Progress and challenges in the direct monolithic integration of III-V devices and Si CMOS on silicon substrates

Size: px
Start display at page:

Download "Progress and challenges in the direct monolithic integration of III-V devices and Si CMOS on silicon substrates"

Transcription

1 Progress and challenges in the direct monolithic integration of III-V devices and Si CMOS on silicon substrates The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Kazior, T.E. et al. Progress and challenges in the direct monolithic integration of III V devices and Si CMOS on silicon substrates. Indium Phosphide & Related Materials, IPRM '09. IEEE International Conference on IEEE Institute of Electrical and Electronics Engineers Version Final published version Accessed Mon Oct 29 19:30:26 EDT 2018 Citable Link Terms of Use Detailed Terms Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

2 TuA1.3 (Invited) 9:15 AM - 9:45 AM Progress and Challenges in the Direct Monolithic Integration of III-V Devices and Si CMOS on Silicon Substrates T.E. Kazior* 1, J.R. LaRoche 1, D. Lubyshev 2, J. M. Fastenau 2, W. K. Liu 2, M. Urteaga 3, W. Ha 3, J. Bergman 3, M. J. Choe 3, M. T. Bulsara 4, E. A. Fitzgerald 4, D. Smith 5, D. Clark 5, R. Thompson 5, C. Drazek 6, N. Daval 6, L. Benaissa 7 and E. Augendre 7 1 Raytheon Integrated Defense Systems, Andover, Massachusetts, USA; 2 IQE Inc., Bethlehem, Pennsylvania, USA; 3 Teledyne Scientific Company, Thousand Oaks, California, USA; 4 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; 5 Raytheon Systems Limited, Glenrothes, Fife, United Kingdom; 6 SOITEC, Bernin, France; 7 CEA-LETI, MINATEC, Grenoble, France Abstract We present results on the direct monolithic integration of III-V devices and Si CMOS on a silicon substrate. Through optimization of device fabrication and material growth processes III-V devices with electrical performance comparable to devices grown on native III-V substrates were grown directly in windows adjacent to CMOS transistors on silicon template wafers or SOLES (Silicon on Lattices Engineered Substrates). While the results presented here are for InP HBTs, our direct heterogeneously integration approach is equally applicable to other III-V electronic (FETs, HEMTs) and opto-electronic (photodiodes, VSCLS) devices and opens the door to a new class of highly integrated, high performance, mixed signal circuits. Index Terms CMOS integrated circuits, Heterojunction bipolar transistors, Indium Phosphide, Monolithic integrated circuits, Silicon I. INTRODUCTION The future of integrated circuits will include the integration of high performance III-V electronic and/or opto-electronic devices with standard Si CMOS. While traditional hybrid approaches, such as wire bonded or flip chip multi-chip assemblies (Fig 1, left), may provide short term solutions, the variability and losses of the interconnects and the limitation in the placement of III-V devices relative to CMOS transistors will limit the performance and utility of these approaches. Recently, investigators have successfully demonstrated heterogeneous integration of InP HBTs and Silicon CMOS using variations on wafer bonding techniques [1,2] where the III-V eptaxial layers or completed devices are bonded to the surface of a completed Si CMOS wafer. A more attractive approach is the direct integration of CMOS and III-V devices on a common silicon substrate (Fig 1, right). In this way circuit performance can be optimized by the strategic placement of III-V devices adjacent to CMOS transistors and cells. While the direct growth and fabrication of III-V devices on silicon substrates has been pursued for over 30 years [3], recent advances in strain and lattice engineered materials and epitaxial growth techniques have enabled the direct growth of high quality III-V device layers on silicon substrates. In this work we present the challenges and recent progress on the direct heterogeneous integration of InP HBTs and Si CMOS on a silicon substrate. As a demonstration vehicle we designed and fabricated a high speed, low power dissipation differential amplifier which serves as the basic building block for high performance mixed signal circuits such as ADCs and DACs. TFN Si CMOS TFN III-V TFN Multilayer Substrate Today s Hybrid Technology ( chip and wire or flip chip with thin film networks or TFNs) Revolutionary Developments Enable System on a Chip Si multilayer interconnect Si CMOS III-V Si CMOS Si Substrate III-V CMOS Integration III-V devices embedded in a Si wafer using III-V templates and standard Si multilayer interconnects and processing Fig. 1. Traditional hybrid assembly (left) and direct monolithic integration of III-V and CMOS on SOLES substrate (right). II. RESULTS AND DISCUSSION Our direct integration approach is based on a unique engineered silicon substrate which is similar to a standard SOI wafer. The SOLES (Silicon-on-Lattice Engineered Substrate), invented at MIT [4,5] and manufactured by SOITEC using their Smart-Cut TM Process [6, 7], contains a buried III-V template layer that enables the direct growth of high quality III-V epitaxial material in windows directly on the /09/$ IEEE 100

