Neurons... in a nutshell A quick tutorial. Silicon Neurons. Neurons of the world. Equivalent Circuit. E ex (Na +,...) Glutammate. V mem. C mem.

Size: px
Start display at page:

Download "Neurons... in a nutshell A quick tutorial. Silicon Neurons. Neurons of the world. Equivalent Circuit. E ex (Na +,...) Glutammate. V mem. C mem."

Transcription

1 Neurons... in a nutshell quick tutorial Silicon Neurons CNS WS7/8 Class Giacomo Indiveri Institute of Neuroinformatics University ETH Zurich Zurich, December 7 Complexity Real Neurons Conductance based models Integrate and fire models Rate based models Sigmoidal units Linear threshold units Neurons of the world Equivalent Circuit Glutammate E ex (Na,...) GB E inh (K, Cl,...) G l Dendritic tree Soma xon If excitatory input currents are relatively small, the neuron behaves exactly like a first order lowpass filter.

2 Spike generating mechanism ction potentials of the world E Na g Na g K G l E K If the membrane voltage increases above a certain threshold, a spikegenerating mechanism is activated and an action potential is initiated. Spike properties The FI curve Refractory Period Pulse Width I in =I 1 I in =I 2 > I 1 Spike Frequency (F) Refractory Period Input Current (I)

3 Hardware implementations of spiking neurons Conductancebased models of spiking neurons The first artificial neuron model was proposed in the 1943 by McCulloch and Pitts. Hardware implementations of this model date almost back to the same period. Hardware implementations of spiking neurons are relatively new. One of the most influential circuits that implements an integrate and fire (I&F) model of a neuron was the xonhillock Circuit, proposed by Carver Mead in the late 198s. In 1991 Misha Mahowald and Rodney Douglas proposed a conductancebased silicon neuron and showed that it had properties remarkably similar to those of real cortical neurons. Conductance based SiNeurons Conductance based SiNeurons Silicon neuron s measurements Sodium Current Sodium 1V V τna V thr I Naoff E Na Vm [Ca] G Naoff I Naon I Na V τk V thr V thr K G Naon G I K IK Passive Leak E V leak mem C G mem leak Passive Vm [Ca] Vm Potassium Potassium Current E K E K [Ca] I ms

4 Neurons... in a nutshell quick tutorial The xonhillock Circuit Positive Feedback Input current Membrane voltage Complexity Real Neurons Conductance based models Integrate and fire models Rate based models Sigmoidal units Linear threshold units Reset Output voltage The xonhillock Circuit Capacitive Divider voltage Given the change V 2, what is V 1? C2 time Q = C 1 V 1 C 2 (V 1 V 2 ) = constant C 1 V 1 C 2 ( V 1 V 2 ) = V1 Q C1 V2 Slope = V 1 = C 2 C1 C2 V 2

5 Positive Feedback xonhillock Circuit Dynamics C fb voltage Iin C m C fb voltage t H t L time C m time I r Positive Feedback = C fb C m C fb V dd t L = C fb C m = C fb V dd I in I in t H = C fb C m I r I in = C fb I r I in V dd Frequency I in Pulse width 1/I r for I r I in Gain Power Dissipation How to make voltage gain The xonhillock circuit is very compact and allows for implementations of dense arrays of silicon neurons BUT it has a major drawback: power consumption During the time when an inverter switches, a large amount of current flows from V dd to Gnd. What s bad about this?

6 Gain more elaborate I&F circuit C fb V pb nother way to make gain I inj C m Vthr V thresh V b C r This circuit is lowpower, has an explicit voltage threshold, and models the refractory period of real spikes. V thr sets the spiking voltage threshold sets the refractory period length sets the pulse width I&F circuit output n ultra lowpower I&F circuit daptation Positive Feedback V thr =2.V =.V 3 =.4V =.36V =.32V I in V adap (V) 2 1. V w =.6V Firing rate (Hz) V sf V spk 1. =.4V Time (s) Input current intensity (arbitrary units) Leak V lk C adap V alk Spiking Threshold V rf Refractory Period

7 Subthreshold behavior and positive feedback n ultra lowpower I&F spike 2. V inj M21 I inj M V adap M16 M6 M7 I fb M3 V o1 M8 M13 V spk M14 I fb = I 1 e κ V in U T 2 V lk M I leak M19 I adap V ca M18 M17 M12 I reset V sf d dt = I inj I leak I fb I adap M1 M2 V in M4 M M9 M1 M11 V o2 I adap = I e κ Vca U T (1 e Vmem U T ) V ca = V ca C p C p C a Membrane potential (V) d dt = I net I 1 e κ2 Vsf Vmem κ2 U T U e T I e κ Vca U T e κ Cp Vmem CpCa U T Time (s) n ultra lowpower array of I&F circuits Si Neuron on ClassChip Rev.1 Neurons M3 M (in) 29 (adap) M4 M7 M11 M14 M18 Vspk 34 (spike) M1 Vmem M9 M12 M M19 36 Cmem 4 Vin Vrst (Vmem) M1 M13 M16 (thr) 27 Neurons M2 Vca (adaplk) 39 M M8 (ref) M Time (s) Time (s)

