Robert M. Weikle, Jeffrey L. Hesler, and Thomas W. Crowe Department of Electrical and Computer

More information

Schottky diode characterization, modelling and design for THz front-ends

Schottky diode characterization, modelling and design for THz front-ends Invited Paper Schottky diode characterization, modelling and design for THz front-ends Tero Kiuru * VTT Technical Research Centre of Finland, Communication systems P.O Box 1000, FI-02044 VTT, Finland *

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

EC 1402 Microwave Engineering

EC 1402 Microwave Engineering SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC 1402 Microwave Engineering

More information

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4 11 7 8 9 FEATURES Downconverter, 8. GHz to 13. GHz Conversion loss: 9 db typical Image rejection: 27. dbc typical LO to RF isolation: 39 db typical Input IP3: 16 dbm typical Wide IF bandwidth: dc to 3.

More information

Schottky diode mixer for 5.8 GHz radar sensor

Schottky diode mixer for 5.8 GHz radar sensor AN_1808_PL32_1809_130625 Schottky diode mixer for 5.8 GHz radar sensor About this document Scope and purpose This application note shows a single balanced mixer for 5.8 GHz Doppler radar applications with

More information

A NOVEL BIASED ANTI-PARALLEL SCHOTTKY DIODE STRUCTURE FOR SUBHARMONIC

A NOVEL BIASED ANTI-PARALLEL SCHOTTKY DIODE STRUCTURE FOR SUBHARMONIC Page 342 A NOVEL BIASED ANTI-PARALLEL SCHOTTKY DIODE STRUCTURE FOR SUBHARMONIC Trong-Huang Lee', Chen-Yu Chi", Jack R. East', Gabriel M. Rebeiz', and George I. Haddad" let Propulsion Laboratory California

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

More information

LECTURE 6 BROAD-BAND AMPLIFIERS

LECTURE 6 BROAD-BAND AMPLIFIERS ECEN 54, Spring 18 Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder LECTURE 6 BROAD-BAND AMPLIFIERS The challenge in designing a broadband microwave amplifier is the fact that the

More information

A 9 21 GHz MINIATURE MONOLITHIC IMAGE REJECT MIXER IN 0.18-µM CMOS TECHNOLOGY

A 9 21 GHz MINIATURE MONOLITHIC IMAGE REJECT MIXER IN 0.18-µM CMOS TECHNOLOGY Progress In Electromagnetics Research Letters, Vol. 17, 105 114, 2010 A 9 21 GHz MINIATURE MONOLITHIC IMAGE REJECT MIXER IN 0.18-µM CMOS TECHNOLOGY W.-C. Chien, C.-M. Lin, Y.-H. Chang, and Y.-H. Wang Department

More information

A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID. National Cheng-Kung University, No. 1 University Road, Tainan 70101, Taiwan

A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID. National Cheng-Kung University, No. 1 University Road, Tainan 70101, Taiwan Progress In Electromagnetics Research C, Vol. 24, 147 159, 2011 A COMPACT DOUBLE-BALANCED STAR MIXER WITH NOVEL DUAL 180 HYBRID Y.-A. Lai 1, C.-N. Chen 1, C.-C. Su 1, S.-H. Hung 1, C.-L. Wu 1, 2, and Y.-H.

More information

Optimization of two Schottky Diode Topology Mixer for Satellite Signal Reception by Substrate Selection

Optimization of two Schottky Diode Topology Mixer for Satellite Signal Reception by Substrate Selection International Journal of ngineering Studies. ISSN 0975-6469 Volume 10, Number 1 (2018), pp. 11 21 Research India Publications http://www.ripublication.com/ijes.htm Optimization of two Schottky Diode Topology

More information

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter HMC815B

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter HMC815B Data Sheet 1 GHz to 7 GHz, GaAs, MMIC, I/Q Upconverter HMC1B FEATURES Conversion gain: db typical Sideband rejection: dbc typical OP1dB compression: dbm typical OIP3: 7 dbm typical LO to RF isolation:

More information

Design Considerations for a 1.9 THz Frequency Tripler Based on Membrane Technology

Design Considerations for a 1.9 THz Frequency Tripler Based on Membrane Technology Design Considerations for a.9 THz Frequency Tripler Based on Membrane Technology Alain Maestrini, David Pukala, Goutam Chattopadhyay, Erich Schlecht and Imran Mehdi Jet Propulsion Laboratory, California

More information

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION

COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION Progress In Electromagnetics Research C, Vol. 16, 233 239, 2010 COMPACT BRANCH-LINE COUPLER FOR HARMONIC SUPPRESSION J. S. Kim Department of Information and Communications Engineering Kyungsung University

More information

RF/Microwave Circuits I. Introduction Fall 2003

RF/Microwave Circuits I. Introduction Fall 2003 Introduction Fall 03 Outline Trends for Microwave Designers The Role of Passive Circuits in RF/Microwave Design Examples of Some Passive Circuits Software Laboratory Assignments Grading Trends for Microwave

More information

Ultra-Broad-Band Doubly Balanced Star Mixers Using Planar Mouw s Hybrid Junction

Ultra-Broad-Band Doubly Balanced Star Mixers Using Planar Mouw s Hybrid Junction IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 6, JUNE 2001 1077 Ultra-Broad-Band Doubly Balanced Star Mixers Using Planar Mouw s Hybrid Junction Chi-Yang Chang, Member, IEEE, Ching-Wen

More information

4 GHz to 8.5 GHz, GaAs, MMIC, I/Q Mixer HMC525ALC4

4 GHz to 8.5 GHz, GaAs, MMIC, I/Q Mixer HMC525ALC4 Data Sheet FEATURES Passive: no dc bias required Conversion loss: 8 db (typical) Input IP3: 2 dbm (typical) LO to RF isolation: 47 db (typical) IF frequency range: dc to 3. GHz RoHS compliant, 24-terminal,

More information

Design and simulation of Parallel circuit class E Power amplifier

Design and simulation of Parallel circuit class E Power amplifier International Journal of scientific research and management (IJSRM) Volume 3 Issue 7 Pages 3270-3274 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Design and simulation of Parallel circuit class E Power

More information

Frequency Multiplier Development at e2v Technologies

Frequency Multiplier Development at e2v Technologies Frequency Multiplier Development at e2v Technologies Novak Farrington UK Millimetre-Wave User Group Meeting National Physical Laboratory 05-10-09 Outline Sources available Brief overview of doubler operation

More information

INTEGRATED COMPACT BROAD KA-BAND SUB-HA- RMONIC SINGLE SIDEBAND UP-CONVERTER MMIC

INTEGRATED COMPACT BROAD KA-BAND SUB-HA- RMONIC SINGLE SIDEBAND UP-CONVERTER MMIC Progress In Electromagnetics Research C, Vol. 8, 179 194, 2009 INTEGRATED COMPACT BROAD KA-BAND SUB-HA- RMONIC SINGLE SIDEBAND UP-CONVERTER MMIC P. K. Singh, S. Basu, and Y.-H. Wang Department of Electrical

More information

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY 11788 hhausman@miteq.com Abstract Microwave mixers are non-linear devices that are used to translate

More information

Design approach for I-Q Modulators using Millimeter-Wave Monolithic Doubly Balanced V-Band Star Mixers

Design approach for I-Q Modulators using Millimeter-Wave Monolithic Doubly Balanced V-Band Star Mixers 402 Design approach for I-Q Modulators using Millimeter-Wave Monolithic Doubly Balanced V-Band Star Mixers Ernesto Limiti 1*, Sergio rena 2, Tommaso Cavanna 2, Filippo Testa 1 1 Dipartimento di Ingegneria

More information

RF Mixers. Iulian Rosu, YO3DAC / VA3IUL, A down-conversion system. An up-conversion system

RF Mixers. Iulian Rosu, YO3DAC / VA3IUL,  A down-conversion system. An up-conversion system RF Mixers Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul RF Mixers are 3-port active or passive devices. They are designed to yield both, a sum and a difference frequency at a single output port