3 silicon substrate (Figure 2). At present the buried III-V template layer is Ge, although the substrate fabrication process is compatible with GaAs or InP template layers as well. SOLES have been successfully scaled to 200mm diameter wafers and are compatible with and can be readily inserted into a standard silicon CMOS foundry. SOLES Wafer BPSG Si S io III-V D e v ic e s 2 material due to nucleation and growth of III-V material on impurities at the windows edge. High quality III-V epitaxy, well defined windows edges and repeatable (wafer to wafer), uniform growth across a 100mm diameter wafer in windows as small as 15um x 15um are readily obtained with an optimized process (Figures 5 right, 6). A detailed report on the growth of high quality InP HBT epitaxial material in windows on SOLES has been previously published [8]. With optimized growth conditions low dislocation density (<107) material with good surface morphology (surface roughness < 1nm as measured by AFM) and well defined X-ray spectra are easily achieved. BPSG Si S io 2 G e S io 2 ( ) S i H a n d le W a f e r Fig. 2. Schematic cross section of SOLES wafers showing placement of of III-V device in windows. HBT HBT While our main efforts have focused on the fabrication of InP HBTs on SOLES, effectively creating a high performance InP BiCMOS process (similar to the SiGe BiCMOS process), the approach is equally applicable to other III-V electronic (FETs, HEMTs) and opto-electronic (photodiodes, VSCLS) devices. In fact the process flow is similar to a SiGe BiCMOS process flow: 1) Si CMOS device fabrication; 2) HBT epitaxial growth and device fabrication; 3) multilayer interconnect fabrication. In our approach, after the completion of CMOS device fabrication, windows are lithography defined and etched into the SOLES wafer to reveal the III-V template layer. Since the III-V growth windows are defined as part of the CMOS fabrication process, the III-V epitaxial material can be grown selectively and arbitrarily across the substrate as required for the particular circuit or applications. Figure 3 shows an example of a SEM image of a completed InP HBT in close proximity to a CMOS transistor prior to interconnect formation. To facilitate the interconnecting of the III-V devices and CMOS transistors, the thickness of the III-V epitaxial layers and depth of the windows are optimized such that the III-V devices and CMOS transistors are planar. Figure 4 shows an example of a daisy chain tech structure interconnecting InP HBTs and Si CMOS. With this truly planar approach, interconnect lengths (III-V CMOS separation) as small 2.5 um have been demonstrated. One of the biggest challenges of this approach is the growth of high quality III-V epitaxial material in windows on the Ge template layer. (Note: all of the III-V epitaxial material reported in this work is grown by MBE.) For the InP HBT, we first grow a GaAs nucleation layer, whose growth conditions are optimized to minimize the formation of antiphase domains (APDs). GaAs is chosen as it is nearly lattice matched to Ge. Then a metamorphic buffer layer is grown followed by the InP device layers. Optimization of the windows etch and epitaxial growth processes are key to achieving high quality device layers. Figure 5 (left) shows an example of III-V growth in windows for unoptimized windows etch and epitaxial growth processes. Note the surface roughness, poor edge definition and formation of nanowire CMOS CMOS 5m mm Fig. 3. SEM image of a completed InP HBT in close proximity to a Si CMOS transistor prior to heterogeneous interconnect formation. CMOS Metal < 2.5µm HBT Coll Metal Fig. 4. SEM image of a heterogeneous interconnect daisy chain test prior to final interconnect metallization. InP HBT Si CMOS interconnect spacing is < 2.5um. Poly crystal on BPSG Single crystal inside growth window Fig. 5. SEM Image of InP HBT device epitaxy material grown in windows on SOLES for unoptimized process (left. Note nanowire growth) and optimized process (right. Note: well defined windows down to 15um x 15um windows dimensitions) 101