8 daptation circuits pplications V gs M21 I inj I leak I adap V adap M M16 M6 26 M7 (in) I fb M1 I reset 36 M2 (Vmem) V sf V in M3 M1 M4 M V o1 29 (adap) M8 Vmem M9 Cmem M1 M3 M13 M14 M4 V o2 M6 V spk M7 4 (thr) M9 Vin M1 M11 M12 M13 M14 M M16 Vrst M18 Vspk Basic research M19 34 (spike) Neuromorphic Sensors Multichip sensoractuator systems Computation? M11 27 M17 M2 Vca (ref) V lk M M19 V ca M18 M17 M12 (adaplk) 39 M M8 Next week Silicon Synapses and then... Longterm (analog) storage and multichip systems

Neuromorphic VLSI Event-Based devices and systems

Neuromorphic VLSI Event-Based devices and systems Neuromorphic VLSI Event-Based devices and systems Giacomo Indiveri Institute of Neuroinformatics University of Zurich and ETH Zurich LTU, Lulea May 28, 2012 G.Indiveri (http://ncs.ethz.ch/) Neuromorphic

More information

Winner-Take-All Networks with Lateral Excitation

Winner-Take-All Networks with Lateral Excitation Analog Integrated Circuits and Signal Processing, 13, 185 193 (1997) c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Winner-Take-All Networks with Lateral Excitation GIACOMO

More information

John Lazzaro and John Wawrzynek Computer Science Division UC Berkeley Berkeley, CA, 94720

John Lazzaro and John Wawrzynek Computer Science Division UC Berkeley Berkeley, CA, 94720 LOW-POWER SILICON NEURONS, AXONS, AND SYNAPSES John Lazzaro and John Wawrzynek Computer Science Division UC Berkeley Berkeley, CA, 94720 Power consumption is the dominant design issue for battery-powered

More information

Implementation of STDP in Neuromorphic Analog VLSI

Implementation of STDP in Neuromorphic Analog VLSI Implementation of STDP in Neuromorphic Analog VLSI Chul Kim chk079@eng.ucsd.edu Shangzhong Li shl198@eng.ucsd.edu Department of Bioengineering University of California San Diego La Jolla, CA 92093 Abstract

More information

Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs

Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.6, DECEMBER, 2014 http://dx.doi.org/10.5573/jsts.2014.14.6.755 Integrate-and-Fire Neuron Circuit and Synaptic Device with Floating Body MOSFETs

More information

Neuromorphic Engineering I. avlsi.ini.uzh.ch/classwiki. A pidgin vocabulary. Neuromorphic Electronics? What is it all about?

Neuromorphic Engineering I. avlsi.ini.uzh.ch/classwiki. A pidgin vocabulary. Neuromorphic Electronics? What is it all about? Neuromorphic Engineering I Time and day : Lectures Mondays, 13:15-14:45 Lab exercise location: Institut für Neuroinformatik, Universität Irchel, Y55 G87 Credits: 6 ECTS credit points Exam: Oral 20-30 minutes

More information

Habilitation Thesis. Neuromorphic VLSI selective attention systems: from single chip solutions to multi-chip systems

Habilitation Thesis. Neuromorphic VLSI selective attention systems: from single chip solutions to multi-chip systems Habilitation Thesis Neuromorphic VLSI selective attention systems: from single chip solutions to multi-chip systems Giacomo Indiveri A habilitation thesis submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY

More information

Energy-efficient Hybrid CMOS-NEMS LIF Neuron Circuit in 28 nm CMOS Process

Energy-efficient Hybrid CMOS-NEMS LIF Neuron Circuit in 28 nm CMOS Process Energy-efficient Hybrid CMOS-NEMS LIF Neuron Circuit in 28 nm CMOS Process Saber Moradi Computer Systems Laboratory Yale University, New Haven, CT 652 saber.moradi@yale.edu Sunil A. Bhave School of Electrical

More information

Modeling Selective Attention Using a Neuromorphic Analog VLSI Device

Modeling Selective Attention Using a Neuromorphic Analog VLSI Device LETTER Communicated by Stephen DeWeerth Modeling Selective Attention Using a Neuromorphic Analog VLSI Device Giacomo Indiveri Institute of Neuroinformatics, University/ETH Zürich, Switzerland Attentional

More information

Integrate-and-Fire Neuron Circuit and Synaptic Device using Floating Body MOSFET with Spike Timing- Dependent Plasticity