More information

Design of Frequency Multiplier at 120 GHz for Sub-Millimeter Wave LO Development

Design of Frequency Multiplier at 120 GHz for Sub-Millimeter Wave LO Development IJSRD National Conference on Advances in Computer Science Engineering & Technology May 2017 ISSN: 2321-0613 Design of Frequency Multiplier at 120 GHz for Sub-Millimeter Wave LO Development Dhruvi Prajapati

More information

W-Band Dual Channel Transmitter/Receiver. GaAs Monolithic Microwave IC. IFa_Lc (db)

W-Band Dual Channel Transmitter/Receiver. GaAs Monolithic Microwave IC. IFa_Lc (db) IFa_Lc (db) GaAs Monolithic Microwave IC Description The is a dual channel self-biased transmitter/receiver. One RF port used for reception and one for both emission and reception. This product is designed

More information

RF Discrete Devices Designer Kit

RF Discrete Devices Designer Kit RF Discrete Devices Designer Kit The Easier, Faster Way to Design Quality RF Solutions Skyworks Solutions is committed to making your RF designs easier than ever. This design kit includes 5-10 components

More information

RF POWER amplifier (PA) efficiency is of critical importance

RF POWER amplifier (PA) efficiency is of critical importance IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 5, MAY 2005 1723 Experimental Class-F Power Amplifier Design Using Computationally Efficient and Accurate Large-Signal phemt Model Michael

More information

Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz

Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz Jeffrey Hesler University of Virginia Department of Electrical Engineering Charlottesville, VA 22903 phone 804-924-6106 fax 804-924-8818 (hesler@virginia.edu)

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

5.5 GHz to 8.6 GHz, GaAs, MMIC, I/Q Upconverter HMC6505A

5.5 GHz to 8.6 GHz, GaAs, MMIC, I/Q Upconverter HMC6505A Data Sheet FEATURES Conversion gain: db typical Sideband rejection: dbc typical Output P1dB compression at maximum gain: dbm typical Output IP3 at maximum gain: dbm typical LO to RF isolation: db typical

More information

DESIGN OF PLANAR IMAGE SEPARATING AND BALANCED SIS MIXERS

DESIGN OF PLANAR IMAGE SEPARATING AND BALANCED SIS MIXERS Proceedings of the 7th International Symposium on Space Terahertz Technology, March 12-14, 1996 DESIGN OF PLANAR IMAGE SEPARATING AND BALANCED SIS MIXERS A. R. Kerr and S.-K. Pan National Radio Astronomy

More information

Towards a Second Generation SIS Receiver for ALMA Band 6

Towards a Second Generation SIS Receiver for ALMA Band 6 Towards a Second Generation SIS Receiver for ALMA Band 6 A. R. Kerr, J. Effland, A. W. Lichtenberger, and J. Mangum NRAO 23 March 2016 Summary: This report describes work done towards a new generation

More information

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band V. Vassilev and V. Belitsky Onsala Space Observatory, Chalmers University of Technology ABSTRACT As a part of Onsala development of

More information

DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO LINKS

DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO LINKS Electrocomponent Science and Technology 1977, Vol. 4, pp. 79-83 (C)Gordon and Breach Science Publishers Ltd., 1977 Printed in Great Britain DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

GaAs Flip Chip Schottky Barrier Diodes MA4E1317, MA4E1318, MA4E1319-1, MA4E V1. Features. Description and Applications MA4E1317

GaAs Flip Chip Schottky Barrier Diodes MA4E1317, MA4E1318, MA4E1319-1, MA4E V1. Features. Description and Applications MA4E1317 Features Low Series Resistance Low Capacitance High Cutoff Frequency Silicon Nitride Passivation Polyimide Scratch Protection Designed for Easy Circuit Insertion Description and Applications M/A-COM's

More information

A FIXED-TUNED 400 GHz SUBHARIVIONIC MIXER

A FIXED-TUNED 400 GHz SUBHARIVIONIC MIXER A FIXED-TUNED 400 GHz SUBHARIVIONIC MIXER USING PLANAR SCHOTTKY DIODES Jeffrey L. Hesler% Kai Hui, Song He, and Thomas W. Crowe Department of Electrical Engineering University of Virginia Charlottesville,