4 The electrical performance of InP HBTs fabricated on SOLES is comparable to HBTs grown directly on native InP substrates [9]. Figures 7 and 8 shows the Gummel characteristics and small signal parameters of a 0.5 x 5 um 2 emitter HBT grown in a 15 x 15 um 2 window on a SOLES substrate. Gain (beta), f t and f max of 40, > 200GHz and > 200GHz, respectively are achieved. A E = 0.5x5 µm 2 I C = 7.8 ma V CE = 1.5V f t = 224 GHz f max = 219 GHz Fig. 8. Measured small signal RF characteristics of a 0.5x5 um 2 InP-HBT on SOLES substrate Using the InP HBT described above and standard CMOS a differential amplifier test vehicle was designed and fabricated. Figure 9 shows an optical image of a completed differential amplifier circuit. In addition to the core differential amplifier, the circuit contains a bias circuit and all HBT output buffer. The role of the output buffer is to attenuate the output of the core differential amplifier to facilitate the characterization of the differential amplifier. Fig. 6. Micrograph of InP HBT growth in windows on 100mm diameter SOLES. Note: uniform growth across entire wafer. Large area in center of wafer is RHEED window for use during MBE growth. Output Buffer Core Diff Amp pmos nmos pmos A E =0.5x5 µm 2 β = 40 InP HBT InP HBT Fig.9 Optical image of core differential amplifier with output buffer and bias circuit Fig. 7. Measured Gummel characteristics and RF gains of a 0.5x5 um 2 InP-HBT on SOLES substrate Because of our truly monolithically integrated, planar approach we were able to include multiple design variants within a reticle on a wafer, effectively creating a design optimization design of experiments (DOE) within the reticle. Each design variant is step and repeated across the 100mm SOLES wafer. The planar approach also facilities automated on-wafer probing for circuit characterization and the collection of circuit performance and uniformity data for the different design variants The following test results are for one of these design variants which utilizes a 3-2x5um 2 HBT in each diff amp branch (6-total) with 6-finger (2 um gate length, 19.2 um wide) PMOS devices for the amplifier loads. For all the measurements that are shown, the differential amplifier core was biased at a V ss = 6V and I ss =10mA (P diss =60mW). 102

5 Separate DC supply inputs are provided for the amplifier core and output buffer circuits to ensure an accurate measurement of the dissipated power of the core. 4-port S-parameter measurements were made to determine the low frequency amplifier gain and unity-gain bandwidth. Measurements were made from 1MHz-20 GHz using on-wafer differential GSGSG probes. A probe tip calibration was performed using a GGB Industries calibration substrate. Measurements from 1-50MHz were used to extract the low frequency gain of the differential amplifier. The low frequency voltage gain of the differential amplifier core was determined by measuring the gain of the chain of the differential amplifier with output buffer and correcting for the attenuation of the amplifier such that Av,diff amp = S21,chain-S21,buffer. The output buffer amplifier has a low frequency attenuation of ~25dB a values that agreed well with simulations Figure 10 shows the low-frequency gain of the core differentail amplifier. A peak low frequency gain of 454V/V was measured. At lower frequencies, the gain is observed to decrease slightly. We believe this is due to device self-heating (increased output conductance of HBT). S21 (db) S 21,O/B A,v,DA E+07 2E+07 3E+07 4E+07 5E+07 6E+07 Freq. (Hz) S 21,chain Fig. 10. Measured S21 of amplifier chain and output buffer test circuits at low frequencies. Low frequency gain AV,DA is given by AV,DA=S21,chain S21,O/B. Core diff amp utilized 3-2x5um 2 HBT in each diff amp branch with 6-finger 2um PMOS devices. Iss = 10mA, Vss = -6V. The high frequency gain measurements are extracted using a similar scalar approach for determining the core amplifier characteristics. Figure 11 shows the corrected high frequency characteristics for the same amplifier as shown in Figure 10. A deviation in the slope of the roll-off was observed at the higher end of the frequency band. The cause of this discrepancy has not been determined. To determine the unity gain cut-off frequency of the amplifier, this portion of the frequency response was not utilized. Instead, the unity gain frequency was extrapolated from the intercept of data taken from 1-15 GHz. A unity-gain frequency of >25 GHz was extracted from the measurement shown in Figure 11. From the DC-gain measurement, the DC-gain*unity gain bandwidth product is measured to be 1.1x10 4 V/V GHz. Gain (db) S 21,O/B S 21,chain -S 21,O/B S 21,chain E E E E+11 Freq (Hz) Fig. 11. Measured S21 of amplifier chain and output buffer test circuits at high frequencies. Scalar determination of diff amp gain is determined as S21,DA=S21,chain S21,O/B. Core diff amp utilized 3-2x5um2 HBT in each diff amp branch with 6-finger 2um PMOS devices. Iss = 10mA, Vss = -6V. Slew-rate measurements were made on the same amplifier show in Figures 10 and 11. For the slew rate measurement, a 250 MHz input signal was provided from a signal generator. A differential input signal was generated using a 180 balun. Both outputs from the amplifier were provided to a high-speed Agilent sampling oscilloscope and the differential amplifier output was determined using the mathematical functions of the oscilloscope. Figure 12 shows the measured output waveform of the amplifier when driven to saturation. A peak output swing of 420mV was measured from the output buffer stage. Correcting for the measured attenuation of the output buffer (25.5dB from S-parameters) the corresponding voltage swing of the amplifier core is 9V peak to peak (4.5V single ended). The rise time and fall time (10%-90%) of the amplifier were determined using the internal math functions of oscilloscope. For the measurement in Figure 12, the average rise/fall time was 510psec. Based on the signal swing of the amplifier core, this corresponds to a measured slew rate of 1.26x10 4 V-usec. Similar results were achieved for other differential amplifier design variants and for different wafers highlighting the manufacturability of our approach. 103