Integrate-and-Fire Neuron Circuit and Synaptic Device using Floating Body MOSFET with Spike Timing- Dependent Plasticity JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.6, DECEMBER, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.6.658 ISSN(Online) 2233-4866 Integrate-and-Fire Neuron Circuit

More information

ANALOG INTEGRATED CIRCUITS FOR MEMRISTOR CROSSBAR ARRAY BASED NEUROMORPHIC SYSTEMS

ANALOG INTEGRATED CIRCUITS FOR MEMRISTOR CROSSBAR ARRAY BASED NEUROMORPHIC SYSTEMS ANALOG INTEGRATED CIRCUITS FOR MEMRISTOR CROSSBAR ARRAY BASED NEUROMORPHIC SYSTEMS 36.2 0 IS L33 A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements

More information

A Neuromorphic VLSI Device for Implementing 2-D Selective Attention Systems

A Neuromorphic VLSI Device for Implementing 2-D Selective Attention Systems IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001 1455 A Neuromorphic VLSI Device for Implementing 2-D Selective Attention Systems Giacomo Indiveri Abstract Selective attention is a mechanism

More information

Analog Axon Hillock Neuron Design for Memristive Neuromorphic Systems

Analog Axon Hillock Neuron Design for Memristive Neuromorphic Systems University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 Analog Axon Hillock Neuron Design for Memristive Neuromorphic Systems Ryan John

More information

CONTRIBUTIONS TO NEUROMORPHIC AND RECONFIGURABLE CIRCUITS AND SYSTEMS

CONTRIBUTIONS TO NEUROMORPHIC AND RECONFIGURABLE CIRCUITS AND SYSTEMS CONTRIBUTIONS TO NEUROMORPHIC AND RECONFIGURABLE CIRCUITS AND SYSTEMS A Thesis Presented to The Academic Faculty by Stephen H Nease In Partial Fulfillment of the Requirements for the Degree Master of Science

More information

Autonomous vehicle guidance using analog VLSI neuromorphic sensors

Autonomous vehicle guidance using analog VLSI neuromorphic sensors Autonomous vehicle guidance using analog VLSI neuromorphic sensors Giacomo Indiveri and Paul Verschure Institute for Neuroinformatics ETH/UNIZH, Gloriastrasse 32, CH-8006 Zurich, Switzerland Abstract.

More information

A Synchronized Axon Hillock Neuron for Memristive Neuromorphic Systems

A Synchronized Axon Hillock Neuron for Memristive Neuromorphic Systems A Synchronized Axon Hillock Neuron for Memristive Neuromorphic Systems Ryan Weiss, Gangotree Chakma, and Garrett S. Rose IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, Massachusetts,

More information

Micropulse position measuring Micropulse

Micropulse position measuring Micropulse 130 Non-contact replacement for troublesome linear potentiometers Fast update rate for quick movements Analog voltage and current output versions available Micropulse position measuring Micropulse system

More information

Classchip 2005 rev.1. Reference Guide. November, 2005 Zurich, Switzerland

Classchip 2005 rev.1. Reference Guide. November, 2005 Zurich, Switzerland Classchip 2005 rev.1 Reference Guide November, 2005 Zurich, Switzerland For the Computation in Neuromorphic Analog VLSI Systems (CNS) class, tought by Tobi Delbrück, Giacomo Indiveri, and Shih-Chii Liu

More information

A Silicon Axon. Bradley A. Minch, Paul Hasler, Chris Diorio, Carver Mead. California Institute of Technology. Pasadena, CA 91125

A Silicon Axon. Bradley A. Minch, Paul Hasler, Chris Diorio, Carver Mead. California Institute of Technology. Pasadena, CA 91125 A Silicon Axon Bradley A. Minch, Paul Hasler, Chris Diorio, Carver Mead Physics of Computation Laboratory California Institute of Technology Pasadena, CA 95 bminch, paul, chris, carver@pcmp.caltech.edu

More information

SWITCHED CAPACITOR BASED IMPLEMENTATION OF INTEGRATE AND FIRE NEURAL NETWORKS

SWITCHED CAPACITOR BASED IMPLEMENTATION OF INTEGRATE AND FIRE NEURAL NETWORKS Journal of ELECTRICAL ENGINEERING, VOL. 54, NO. 7-8, 23, 28 212 SWITCHED CAPACITOR BASED IMPLEMENTATION OF INTEGRATE AND FIRE NEURAL NETWORKS Daniel Hajtáš Daniela Ďuračková This paper is dealing with

More information

An Auditory Localization and Coordinate Transform Chip

An Auditory Localization and Coordinate Transform Chip An Auditory Localization and Coordinate Transform Chip Timothy K. Horiuchi timmer@cns.caltech.edu Computation and Neural Systems Program California Institute of Technology Pasadena, CA 91125 Abstract The

More information

THE term neuromorphic systems has been coined by Carver Mead, at the California Institute of Technology, to