More information

Power Combiners, Impedance Transformers and Directional Couplers: Part III

Power Combiners, Impedance Transformers and Directional Couplers: Part III From February 8 High Frequency Electronics Copyright 8 Summit Technical Media, LLC Power Combiners, Impedance Transformers and Directional Couplers: Part III By Andrei Grebennikov Microwave hybrids This

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

FREQUENCY MULTIPLIERS

FREQUENCY MULTIPLIERS MULTIPLIERS A series of broadband frequency multipliers is available with output frequencies between 18 and 110 GHz. The use of GaAs diodes on a suspended substrate circuit allows an extremely compact

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

THE rapid growth of portable wireless communication

THE rapid growth of portable wireless communication IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1999 231 Monolithic RF Active Mixer Design Keng Leong Fong, Member, IEEE, and Robert G. Meyer,

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Vamsi Paidi, Shouxuan Xie, Robert Coffie, Umesh K Mishra, Stephen Long, M J W Rodwell Department of

More information

1 IF. p" devices quasi-optically coupled in free space have recently. A 100-Element Planar Schottky Diode Grid Mixer

1 IF. p devices quasi-optically coupled in free space have recently. A 100-Element Planar Schottky Diode Grid Mixer IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 3, MARCH 1992 551 A 100-Element Planar Schottky Diode Grid Mixer Jonathan B. Hacker, Student Member, IEEE, Robert M. Weikle, 11, Student

More information

W-band Mixer. GaAs Monolithic Microwave IC

W-band Mixer. GaAs Monolithic Microwave IC W-band Mixer GaAs Monolithic Microwave IC Description The CHM2179b98F is a monolithic single channel mixer, which integrates high quality Schottky diodes that produces low conversion loss and very low

More information

Design of Frequency Doubler Using Inductively Compensated Microstrip Ring Resonator

Design of Frequency Doubler Using Inductively Compensated Microstrip Ring Resonator Available online at www.sciencedirect.com Procedia Engineering 32 (2012) 544 549 I-SEEC2011 Design of Frequency Doubler Using Inductively Compensated Microstrip Ring Resonator R. Phromloungsri a, N. Thammawongsa

More information

Three New Rat-Race Couplers with Defected Microstrip and Ground Structure (DMGS)

Three New Rat-Race Couplers with Defected Microstrip and Ground Structure (DMGS) 300 ACES JOURNAL, VOL. 28, NO. 4, APRIL 2013 Three New Rat-Race Couplers with Defected Microstrip and Ground Structure (DMGS) Ma. Shirazi 1, R. Sarraf Shirazi 1, Gh. Moradi 1, and Mo. Shirazi 2 1 Microwave

More information

Wideband 760GHz Planar Integrated Schottky Receiver

Wideband 760GHz Planar Integrated Schottky Receiver Page 516 Fourth International Symposium on Space Terahertz Technology This is a review paper. The material presented below has been submitted for publication in IEEE Microwave and Guided Wave Letters.

More information

Combined Band MHz. Fig. 1 Typical Diplexer Filter Combiner Fig. 2 Typical Diplexer Combiner

Combined Band MHz. Fig. 1 Typical Diplexer Filter Combiner Fig. 2 Typical Diplexer Combiner Choosing the Best Power Divider for the Task of Signal Combining As systems become more and more complex, choosing how best to combine two or more RF signals has become a far more difficult question to

More information

A 38 TO 44 GHz SUB-HARMONIC BALANCED HBT MIXER WITH INTEGRATED MINIATURE SPIRAL TYPE MARCHAND BALUN

A 38 TO 44 GHz SUB-HARMONIC BALANCED HBT MIXER WITH INTEGRATED MINIATURE SPIRAL TYPE MARCHAND BALUN Progress In Electromagnetics Research, Vol. 135, 317 330, 2013 A 38 TO 44 GHz SUB-HARMONIC BALANCED HBT MIXER WITH INTEGRATED MINIATURE SPIRAL TYPE MARCHAND BALUN Tom K. Johansen 1, * and Viktor Krozer

More information

FMMX9003 DATA SHEET. Field Replaceable SMA IQ Mixer From 11 GHz to 16 GHz With an IF Range From DC to 3.5 GHz And LO Power of +19 dbm.