6 Low frequency voltage swing 9V 250 MHz Rise Time = 510psec Fig. 12. Measured output waveform for slew rate measurements of amplifier (same amplifier as that measured in Figures 10 and 11). 250MHz differential input signal is provided to saturate the amplifier. A peak output voltage swing of 420mV was measured from the output buffer corresponding to an internal input swing of 9.0V. An average rise/fall time of 510psec is measured. III. SUMMARY In this work we presented results on the direct monolithic integration of InP HBTs with Si CMOS on a silicon substrate. Our direct growth approach yields InP HBTs with similar RF performance to HBTs fabricated on InP substrates. Our truly planar approach allows tight device placement (InP HBTs - Si CMOS transistors separation as small as 2.5um) and the use os standard wafer level multilayer interconnects. While the results presented here are for InP HBTs directly integrated onto the silicon substrate, the approach is equally applicable to other III-V electronic (FETs, HEMTs) and opto-electronic (photodiodes, VSCLS) devices and opens the door to a new class of highly integrated, high performance, mixed signal circuits. ACKNOWLEDGEMENT This work is supported in part by the DARPA COSMOS Program (Contract Number N C-0629). The authors would like to thank Mark Rosker (DARPA), Harry Dietrich (ONR) and Karl Hobart (NRL). REFERENCES [1] M. J. Rosker, V. Greanya, T-H Chang., The DARPA Compound Semiconductor Materials On Silicon (COSMOS) Program 2008 Compound Semiconductor Integrated Circuits Symposium (CSICS 08) Oct 2008, /CSICS [2] Li, J.C.; Elliott, K.R.; Matthews, D.S.; Hitko, D.A.; Zehnder, D.M.; Royter, Y.; Patterson, P.R.; Hussain, T.; Jensen, J.F., 100GHz+ Gain-Bandwidth Differential Amplifiers in a Wafer Scale Heterogeneously Integrated Technology using 250nm InP DHBTs and 130nm CMOS 2008 Compound Semiconductor Integrated Circuits Symposium (CSICS 08) Oct 2008, /CSICS [3] S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi and N. Otsuka, Gallium arsenide and other compound semiconductors on silicon J. Appl. Phys. 68 (1990) R31 and references therein [4] C. L. Dohrman, K. Chilukuri, D. M. Isaacson, M. L. Lee, E.A Fitzgerald, Fabrication of silicon on latticeengineered substrate (SOLES) as a platform for monolithic integration of CMOS and optoelectronic devices Materials Science and Engineering B, 135 (2006) [5] K. Chilukuri, M. J. Mori, C. L. Dohrman and, E. A. Fitzgerald, Monolithic CMOS-compatible AlGaInP visibile LED arrays on silicon on lattice-engineered substrates (SOLES) Semicond. Sci. Tech. 22 (2007), [6] C. Maleville and C. Mazuré, Smart Cut technology: From 300 mm ultrathin SOI production to advanced engineered substrates. Solid State Electron. 48 (2004) [7] Smart-Cut is a registered trademark of Soitec. [8] W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, M. Urteaga, W. Ha, J. Bergman, B. Brar, W. E. Hoke, J. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, Monolithic Integration of InP-based Transistors on Si substrates using MBE Journal of Crystal Growth XX (2009) in press [9] W. Ha, M. Urteaga, J. Bergman, B. Brar, W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. T. Bulsara, E. A. Fitzgerald, W. E. Hoke, J. R. LaRoche, K. J. Herrick, T. E. Kazior, D. Clark, D. Smith, R. F. Thompson, C. Drazek, and N. Daval, Small-area InP DHBTs grown on patterned lattice-engineered silicon substrates 66 th Device Research Conference, Santa Barbara, CA, Jun 23 25, 2008 (IV.B-9). 104

A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates

A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates The MIT Faculty has made this article openly available. Please share how

More information

High Performance Mixed Signal Circuits Enabled by the Direct Monolithic Heterogeneous Integration of InP HBT and Si CMOS on a Silicon Substrate