THE term neuromorphic systems has been coined by Carver Mead, at the California Institute of Technology, to Neuromorphic Vision Chips: intelligent sensors for industrial applications Giacomo Indiveri, Jörg Kramer and Christof Koch Computation and Neural Systems Program California Institute of Technology Pasadena,

More information

Summary and Impact of Large Scale Field-Programmable Analog Neuron Arrays (FPNAs) Ethan David Farquhar

Summary and Impact of Large Scale Field-Programmable Analog Neuron Arrays (FPNAs) Ethan David Farquhar Summary and Impact of Large Scale Field-Programmable Analog Neuron Arrays (FPNAs) A Thesis Presented to The Academic Faculty by Ethan David Farquhar In Partial Fulfillment of the Requirements for the Degree

More information

LX12973 V 800mV, 1.5A, 1.1MHZ PWM

LX12973 V 800mV, 1.5A, 1.1MHZ PWM The LX12973 operates as a Current Mode PWM Buck regulator that switches to PFM mode with light loads. The entire regulator function is implemented with few external components. The LX12973 responds quickly

More information

A Library of Analog Operators Based on the Hodgkin-Huxley Formalism for the Design of Tunable, Real-Time, Silicon Neurons

A Library of Analog Operators Based on the Hodgkin-Huxley Formalism for the Design of Tunable, Real-Time, Silicon Neurons A Library of Analog Operators Based on the Hodgkin-Huxley Formalism for the Design of Tunable, Real-Time, Silicon Neurons Sylvain Saïghi, Yannick Bornat, Jean Tomas, Gwendal Le Masson, Sylvie Renaud To

More information

CMOS and Memristor Technologies for Neuromorphic Computing Applications

CMOS and Memristor Technologies for Neuromorphic Computing Applications CMOS and Memristor Technologies for Neuromorphic Computing Applications Jeff Sun Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-218

More information

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS

SURVEY AND EVALUATION OF LOW-POWER FULL-ADDER CELLS SURVEY ND EVLUTION OF LOW-POWER FULL-DDER CELLS hmed Sayed and Hussain l-saad Department of Electrical & Computer Engineering University of California Davis, C, U.S.. STRCT In this paper, we survey various

More information

LM3647 Universal Battery Charger for Li-Ion, Ni-MH and Ni-Cd Batteries

LM3647 Universal Battery Charger for Li-Ion, Ni-MH and Ni-Cd Batteries LM3647 Universal Battery Charger for Li-Ion, Ni-MH and Ni-Cd Batteries 1.0 General Description The LM3647 is a charge controller for Lithium-Ion (Li-Ion), Nickel-Metal Hydride (Ni-MH) and Nickel-Cadmium

More information

High-Voltage, Low-Threshold, Low-power Voltage Detector

High-Voltage, Low-Threshold, Low-power Voltage Detector Electrical Energy Management Research Group www.bristol.ac.uk/engineering/research/em/ High-Voltage, Low-Threshold, Low-power Voltage Detector for Energy Harvesting, Internet of Things, RF Power Transfer,

More information

Symbol Parameter Typical

Symbol Parameter Typical PRODUCT SUMMARY (TYPICAL) V DS (V) 650 R DS(on) (m ) 110 Q rr (nc) 54 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI RoHS compliant High frequency operation Applications

More information

Neuromorphic MOS Circuits Exhibiting Precisely Timed Synchronization with Silicon Spiking Neurons and Depressing Synapses

Neuromorphic MOS Circuits Exhibiting Precisely Timed Synchronization with Silicon Spiking Neurons and Depressing Synapses 39 PAPER Neuromorphic MOS Circuits Exhibiting Precisely Timed Synchronization with Silicon Spiking Neurons and Depressing Synapses Gessyca Maria Tovar, Tetsuya Hirose, Tetsuya Asai and Yoshihito Amemiya

More information

Journal of Applied Research and Technology ISSN: Centro de Ciencias Aplicadas y Desarrollo Tecnológico.

Journal of Applied Research and Technology ISSN: Centro de Ciencias Aplicadas y Desarrollo Tecnológico. Journal of Applied Research and Technology ISSN: 1665-6423 jart@aleph.cinstrum.unam.mx Centro de Ciencias Aplicadas y Desarrollo Tecnológico México Mateos Santillán, E.; Pérez Silva, J. L. Design, at transistor

More information

Awinner-take-all (WTA) circuit, which identifies the

Awinner-take-all (WTA) circuit, which identifies the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 3, MARCH 2005 131 High-Speed and High-Precision Current Winner-Take-All Circuit Alexander Fish, Student Member, IEEE, Vadim Milrud,

More information

Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System EURASIP Journal on Applied Signal Processing 23:7, 649 658 c 23 Hindawi Publishing Corporation Analog VLSI Models of Range-Tuned Neurons in the Bat location System Matthew Cheely Neurosciences and Cognitive

More information

NEUROMORPHIC engineering has garnered ever-increasing

NEUROMORPHIC engineering has garnered ever-increasing 76 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 6, NO. 1, FEBRUARY 2012 Modeling and Implementation of Voltage-Mode CMOS Dendrites on a Reconfigurable Analog Platform Stephen Nease, Suma

More information

VLSI Implementation of a Simple Spiking Neuron Model

VLSI Implementation of a Simple Spiking Neuron Model VLSI Implementation of a Simple Spiking Neuron Model Abdullah H. Ozcan Vamshi Chatla ECE 6332 Fall 2009 University of Virginia aho3h@virginia.edu vkc5em@virginia.edu ABSTRACT In this paper, we design a

More information

A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night.