FMMX9003 DATA SHEET. Field Replaceable SMA IQ Mixer From 11 GHz to 16 GHz With an IF Range From DC to 3.5 GHz And LO Power of +19 dbm. FMMX93 Field Replaceable SMA IQ Mixer From 11 GHz to 16 GHz With an IF Range From DC to 3.5 GHz And LO Power of +19 dbm FMMX93 is an I/Q double balanced millimeter-wave mixer module that operates across

More information

WIDE-BAND circuits are now in demand as wide-band

WIDE-BAND circuits are now in demand as wide-band 704 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 2, FEBRUARY 2006 Compact Wide-Band Branch-Line Hybrids Young-Hoon Chun, Member, IEEE, and Jia-Sheng Hong, Senior Member, IEEE Abstract

More information

SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I

SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I 1. Define Microwave. Microwaves are generally described as electromagnetic waves with frequencies that range from approximately 1GHz to 300 GHz. Therefore,

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

CUSTOM INTEGRATED ASSEMBLIES

CUSTOM INTEGRATED ASSEMBLIES 17 CUSTOM INTEGRATED ASSEMBLIES CUSTOM INTEGRATED ASSEMBLIES Cougar offers full first-level integration capabilities, providing not just performance components but also full subsystem solutions to help

More information

WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR

WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR Progress In Electromagnetics Research Letters, Vol. 18, 135 143, 2010 WIDE-BAND HIGH ISOLATION SUBHARMONICALLY PUMPED RESISTIVE MIXER WITH ACTIVE QUASI- CIRCULATOR W. C. Chien, C.-M. Lin, C.-H. Liu, S.-H.

More information

TABLE OF CONTENTS CONTENTS PAGE INTRODUCTION Application Guidelines 2 QUICK REFERENCE Single-, Double- and Triple-Balanced Mixers 3 Biasable, Harmonic

TABLE OF CONTENTS CONTENTS PAGE INTRODUCTION Application Guidelines 2 QUICK REFERENCE Single-, Double- and Triple-Balanced Mixers 3 Biasable, Harmonic MIXERS Back to UNSTAR 微波光电 http://www.rfoe.net/ E-MAIL:szss Mixer Home Page MIXERS MICROWAVE AND MILLIMETER WAVE Introduction Quick Reference Detailed Data Sheets General Information Questions & Answers

More information

Waveform Measurements on a HEMT Resistive Mixer

Waveform Measurements on a HEMT Resistive Mixer Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Waveform Measurements on a HEMT Resistive Mixer D. Schreurs, J. Verspecht, B.

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

2 18GHz Double Balanced Ring Mixer

2 18GHz Double Balanced Ring Mixer 2 18GHz Double Balanced Ring Mixer Features RF/LO Frequency: 2 18GHz IF bandwidth: DC 75MHz Nominal LO drive of 7-13dBm Low Conversion Loss: 4dB High Port to Port Isolation High IIP3 Nominal bias: 5V @1mA.15-µm

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

Power Dividers, Couplers and Combiners

Power Dividers, Couplers and Combiners , Inc. 2012 All rights reserved Power Dividers, Couplers and Combiners A Webinar Presented by Dr. Bob Froelich Of, Inc. November 20, 2012 Mini-Circuits Company Overview Founded: 1969 Headquarters: Brooklyn,

More information

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Simulation of GaAs MESFET and HEMT Devices for RF Applications olume, Issue, January February 03 ISSN 78-6856 Simulation of GaAs MESFET and HEMT Devices for RF Applications Dr.E.N.GANESH Prof, ECE DEPT. Rajalakshmi Institute of Technology ABSTRACT: Field effect transistor

More information