High Performance Mixed Signal Circuits Enabled by the Direct Monolithic Heterogeneous Integration of InP HBT and Si CMOS on a Silicon Substrate High Performance Mixed Signal Circuits Enabled by the Direct Monolithic Heterogeneous Integration of InP HBT and Si CMOS on a Silicon Substrate The MIT Faculty has made this article openly available. Please

More information

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

On-wafer seamless integration of GaN and Si (100) electronics

On-wafer seamless integration of GaN and Si (100) electronics On-wafer seamless integration of GaN and Si (100) electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Wafer Scale Integration of III-Vs (GaN) with Si CMOS for RF Applications

Wafer Scale Integration of III-Vs (GaN) with Si CMOS for RF Applications Wafer Scale Integration of III-Vs (GaN) with Si CMOS for RF Applications Some of this data was developed pursuant to Contracts Number N00014-13-C-0231 with the US Government. The US Government s rights

More information

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers Wafer-scale integration of silicon-on-insulator RF amplifiers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits

Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns TU3B-1 Student Paper Finalist An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns H. Park 1, S. Daneshgar 1, J. C. Rode 1, Z. Griffith

More information

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 1 H.C. Park, 1 S.

More information

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs Indium Phosphide and Related Materials - 2006 Selectively implanted subcollector DHBTs Navin Parthasarathy, Z. Griffith, C. Kadow, U. Singisetti, and M.J.W. Rodwell Dept. of Electrical and Computer Engineering,

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Project Overview Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Mar-2017 Presentation outline Project key facts Motivation Project objectives Project

More information

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio International Microwave Symposium 2011 Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell, M. Rodwell,

More information

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate 22 Annual Report 2010 - Solid-State Electronics Department 4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate Student Scientist in collaboration with R. Richter

More information

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M.J.W. Rodwell Department of Electrical and Computer Engineering, University of California,

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS

InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS M. Siddiqui, G. Chao, A. Oki, A. Gutierrez-Aitken, B. Allen, A. Chau, W. Beall, M. D Amore, B. Oyama, D. Hall, R Lai, and D. Streit Velocium, a TRW Company

More information

ATV 2011: Computer Engineering

ATV 2011: Computer Engineering ATV 2011: Technology Trends in Computer Engineering Professor Per Larsson-Edefors ATV 2011, L1, Per Larsson-Edefors Page 1 Solid-State Devices www.cse.chalmers.se/~perla/ugrad/ SemTech/Lectures_2000.pdf

More information

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Hyeong-Jin Kim, Wonseok Choe, and Jinho Jeong Department of Electronics Engineering, Sogang University E-mail: jjeong@sogang.ac.kr

More information

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation Low Thermal Resistance Flip-Chip Bonding of 85nm -D VCSEL Arrays Capable of 1 Gbit/s/ch Operation Hendrik Roscher In 3, our well established technology of flip-chip mounted -D 85 nm backside-emitting VCSEL

More information

InGaP HBT MMIC Development

InGaP HBT MMIC Development InGaP HBT MMIC Development Andy Dearn, Liam Devlin; Plextek Ltd, Wing Yau, Owen Wu; Global Communication Semiconductors, Inc. Abstract InGaP HBT is being increasingly adopted as the technology of choice

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

SOI technology platforms for 5G: Opportunities of collaboration

SOI technology platforms for 5G: Opportunities of collaboration SOI technology platforms for 5G: Opportunities of collaboration Dr. Ionut RADU Director, R&D SOITEC MOS AK workshop, Silicon Valley December 6th, 2017 Sourcing value from substrate Robert E. White ISBN-13:

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging Christophe Kopp, St ephane Bernab e, Badhise Ben Bakir,

More information

How material engineering contributes to delivering innovation in the hyper connected world

How material engineering contributes to delivering innovation in the hyper connected world How material engineering contributes to delivering innovation in the hyper connected world Paul BOUDRE, Soitec CEO Leti Innovation Days - July 2018 Grenoble, France We live in a world of data In perpetual

More information

Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications

Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications SEMATECH Symposium October 23 rd, 2012 Prof. Kyounghoon Yang High Speed Nanoelectronics Laboratory

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Zhaoran (Rena) Huang Assistant Professor Department of Electrical, Computer and System Engineering

More information

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone Department of Electrical & Computer Eng. University of Toronto Canada Introduction

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 26.4 40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems H. Shigematsu 1, M. Sato 1, T. Hirose 1, F. Brewer 2, M. Rodwell 2 1 Fujitsu,

More information

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4 17.4 A 6GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction Daquan Huang, William Hant, Ning-Yi Wang, Tai W. Ku, Qun Gu, Raymond Wong, Mau-Chung