A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night. Light intensities range across 9 orders of magnitude. A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night. But in a given lighting condition, light ranges

More information

A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat

A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat Autonomous Robots 11, 241 247, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat TIMOTHY HORIUCHI Electrical and

More information

3.9, 8-Channel / Dual 4-Channel, ± 15 V, +12 V, ± 5 V Precision Multiplexers

3.9, 8-Channel / Dual 4-Channel, ± 15 V, +12 V, ± 5 V Precision Multiplexers DG148E, DG149E 3.9, 8-Channel / Dual 4-Channel, ± 15, +12, ± 5 Precision Multiplexers DESCRIPTION The DG148E is a precision analog multiplexer comprising eight single-ended channels. The DG149E is a dual

More information

Exercise 2: Hodgkin and Huxley model

Exercise 2: Hodgkin and Huxley model Exercise 2: Hodgkin and Huxley model Expected time: 4.5h To complete this exercise you will need access to MATLAB version 6 or higher (V5.3 also seems to work), and the Hodgkin-Huxley simulator code. At

More information

Single Transistor Learning Synapses

Single Transistor Learning Synapses Single Transistor Learning Synapses Paul Hasler, Chris Diorio, Bradley A. Minch, Carver Mead California Institute of Technology Pasadena, CA 91125 (818) 395-2812 paul@hobiecat.pcmp.caltech.edu Abstract

More information

PROGRAMMABLE ANALOG PULSE-FIRING NEURAL NETWORKS

PROGRAMMABLE ANALOG PULSE-FIRING NEURAL NETWORKS 671 PROGRAMMABLE ANALOG PULSE-FIRING NEURAL NETWORKS Alan F. Murray Alister Hamilton Dept. of Elec. Eng., Dept. of Elec. Eng., University of Edinburgh, University of Edinburgh, Mayfield Road, Mayfield

More information

Thursday, December 11, 8:00am 10:00am rooms: pending

Thursday, December 11, 8:00am 10:00am rooms: pending Final Exam Thursday, December 11, 8:00am 10:00am rooms: pending No books, no questions, work alone, everything seen in class. CS 561, Sessions 24-25 1 Artificial Neural Networks and AI Artificial Neural

More information

1 Introduction. w k x k (1.1)

1 Introduction. w k x k (1.1) Neural Smithing 1 Introduction Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The major

More information

Supertex inc. HV264. Quad, High Voltage, Amplifier Array. Features. General Description. Applications. Block Diagram. Supertex inc.

Supertex inc. HV264. Quad, High Voltage, Amplifier Array. Features. General Description. Applications. Block Diagram. Supertex inc. Quad, High Voltage, Amplifier Array Features Four independent high voltage amplifiers 190V output swing 9.0V/µs typical output slew rate Fixed gain of 66.7V/V High value internal feedback resistors Very

More information

Electronic Instrumentation

Electronic Instrumentation Electronic Instrumentation Project 4: Optical Communication Link 1. Optical Communications 2. Initial Design 3. PSpice Model 4. Final Design 5. Project Report Why use optics? Advantages of optical communication

More information

SGM Channel PWM Dimming Charge Pump White LED Driver

SGM Channel PWM Dimming Charge Pump White LED Driver GENERAL DESCRIPTION The SGM3145 is a high performance white LED driver. It integrates current sources and automatic mode selection charge pump. The part maintains the high efficiency by utilizing a 1 /1.5

More information

ACE714C. Max. 3MHz, Variable Frequency Step-up DC/DC Converter

ACE714C. Max. 3MHz, Variable Frequency Step-up DC/DC Converter Description The veriable frequency step-up Converter drives white LEDs with a constant current to provide backlight in cell phones, PDAs, and other handheld devices. It features allowing series connection

More information

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS - Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:

More information

Neuromorphic Analog VLSI

Neuromorphic Analog VLSI Neuromorphic Analog VLSI David W. Graham West Virginia University Lane Department of Computer Science and Electrical Engineering 1 Neuromorphic Analog VLSI Each word has meaning Neuromorphic Analog VLSI

More information

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated) PRODUCT SUMMARY (TYPICAL) V DS (V) 650 R DS(on) (m ) 35 Q rr (nc) 175 Features Low Q rr Free-wheeling diode not required Quiet Tab for reduced EMI at high dv/dt GSD pin layout improves high speed design

More information

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 Readout Electronics P. Fischer, Heidelberg University Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 We will treat the following questions: 1. How is the sensor modeled?

More information

NEUROMORPHIC ANALOGUE VLSI

NEUROMORPHIC ANALOGUE VLSI Annu. Rev. Neurosci. 1995. 18:255-81 Copyright 1995 by Annual Reviews Inc. All rights reserved NEUROMORPHIC ANALOGUE VLSI Rodney Douglas 1 2, Misha Mahowald l, and 2 Carver Mead 1MRC Anatomical Neuropharmacology

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics G3 - Switching regulators» PWM regulators» Buck,» Boost,» Buck-boost» Flyback 30/05/2012-1 ATLCE - G3-2011 DDC Lesson G3: Switching

More information

arxiv: v1 [cs.ne] 4 Apr 2019

arxiv: v1 [cs.ne] 4 Apr 2019 Fluxonic processing of photonic synapse events Jeffrey M. Shainline National Institute of Standards and Technology, Boulder, CO, 5 April st, 9 arxiv:9.7v [cs.ne] Apr 9 Abstract Much of the information

More information

Multi-Chip Implementation of a Biomimetic VLSI Vision Sensor Based on the Adelson-Bergen Algorithm

Multi-Chip Implementation of a Biomimetic VLSI Vision Sensor Based on the Adelson-Bergen Algorithm Multi-Chip Implementation of a Biomimetic VLSI Vision Sensor Based on the Adelson-Bergen Algorithm Erhan Ozalevli and Charles M. Higgins Department of Electrical and Computer Engineering The University

More information

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW)

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) 600mA, Ultra-Low Dropout, CMOS Regulator General Description The is a high-performance, 600mA LDO regulator, offering extremely high PSRR and ultra-low dropout. This chip is ideal for portable RF and wireless

More information

arxiv: v1 [cs.et] 13 Jul 2018

arxiv: v1 [cs.et] 13 Jul 2018 J our nal Name A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: From mitigation to exploitation arxiv:1807.05128v1 [cs.et] 13 Jul 2018 Melika Payvand, a Manu V

More information

SC4215 Very Low Input /Very Low Dropout 2 Amp Regulator With Enable POWER MANAGEMENT Features Description Applications Typical Application Circuit

SC4215 Very Low Input /Very Low Dropout 2 Amp Regulator With Enable POWER MANAGEMENT Features Description Applications Typical Application Circuit ery Low Input /ery Low Dropout 2 Amp Regulator With Enable POWER MANAGEMENT Features Input oltage as low as 1.6 500m dropout @ 2A Adjustable output from 0.8 Over current and over temperature protection

More information

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises 102726 Design of nalog and Mixed Theory Exercises Francesc Serra Graells http://www.cnm.es/~pserra/uab/damics paco.serra@imb-cnm.csic.es 1 Introduction to the Design of nalog Integrated Circuits 1.1 The

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

VOUT = 5V VIN = 8V COUT CIN SENSE RPG EN/ UVLO OFF GND VOUT = 5V VIN = 8V CIN ADJ RPG EN/ UVLO OFF GND

VOUT = 5V VIN = 8V COUT CIN SENSE RPG EN/ UVLO OFF GND VOUT = 5V VIN = 8V CIN ADJ RPG EN/ UVLO OFF GND 956-2 956-1 VIN = 8V OFF ON CIN 1µF R1 1kΩ R2 1kΩ + VIN EN/ UVLO GND VOUT SENSE PG + COUT 1µF VOUT = 5V RPG 1kΩ PG VIN = 8V OFF ON CIN 1µF R3 1kΩ R4 1kΩ + VIN EN/ UVLO GND VOUT ADJ PG R1 4.2kΩ R2 13kΩ

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input Green-Power PWM Controller with Freq. Jittering Features Low Cost, Green-Power Burst-Mode PWM Very Low Start-up Current ( about 7.5µA) Low Operating Current ( about 3.0mA) Current Mode Operation Under

More information

CMOS Architecture of Synchronous Pulse-Coupled Neural Network and Its Application to Image Processing

CMOS Architecture of Synchronous Pulse-Coupled Neural Network and Its Application to Image Processing CMOS Architecture of Synchronous Pulse-Coupled Neural Network and Its Application to Image Processing Yasuhiro Ota Bogdan M. Wilamowski Image Information Products Hdqrs. College of Engineering MINOLTA

More information

78A207 MFR1 Receiver DATA SHEET DESCRIPTION FEATURES OCTOBER 2005

78A207 MFR1 Receiver DATA SHEET DESCRIPTION FEATURES OCTOBER 2005 DESCRIPTION The 78A207 is a single-chip, Multi-Frequency (MF) receiver that can detect all 15 tone-pairs, including ST and KP framing tones. This receiver is intended for use in equal access applications

More information

AN003. Basic Terms Used for DC Power Supplies. Elaborated by: Marco Geri (R&D Manager - NEXTYS SA.)