More information

InP-based Complementary HBT Amplifiers for use in Communication Systems

InP-based Complementary HBT Amplifiers for use in Communication Systems InP-based Complementary HBT Amplifiers for use in Communication Systems Donald Sawdai and Dimitris Pavlidis Solid-State Electronics Laboratory Department of Electrical Engineering and Computer Science

More information

Active Technology for Communication Circuits

Active Technology for Communication Circuits EECS 242: Active Technology for Communication Circuits UC Berkeley EECS 242 Copyright Prof. Ali M Niknejad Outline Comparison of technology choices for communication circuits Si npn, Si NMOS, SiGe HBT,

More information

Project Overview. Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow

Project Overview. Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Project Overview Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Presentation outline Key facts Consortium Motivation Project objective Project description

More information

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet HMMC-12 DC 5 GHz Variable Attenuator Data Sheet Description The HMMC-12 is a monolithic, voltage variable, GaAs IC attenuator that operates from DC to 5 GHz. It is fabricated using MWTC s MMICB process

More information

Updates on THz Amplifiers and Transceiver Architecture

Updates on THz Amplifiers and Transceiver Architecture Updates on THz Amplifiers and Transceiver Architecture Sanggeun Jeon, Young-Chai Ko, Moonil Kim, Jae-Sung Rieh, Jun Heo, Sangheon Pack, and Chulhee Kang School of Electrical Engineering Korea University

More information

New advances in silicon photonics Delphine Marris-Morini

New advances in silicon photonics Delphine Marris-Morini New advances in silicon photonics Delphine Marris-Morini P. Brindel Alcatel-Lucent Bell Lab, Nozay, France New Advances in silicon photonics D. Marris-Morini, L. Virot*, D. Perez-Galacho, X. Le Roux, D.

More information

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems Dong Min Kang, Ju Yeon Hong, Jae Yeob Shim, Jin-Hee Lee, Hyung-Sup Yoon, and Kyung Ho Lee A monolithic microwave integrated circuit (MMIC) chip

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

5G Systems and Packaging Opportunities

5G Systems and Packaging Opportunities 5G Systems and Packaging Opportunities Rick Sturdivant, Ph.D. Founder and Chief Technology Officer MPT, Inc. (www.mptcorp.com), ricksturdivant@gmail.com Abstract 5G systems are being developed to meet

More information

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems 71 Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems Isaac Lagnado and Paul R. de la Houssaye SSC San Diego S. J. Koester, R. Hammond, J. O. Chu, J. A. Ott, P. M. Mooney, L. Perraud,

More information

California Eastern Laboratories

California Eastern Laboratories California Eastern Laboratories 750MHz Power Doubler and Push-Pull CATV Hybrid Modules Using Gallium Arsenide D. McNamara*, Y. Fukasawa**, Y. Wakabayashi**, Y. Shirakawa**, Y. Kakuta** *California Eastern

More information

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems A. ZIAEI THALES Research & Technology Research & Technology www.saturne-project.com

More information

I. INTRODUCTION. either Tee or Pi circuit configurations can be used [1] [4]. Though the Tee circuit

I. INTRODUCTION. either Tee or Pi circuit configurations can be used [1] [4]. Though the Tee circuit I. INTRODUCTION FOR the small-signal modeling of hetero junction bipolar transistor (HBT), either Tee or Pi circuit configurations can be used [1] [4]. Though the Tee circuit reflects the device physics

More information

Monolithic Pixel Detector in a 0.15µm SOI Technology

Monolithic Pixel Detector in a 0.15µm SOI Technology Monolithic Pixel Detector in a 0.15µm SOI Technology 2006 IEEE Nuclear Science Symposium, San Diego, California, Nov. 1, 2006 Yasuo Arai (KEK) KEK Detector Technology Project : [SOIPIX Group] Y. Arai Y.

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

Frequency Limits of Bipolar Integrated Circuits

Frequency Limits of Bipolar Integrated Circuits IEEE MTT-S Symposium, June 13, 2006 Frequency Limits of Bipolar Integrated Circuits Mark Rodwell University of California, Santa Barbara Collaborators Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy,

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

CHAPTER 4. Practical Design

CHAPTER 4. Practical Design CHAPTER 4 Practical Design The results in Chapter 3 indicate that the 2-D CCS TL can be used to synthesize a wider range of characteristic impedance, flatten propagation characteristics, and place passive

More information

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling Goodbye Microelectronics Welcome Nanoelectronics Sub-micron technology IC fabrication process trends SOI technology SiGe Tranzistor in 50nm process Virus The thickness of gate oxide= 1.2 nm!!! Today we