AN003. Basic Terms Used for DC Power Supplies. Elaborated by: Marco Geri (R&D Manager - NEXTYS SA.) AN003 Elaborated by: Marco Geri (R&D Manager - NEXTYS SA.) Rev.1.0 Page 1/5 1 Introduction DC (Direct Current) power supplies are used in various applications related to automation, telecom, industry,

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

RRAM based analog synapse device for neuromorphic system

RRAM based analog synapse device for neuromorphic system RRAM based analog synapse device for neuromorphic system Kibong Moon, Euijun Cha, and Hyunsang Hwang Pohang University of Science and Technology (POSTECH), Korea The 13 th Korea-U.S. Forum on Nanotechnology,

More information

MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator

MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator DESCRIPTION The MP20041 is a dual-channel, micropower, ultra low noise, low dropout and high PSRR linear regulator. The output voltage of

More information

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.2, APRIL, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.2.174 ISSN(Online) 2233-4866 CMOS Analog Integrate-and-fire Neuron

More information

A Micropower Front-end Interface for Differential-Capacitive Sensor Systems

A Micropower Front-end Interface for Differential-Capacitive Sensor Systems A Micropower Front-end Interface for Differential-Capacitive Sensor Systems T.G. Constandinou, J. Georgiou and C. Toumazou Abstract: This letter presents a front-end circuit for interfacing to differential

More information

Signal Integrity Modeling and Measurement of TSV in 3D IC

Signal Integrity Modeling and Measurement of TSV in 3D IC Signal Integrity Modeling and Measurement of TSV in 3D IC Joungho Kim KAIST joungho@ee.kaist.ac.kr 1 Contents 1) Introduction 2) 2.5D/3D Architectures with TSV and Interposer 3) Signal integrity, Channel

More information

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated) PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) ( ) 0.29 Q rr (nc) 29 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI GSD pin layout improves high speed design RoHS

More information

500mA Low Noise LDO with Soft Start and Output Discharge Function

500mA Low Noise LDO with Soft Start and Output Discharge Function 500mA Low Noise LDO with Soft Start and Output Discharge Function Description The is a family of CMOS low dropout (LDO) regulators with a low dropout voltage of 250mV at 500mA designed for noise-sensitive

More information

LD5857 4/15/2014. Boost Controller for LED Backlight. General Description. Features. Applications. Typical Application REV: 00

LD5857 4/15/2014. Boost Controller for LED Backlight. General Description. Features. Applications. Typical Application REV: 00 4/15/2014 Boost Controller for LED Backlight REV: 00 General Description The LD5857 is a wide-input asynchronous current mode boost controller, capable to operate in the range between 9V and 28V and to

More information

Application Circuits 3. 3V R2. C4 100n G PI O. 0 G PI O S e t u p d a ta G PI O. 5 G PI O M o t i o n I n t G PI O. 4 G PI O.

Application Circuits 3. 3V R2. C4 100n G PI O. 0 G PI O S e t u p d a ta G PI O. 5 G PI O M o t i o n I n t G PI O. 4 G PI O. General Description The is an ultra-low power motion detector controller integrated circuit. The device is ideally suited for battery operated wireless motion sensors that make use of an MCU for handling

More information

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Ultra-Low Quiescent Current: 5.μA (max), All comparators plus Reference Single or Dual Power Supplies: Single: +.5V to +V Dual: ±.5V

More information

ADG1411/ADG1412/ADG1413

ADG1411/ADG1412/ADG1413 .5 Ω On Resistance, ±5 V/+2 V/±5 V, icmos, Quad SPST Switches ADG4/ADG42/ADG43 FEATURES.5 Ω on resistance.3 Ω on-resistance flatness. Ω on-resistance match between channels Continuous current per channel

More information

C H A P T E R 5. Amplifier Design

C H A P T E R 5. Amplifier Design C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.

More information

Mute detector IC BA336 / BA338 / BA338L. Audio ICs

Mute detector IC BA336 / BA338 / BA338L. Audio ICs Mute detector IC The BA336, BA338 and BA338L are monolithic ICs designed for mute detection and tape end detection. When a duration of silence (52dBm or less) exceeds the time constant set with an external

More information

V out. V in VRM. I Load

V out. V in VRM. I Load Optimal Selection of Voltage Regulator Modules in a Power Delivery Network Behnam Amelifard Massoud Pedram Department of Electrical Engineering University of Southern California Outline Introduction Voltage

More information

High-density CMOS Bioelectronic Chip

High-density CMOS Bioelectronic Chip Direktes Ankoppeln von Hirnzellen an Mikroelektronik 20 μm 50 m Andreas Hierlemann Slide 1 Outline Bioelectronics Fundamentals electrogenic cells action potentials measurements of electric activity CMOS