More information

High-Frequency Transistors High-Frequency ICs. Technologies & Applications

High-Frequency Transistors High-Frequency ICs. Technologies & Applications High-Frequency Transistors High-Frequency ICs Technologies & Applications Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-2362 fax Report Documentation Page

More information

Product Catalog. Semiconductor Intellectual Property & Technology Licensing Program

Product Catalog. Semiconductor Intellectual Property & Technology Licensing Program Product Catalog Semiconductor Intellectual Property & Technology Licensing Program MANUFACTURING PROCESS TECHNOLOGY OVERVIEW 90 nm 130 nm 0.18 µm 0.25 µm 0.35 µm >0.40 µm Logic CMOS SOI CMOS SOI CMOS SOI

More information

Si and InP Integration in the HELIOS project

Si and InP Integration in the HELIOS project Si and InP Integration in the HELIOS project J.M. Fedeli CEA-LETI, Grenoble ( France) ECOC 2009 1 Basic information about HELIOS HELIOS photonics ELectronics functional Integration on CMOS www.helios-project.eu

More information

A 1.1V 150GHz Amplifier with 8dB Gain and +6dBm Saturated Output Power in Standard Digital 65nm CMOS Using Dummy-Prefilled Microstrip Lines

A 1.1V 150GHz Amplifier with 8dB Gain and +6dBm Saturated Output Power in Standard Digital 65nm CMOS Using Dummy-Prefilled Microstrip Lines A 1.1V 150GHz Amplifier with 8dB Gain and +6dBm Saturated Output Power in Standard Digital 65nm CMOS Using Dummy-Prefilled Microstrip Lines M. Seo 1, B. Jagannathan 2, C. Carta 1, J. Pekarik 3, L. Chen

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION A 2-40 GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION M. Mehdi, C. Rumelhard, J. L. Polleux, B. Lefebvre* ESYCOM

More information

THE RAPID growth of wireless communication using, for

THE RAPID growth of wireless communication using, for 472 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 2, FEBRUARY 2005 Millimeter-Wave CMOS Circuit Design Hisao Shigematsu, Member, IEEE, Tatsuya Hirose, Forrest Brewer, and Mark Rodwell,

More information

Optical Phase-Locking and Wavelength Synthesis

Optical Phase-Locking and Wavelength Synthesis 2014 IEEE Compound Semiconductor Integrated Circuits Symposium, October 21-23, La Jolla, CA. Optical Phase-Locking and Wavelength Synthesis M.J.W. Rodwell, H.C. Park, M. Piels, M. Lu, A. Sivananthan, E.

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

22. VLSI in Communications

22. VLSI in Communications 22. VLSI in Communications State-of-the-art RF Design, Communications and DSP Algorithms Design VLSI Design Isolated goals results in: - higher implementation costs - long transition time between system

More information

BiCMOS Circuit Design

BiCMOS Circuit Design BiCMOS Circuit Design 1. Introduction to BiCMOS 2. Process, Device, and Modeling 3. BiCMOS Digital Circuit Design 4. BiCMOS Analog Circuit Design 5. BiCMOS Subsystems and Practical Considerations Tai-Haur

More information

techniques, and gold metalization in the fabrication of this device.

techniques, and gold metalization in the fabrication of this device. Up to 6 GHz Medium Power Silicon Bipolar Transistor Chip Technical Data AT-42 Features High Output Power: 21. dbm Typical P 1 db at 2. GHz 2.5 dbm Typical P 1 db at 4. GHz High Gain at 1 db Compression:

More information

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design A ew SiGe Base Lateral PM Schottky Collector Bipolar Transistor on SOI for on Saturating VLSI Logic Design Abstract A novel bipolar transistor structure, namely, SiGe base lateral PM Schottky collector

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

Ultra High-Speed InGaAs Nano-HEMTs

Ultra High-Speed InGaAs Nano-HEMTs Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea Contents Introduction to InGaAsNano-HEMTs Nano Patterning Process

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrically pumped continuous-wave III V quantum dot lasers on silicon Siming Chen 1 *, Wei Li 2, Jiang Wu 1, Qi Jiang 1, Mingchu Tang 1, Samuel Shutts 3, Stella N. Elliott 3, Angela Sobiesierski 3, Alwyn

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

More specifically, I would like to talk about Gallium Nitride and related wide bandgap compound semiconductors.

More specifically, I would like to talk about Gallium Nitride and related wide bandgap compound semiconductors. Good morning everyone, I am Edgar Martinez, Program Manager for the Microsystems Technology Office. Today, it is my pleasure to dedicate the next few minutes talking to you about transformations in future

More information

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany Silicon Photonics in Optical Communications Lars Zimmermann, IHP, Frankfurt (Oder), Germany Outline IHP who we are Silicon photonics Photonic-electronic integration IHP photonic technology Conclusions

More information

Advances in Microwave & Millimeterwave Integrated Circuits

Advances in Microwave & Millimeterwave Integrated Circuits الراديو - جامعة Advances in Microwave & Millimeterwave Integrated Circuits الهندسة آلية عين شمس ١٥ مارس ٢٠٠٧-١٣ Amin K. Ezzeddine AMCOM Communications, Inc. 22300 Comsat Drive Clarksburg, Maryland 20871,

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

A 600 GHz Varactor Doubler using CMOS 65nm process

A 600 GHz Varactor Doubler using CMOS 65nm process A 600 GHz Varactor Doubler using CMOS 65nm process S.H. Choi a and M.Kim School of Electrical Engineering, Korea University E-mail : hyperleonheart@hanmail.net Abstract - Varactor and active mode doublers

More information

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR Yang-Shyung Shyu * and Jiin-Chuan Wu Dept. of Electronics Engineering, National Chiao-Tung University 1001 Ta-Hsueh Road, Hsin-Chu, 300, Taiwan * E-mail:

More information

57-65GHz CMOS Power Amplifier Using Transformer-Coupling and Artificial Dielectric for Compact Design

57-65GHz CMOS Power Amplifier Using Transformer-Coupling and Artificial Dielectric for Compact Design 57-65GHz CMOS Power Amplifier Using Transformer-Coupling and Artificial Dielectric for Compact Design Tim LaRocca, and Frank Chang PA Symposium 1/20/09 Overview Introduction Design Overview Differential

More information

Lecture Wrap up. December 13, 2005

Lecture Wrap up. December 13, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 26 1 Lecture 26 6.012 Wrap up December 13, 2005 Contents: 1. 6.012 wrap up Announcements: Final exam TA review session: December 16, 7:30 9:30

More information

DC Analysis of InP/GaAsSb DHBT Device Er. Ankit Sharma 1, Dr. Sukhwinder Singh 2

DC Analysis of InP/GaAsSb DHBT Device Er. Ankit Sharma 1, Dr. Sukhwinder Singh 2 IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 5, Ver. I (Sep - Oct.2015), PP 48-52 www.iosrjournals.org DC Analysis of InP/GaAsSb

More information

Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors

Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors IEICE Electronics Express, Vol.* No.*,*-* Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors Wonseok Choe, Jungsik Kim, and Jinho Jeong a) Department of Electronic

More information

Modeling of the SiGe power HBT IM Distortion

Modeling of the SiGe power HBT IM Distortion Modeling of the SiGe power HBT IM Distortion P.Sakalas %,$, M.Schröter %, L.Kornau &, W.Kraus & % Dresden University of Technology, Mommsenstrasse 13, 01062 Dresden, Germany & Atmel Germany GmbH, Theresienstrasse

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

RECENT advances in the transistor technologies such as Si

RECENT advances in the transistor technologies such as Si 440 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 7, NO. 4, JULY 2017 Submillimeter-Wave Waveguide-to-Microstrip Transitions for Wide Circuits/Wafers Jungsik Kim, Wonseok Choe, and Jinho

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

Matched wideband low-noise amplifiers for radio astronomy

Matched wideband low-noise amplifiers for radio astronomy REVIEW OF SCIENTIFIC INSTRUMENTS 80, 044702 2009 Matched wideband low-noise amplifiers for radio astronomy S. Weinreb, J. Bardin, H. Mani, and G. Jones Department of Electrical Engineering, California

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product Hughes Presented at the 1995 IEEE MTT-S Symposium UCSB Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product J. Pusl 1,2, B. Agarwal1, R. Pullela1, L. D. Nguyen 3, M. V. Le 3,

More information

Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar

Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar Eric Leclerc UMS 1 st Nov 2018 Outline Why heterogenous integration? About UMS Technology portfolio Design tooling: Cadence / GoldenGate

More information

A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process

A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process It consists of a threshold voltage extractor circuit and a proportional to The behavior of the circuit is analytically described, a design

More information

A 16-GHz Ultra-High-Speed Si SiGe HBT Comparator

A 16-GHz Ultra-High-Speed Si SiGe HBT Comparator 1584 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 9, SEPTEMBER 2003 A 16-GHz Ultra-High-Speed Si SiGe HBT Comparator Jonathan C. Jensen, Student Member, IEEE, and Lawrence E. Larson, Fellow, IEEE

More information

A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end

A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end Downloaded from orbit.dtu.dk on: Apr 28, 2018 A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end Jensen, Brian Sveistrup; Johansen, Tom Keinicke; Zhurbenko, Vitaliy Published in: 2013

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information