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

A recurrent model of orientation maps with simple and complex cells

A recurrent model of orientation maps with simple and complex cells University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering December 2003 A recurrent model of orientation maps with simple and complex cells Paul Merolla University

More information

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland 1 MOSFET Modeling for Ultra Low-Power RF Design T. Taris, H. Kraïmia, JB. Begueret, Y. Deval Bordeaux, France 2 Context More services in Environment survey Energy management Process optimisation Aging

More information

arxiv: v1 [cs.et] 16 Sep 2017

arxiv: v1 [cs.et] 16 Sep 2017 A differential memristive synapse circuit for on-line learning in neuromorphic computing systems arxiv:1709.05484v1 [cs.et] 16 Sep 2017 1. Introduction Manu V Nair, Lorenz K. Muller, and Giacomo Indiveri

More information

RETINOMORPHIC VISION SYSTEMS I: PIXEL DESIGN

RETINOMORPHIC VISION SYSTEMS I: PIXEL DESIGN RETINOMORPHIC VISION SYSTEMS I: PIXEL DESIGN Kwabena Boahen Physics of Computation Laboratory California Institute of Technology MS 136-93, Pasadena, CA 91125, USA buster@pcmp.caltech.edu ABSTRACT I present

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

Symbol Parameter Typical

Symbol Parameter Typical PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) ( ) 0.29 Q rr (nc) 29 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI RoHS compliant High frequency operation Applications

More information

SF229 Low Power PIR Circuit IC For security applications

SF229 Low Power PIR Circuit IC For security applications Low Power PIR Circuit IC For security applications Preliminary datasheet DESCRIPTION The SF229 is a low power CMOS mixed signal ASIC designed for battery powered security applications that are either hard

More information

PERFORMANCE CHARACTERISTICS OF EPAD PRECISION MATCHED PAIR MOSFET ARRAY

PERFORMANCE CHARACTERISTICS OF EPAD PRECISION MATCHED PAIR MOSFET ARRAY TM ADVANCED LINEAR DEVICES, INC. e EPAD E N A B L E D PERFORMANCE CHARACTERISTICS OF EPAD PRECISION MATCHED PAIR MOSFET ARRAY GENERAL DESCRIPTION ALDxx/ALD9xx/ALDxx/ALD9xx are high precision monolithic

More information

Behavioural Modeling and Simulation of a Switched-Current Phase Locked Loop

Behavioural Modeling and Simulation of a Switched-Current Phase Locked Loop Behavioural Modeling and Simulation of a Switched-Current Phase Locked Loop Peter R. Wilson, Reuben Wilcock, Bashir Al-Hashimi & Andrew D. Brown Electronic Systems Design Group prw@ecs.soton.ac.uk 1 Introduction

More information

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

More information

Separation and Recognition of multiple sound source using Pulsed Neuron Model

Separation and Recognition of multiple sound source using Pulsed Neuron Model Separation and Recognition of multiple sound source using Pulsed Neuron Model Kaname Iwasa, Hideaki Inoue, Mauricio Kugler, Susumu Kuroyanagi, Akira Iwata Nagoya Institute of Technology, Gokiso-cho, Showa-ku,

More information

Neuromorphic Computing based Processors

Neuromorphic Computing based Processors Neuromorphic Computing based Processors Hao Jiang A collaborative research among San Francisco State University, EI-Lab at University of Pittsburgh, HP Labs, and AFRL Outline Why Neuromorphic Computing?

More information

LD A very low dropout fast transient ultra-low noise linear regulator. Datasheet. Features. Applications. Description

LD A very low dropout fast transient ultra-low noise linear regulator. Datasheet. Features. Applications. Description Datasheet 1 A very low dropout fast transient ultra-low noise linear regulator Features Input voltage from 1.8 to 5.5 V Ultra-low dropout voltage (120 mv typ. at 1 A load and V OUT = 3.3 V) Very low quiescent

More information

SGM48754 Quad SPST CMOS Analog Switch

SGM48754 Quad SPST CMOS Analog Switch GENERAL DESCRIPTION The is a CMOS analog switch configured as quad SPST. This CMOS device can operate from 2.5V to 5.5V single supplies. Each switch can handle rail-to-rail analog signals. The off-leakage

More information

Symbol Parameter VRF148A(MP) Unit V DSS Drain-Source Voltage 170 V I D Continuous Drain T C

Symbol Parameter VRF148A(MP) Unit V DSS Drain-Source Voltage 170 V I D Continuous Drain T C VRF48A VRF48AMP 5V, 3W, 75MHz RF POWER VERTICAL MOSFET The VRF48A is a gold-metallized silicon n-channel RF power transistor designed for broadband commercial and military applications requiring high power

More information